The Futuristic Gun Duel


73

Lo sfondo del futuro

Nell'anno 2017, tu e il tuo avversario affronterete una battaglia futuristica con armi da fuoco in cui solo uno può sopravvivere. Sei tu abbastanza esperienza per sconfiggere il tuo avversario? Ora è il momento di perfezionare le tue abilità con le armi nel tuo linguaggio di programmazione preferito e combattere contro ogni previsione!

Risultati del torneo

Questo torneo è conclusa la mattina UTC di Feburary 2 ° , 2017. Grazie ai nostri concorrenti, abbiamo avuto un emozionante torneo futuristico!

MontePlayer è il vincitore finale dopo una battaglia ravvicinata con CBetaPlayer e StudiousPlayer. I tre duellanti principali hanno fatto una foto commemorativa:

                MontePlayer                         - by TheNumberOne
              +------------+
  CBetaPlayer |            |                        - by George V. Williams
 +------------+    #  1    | StudiousPlayer         - by H Walters
 |                         +----------------+
 |    #  2                        #  3      |       
 +------------------------------------------+
    The Futurustic Gun Duel @ PPCG.SE 2017

Congratulazioni ai vincitori! La classifica dettagliata è visibile alla fine di questo post.

Guida generale

  • Visita il repository ufficiale per il codice sorgente utilizzato in questo torneo.
  • Voci C ++: si prega di ereditare la Playerclasse.
  • Voci non C ++: selezionare un'interfaccia nella sezione Interfaccia per invii non C ++ .
  • Linguaggi non C ++ attualmente consentiti: Python 3, Java.

Il duello

  • Ogni giocatore inizia con un'arma scarica che può caricare una quantità infinita di munizioni.
  • Ad ogni turno, i giocatori sceglieranno simultaneamente una delle seguenti azioni:
    • 0 - Carica 1 munizioni nella pistola.
    • 1- Spara un proiettile contro l'avversario; costa 1 munizioni caricate.
    • 2- Spara un raggio al plasma contro l'avversario; costa 2 munizioni caricate.
    • - - Difendi il proiettile in arrivo usando uno scudo di metallo.
    • = - Difendi il raggio al plasma in entrata usando un deflettore termico.
  • Se entrambi i giocatori sopravvivono dopo il 100 ° turno, si esauriscono entrambi a morte, il che si traduce in un pareggio .

Un giocatore perde il duello con la pistola se lo fa

  • Ha NON utilizzare la protezione metallica per difendere un proiettile in entrata.
  • Ha NON utilizzare il deflettore termico difendere un plasma in entrata.
  • Spara con una pistola senza caricare abbastanza munizioni, in cui la sua pistola esploderà e ucciderà il proprietario.

Avvertenze

Secondo il Manuale per i possessori di armi futuristiche :

  • Uno schermo metallico NON PUO ' difendersi dal raggio al plasma in arrivo. Allo stesso modo, un deflettore termico NON PUO ' difendersi dal proiettile in arrivo.
  • Il raggio al plasma sopraffà il proiettile (perché il primo richiede più munizioni caricate). Pertanto, se un giocatore spara un raggio al plasma contro l'avversario che spara un proiettile nello stesso turno, l'avversario viene ucciso.
  • Se entrambi i giocatori sparano un proiettile l'uno contro l'altro nello stesso turno, i proiettili si annullano ed entrambi i giocatori sopravvivono. Allo stesso modo, se entrambi i giocatori sparano l'un l'altro un raggio al plasma nello stesso turno, entrambi i giocatori sopravvivono.

È anche interessante notare che:

  • Potrai NON conoscere l'azione del tuo avversario in un turno fino alla fine.
  • La deviazione dei raggi al plasma e la protezione dei proiettili NON danneggeranno il tuo avversario.

Pertanto, ci sono un totale di 25 combinazioni di azioni valide ogni turno:

+-------------+---------------------------------------------+
|   Outcome   |               P L A Y E R   B               |
|    Table    +--------+-----------------+------------------+
| for Players | Load   | Bullet   Plasma | Metal    Thermal |
+---+---------+--------+--------+--------+--------+---------+
| P | Load    |        | B wins | B wins |        |         |
| L +---------+--------+--------+--------+--------+---------+
| A | Bullet  | A wins |        | B wins |        | A wins  |
| Y |         +--------+--------+--------+--------+---------+
| E | Plasma  | A wins | A wins |        | A wins |         |
| R +---------+--------+--------+--------+--------+---------+
|   | Metal   |        |        | B wins |        |         |
|   |         +--------+--------+--------+--------+---------+
| A | Thermal |        | B wins |        |        |         |
+---+---------+--------+--------+---------------------------+

Note: Blank cells indicate that both players survive to the next turn.

Esempio Duello

Ecco un duello che ho avuto una volta con un amico. Allora, non sapevamo molto sulla programmazione, quindi abbiamo usato i gesti delle mani e segnalato alla velocità di due giri al secondo. Da sinistra a destra, le nostre azioni erano a loro volta:

    Me: 001-000-1201101001----2
Friend: 00-10-=1-==--0100-1---1

Secondo le regole sopra, ho perso. Capisci perché? È perché ho sparato il raggio al plasma finale quando avevo solo 1 munizioni caricate, facendo esplodere la mia pistola.


Il lettore C ++

Tu , come programmatore futuristico civilizzato, non gestirai direttamente le armi. Invece, scrivi un codice Playerche combatte contro quello degli altri. Ereditando pubblicamente la classe nel progetto GitHub, puoi iniziare a scrivere la tua leggenda urbana.

Player.hpp can be found in Tournament\Player.hpp
An example of a derived class can be found in Tournament\CustomPlayer.hpp

Cosa devi o puoi fare

  • Devi ereditare la Playerclasse attraverso l'eredità pubblica e dichiarare la tua classe finale.
  • È necessario eseguire l'override Player::fight, che restituisce un valore valido Player::Actionogni volta che viene chiamato.
  • Opzionalmente, scavalcare Player::perceivee Player::declaredtenere d'occhio le azioni del tuo avversario e tenere traccia delle tue vittorie.
  • Facoltativamente, utilizzare membri e metodi statici privati ​​nella classe derivata per eseguire calcoli più complessi.
  • Facoltativamente, utilizzare altre librerie standard C ++.

Cosa NON devi fare

  • NON devi usare alcun metodo diretto per riconoscere il tuo avversario diverso dall'identificativo avversario dato, che viene mischiato all'inizio di ogni torneo. Puoi indovinare solo chi sta giocando un giocatore all'interno di un torneo.
  • NON è necessario sovrascrivere alcun metodo in Playerclasse che non sia dichiarato virtuale.
  • NON è necessario dichiarare o inizializzare nulla nell'ambito globale.
  • Dal debutto di (ora squalificato) BlackHatPlayer, i giocatori NON sono autorizzati a sbirciare o modificare lo stato del tuo avversario.

Un duello di esempio

Il processo di un duello con armi viene eseguito usando la GunDuelclasse. Per un esempio di combattimento, consulta la Source.cppsezione Iniziare un duello .

Noi vetrina GunClubPlayer, HumanPlayere la GunDuelclasse che si trova nella Tournament\directory del repository.

In ogni duello, GunClubPlayerverrà caricato un proiettile; licenzialo; risciacqua e ripeti. Durante ogni turno, HumanPlayerti chiederà un'azione da giocare contro il tuo avversario. I controlli da tastiera sono i personaggi 0, 1, 2, -e =. Su Windows, è possibile utilizzare HumanPlayerper eseguire il debug dell'invio.

Iniziare un duello

Ecco come è possibile eseguire il debug del lettore tramite la console.

// Source.cpp
// An example duel between a HumanPlayer and GunClubPlayer.

#include "HumanPlayer.hpp"
#include "GunClubPlayer.hpp"
#include "GunDuel.hpp"

int main()
{
    // Total number of turns per duel.
    size_t duelLength = 100;

    // Player identifier 1: HumanPlayer.
    HumanPlayer human(2);
    // Player identifier 2: GunClubPlayer.
    GunClubPlayer gunClub(1);

    // Prepares a duel.
    GunDuel duel(human, gunClub, duelLength);
    // Start a duel.
    duel.fight();
}

Giochi di esempio

Il minor numero di turni che devi sconfiggere GunClubPlayerè 3. Ecco il replay dal giocare 0-1contro GunClubPlayer. Il numero nella paraesi è il numero di munizioni caricate per ciascun giocatore al termine del turno.

 :: Turn 0
    You [0/12/-=] >> [0] load ammo (1 ammo)
    Opponent selects [0] load ammo (1 ammo)
 :: Turn 1
    You [0/12/-=] >> [-] defend using metal shield (1 ammo)
    Opponent selects [1] fire a bullet (0 ammo)
 :: Turn 2
    You [0/12/-=] >> [1] fire a bullet (0 ammo)
    Opponent selects [0] load ammo (1 ammo)
 :: You won after 3 turns!
 :: Replay
    YOU 0-1
    FOE 010
Press any key to continue . . .

Il modo più rapido per essere sconfitti GunClubPlayersenza fare mosse non valide è la sequenza 0=, perché il proiettile spara proprio attraverso il deflettore termico. Il replay è

 :: Turn 0
    You [0/12/-=] >> [0] load ammo (1 ammo)
    Opponent selects [0] load ammo (1 ammo)
 :: Turn 1
    You [0/12/-=] >> [=] defend using thermal deflector (1 ammo)
    Opponent selects [1] fire a bullet (0 ammo)
 :: You lost after 2 turns!
 :: Replay
    YOU 0=
    FOE 01
Press any key to continue . . .

Il torneo

Il torneo segue il formato "Last Player Standing". In un torneo, tutti gli invii validi (incluso il GunClubPlayer) vengono inseriti in un pool. A ogni invio viene assegnato un identificatore casuale ma univoco che rimarrà lo stesso durante l'intero torneo. Durante ogni round:

  • Ogni invio inizia con 0 punti e giocherà 100 duelli contro ogni altro invio.
  • Ogni duello vittorioso assegnerà 1 punto; disegnare e perdere danno 0 punti.
  • Alla fine del round, le iscrizioni con il punteggio minimo lasciano il torneo. In caso di pareggio, il giocatore con il minor numero di punti guadagnati dall'inizio del torneo partirà.
  • Se rimane più di un giocatore, deve iniziare il turno successivo.
  • I punti NON vengono riportati al turno successivo.

Presentazione

Invierai un giocatore per risposta. Puoi inviare più file per un giocatore, purché NON interferiscano con altri invii. Per far scorrere le cose, per favore:

  • Assegna un nome al tuo file di intestazione principale come <Custom>Player.hpp,
  • Assegna un nome agli altri file come <Custom>Player*.*, ad esempio MyLittlePlayer.txtse il nome della tua classe è MyLittlePlayero EmoPlayerHates.cppse il nome della tua classe è EmoPlayer.
  • Se il tuo nome contiene Shooterparole simili o simili al contesto di questo torneo, non è necessario aggiungere Playeralla fine. Se ritieni fortemente che il nome del tuo invio funzioni meglio senza il suffisso Player, non devi nemmeno aggiungere Player.
  • Assicurati che il tuo codice possa essere compilato e collegato in Windows.

Puoi commentare per chiedere chiarimenti o individuare scappatoie. Spero che ti piaccia questo futuristico Gun Duel e ti auguro un felice anno nuovo!

Una precisazione

  • Ti è permesso avere un comportamento randomizzato.
  • Sono consentite azioni non valide (sparare quando le munizioni caricate non sono sufficienti).
  • Se un giocatore inserisce un valore non valido, la sua pistola esploderà immediatamente.
  • Puoi studiare le risposte.
  • Hai il permesso esplicito di registrare il comportamento degli avversari all'interno di ogni torneo.
  • Ad ogni round, giocherai 100 duelli contro ogni avversario; l'ordine dei 100 duelli, tuttavia, è randomizzato: non ti viene garantito di combattere lo stesso avversario con 100 duelli di fila.

Risorse addizionali

@flawr ha tradotto l'origine C ++ fornita in Java come riferimento se si desidera inviare voci C ++.

Interfaccia per invii non C ++

Attualmente accettato: Python 3, Java.

Seguire una delle specifiche seguenti:

Specifica dell'interfaccia 1: codice di uscita

Il tuo invio verrà eseguito una volta per turno.

Expected Command Line Argument Format:
    <opponent-id> <turn> <status> <ammo> <ammo-opponent> <history> <history-opponent>

Expected Return Code: The ASCII value of a valid action character.
    '0' = 48, '1' = 49, '2' = 50, '-' = 45, '=' = 61

<opponent-id> is an integer in [0, N), where N is size of tournament.
<turn> is 0-based.
If duel is in progress, <status> is 3.
If duel is draw / won / lost, <status> is 0 / 1 / 2.
<history> and <history-opponent> are strings of actions, e.g. 002 0-=
If turn is 0, <history> and <history-opponent> are not provided.
You can ignore arguments you don't particularly need.

Puoi testare la tua presentazione PythonPlayer\e le JavaPlayer\directory.

Specifica dell'interfaccia 2: stdin / stdout

(Ringraziamo H Walters)

Il tuo invio verrà eseguito una volta per torneo.

C'è un requisito fisso per tutte le voci su come eseguire l'I / O, poiché sia ​​lo stdin che lo stdout sono collegati al pilota del torneo. La violazione di questo potrebbe portare a un punto morto. Tutte le voci DEVONO seguire questo algoritmo EXACT (in pseudo-codice):

LOOP FOREVER
    READ LINE INTO L
    IF (LEFT(L,1) == 'I')
        INITIALIZE ROUND
        // i.e., set your/opponent ammo to 0, if tracking them
        // Note: The entire line at this point is a unique id per opponent;
        // optionally track this as well.
        CONTINUE LOOP
    ELSE IF (LEFT(L,1) == 'F')
        WRITELN F // where F is your move
    ELSE IF (LEFT(L,1) == 'P')
        PROCESS MID(L,2,1) // optionally perceive your opponent's action.
    END IF
CONTINUE LOOP
QUIT

Qui, F è uno dei 0, 1, 2, -, o =per load / bullet / plasma / metal / thermal. PROCESSO significa facoltativamente rispondere a ciò che il tuo avversario ha fatto (incluso il monitoraggio delle munizioni del tuo avversario se lo stai facendo). Nota che l'azione dell'avversario è anche una di '0', '1', '2', '-', o '=', ed è nel secondo personaggio.

Quadro di valutazione finale

08:02 AM Tuesday, February 2, 2017 Coordinated Universal Time (UTC)
| Player             | Language   | Points |     1 |     2 |     3 |     4 |     5 |     6 |     7 |     8 |     9 |    10 |    11 |    12 |    13 |    14 |    15 |    16 |
|:------------------ |:---------- | ------:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:| -----:|
| MontePlayer        | C++        |  11413 |  1415 |  1326 |  1247 |  1106 |  1049 |   942 |   845 |   754 |   685 |   555 |   482 |   381 |   287 |   163 |   115 |    61 |
| CBetaPlayer        | C++        |   7014 |   855 |   755 |   706 |   683 |   611 |   593 |   513 |   470 |   414 |   371 |   309 |   251 |   192 |   143 |   109 |    39 |
| StudiousPlayer     | C++        |  10014 |  1324 |  1233 |  1125 |  1015 |   907 |   843 |   763 |   635 |   555 |   478 |   403 |   300 |   201 |   156 |    76 |
| FatedPlayer        | C++        |   6222 |   745 |   683 |   621 |   655 |   605 |   508 |   494 |   456 |   395 |   317 |   241 |   197 |   167 |   138 |
| HanSoloPlayer      | C++        |   5524 |   748 |   668 |   584 |   523 |   490 |   477 |   455 |   403 |   335 |   293 |   209 |   186 |   153 |
| SurvivorPlayer     | C++        |   5384 |   769 |   790 |   667 |   574 |   465 |   402 |   354 |   338 |   294 |   290 |   256 |   185 |
| SpecificPlayer     | C++        |   5316 |   845 |   752 |   669 |   559 |   488 |   427 |   387 |   386 |   340 |   263 |   200 |
| DeceptivePlayer    | C++        |   4187 |   559 |   445 |   464 |   474 |   462 |   442 |   438 |   369 |   301 |   233 |
| NotSoPatientPlayer | C++        |   5105 |   931 |   832 |   742 |   626 |   515 |   469 |   352 |   357 |   281 |
| BarricadePlayer    | C++        |   4171 |   661 |   677 |   614 |   567 |   527 |   415 |   378 |   332 |
| BotRobotPlayer     | C++        |   3381 |   607 |   510 |   523 |   499 |   496 |   425 |   321 |
| SadisticShooter    | C++        |   3826 |   905 |   780 |   686 |   590 |   475 |   390 |
| TurtlePlayer       | C++        |   3047 |   754 |   722 |   608 |   539 |   424 |
| CamtoPlayer        | C++        |   2308 |   725 |   641 |   537 |   405 |
| OpportunistPlayer  | C++        |   1173 |   426 |   420 |   327 |
| GunClubPlayer      | C++        |    888 |   500 |   388 |
| PlasmaPlayer       | C++        |    399 |   399 |

Il torneo durerà fino al 1 ° febbraio 2017, se non diversamente indicato.


15
Impressionante prima sfida, a proposito!
Martin Ender,

3
Se sei disposto a eseguire altre lingue, potresti consentire Playerun'implementazione che invoca un altro processo per calcolare il turno corrente. Ciò consentirebbe alle persone di partecipare in qualsiasi lingua tu sia felice di eseguire sul tuo computer.
Martin Ender,

5
La casualità è consentita? (Turni non completamente casuali, solo una scelta di azione 50/50 in una determinata situazione)
FlipTack,

2
Punto tecnico; "Dovete ereditare Player::fight'/' è possibile ereditare Player::perceive" ... in entrambi i casi, il termine è di esclusione , non eredita .
H Walters,

3
Penso che tu abbia un bug in GunDuel.hppentrambi validAe validBusiactionA
AlexRacer il

Risposte:


9

MontePlayer

Questo giocatore utilizza l'algoritmo di ricerca dell'albero di Monte Carlo UCT disaccoppiato per decidere quali scelte dovrebbe fare. Tiene traccia di ciò che il nemico fa per prevedere le sue azioni. Simula il nemico come se stesso se manca di dati.

Questo bot funziona davvero bene contro ogni altro bot tranne cβ. In una partita di duelli di 10000 contro cβ, il Monte vinse 5246 duelli. Con un po 'di matematica, ciò significa che Monte vincerà un duello contro il 51,17% cβ al 53,74% delle volte (99% di confidenza).

#ifndef __Monte_PLAYER_HPP__
#define __Monte_PLAYER_HPP__

#include "Player.hpp"
#include <cstdlib>
#include <ctime>
#include <memory>
#include <iostream>


class MontePlayer final : public Player
{
    static const int MAX_TURNS = 100;
    static const int TOTAL_ACTIONS = 5;

    //Increase this if number of players goes above 20.
    static const int MAX_PLAYERS = 20;

    //The number of simulated games we run every time our program is called.
    static const int MONTE_ROUNDS = 1000;


    /**
    * Represents the current state of the game.
    */
    struct Game
    {
        int turn;
        int ammo;
        int opponentAmmo;
        bool alive;
        bool opponentAlive;

        Game(int turn, int ammo, int opponentAmmo, bool alive, bool opponentAlive)
            : turn(turn), ammo(ammo), opponentAmmo(opponentAmmo), alive(alive), opponentAlive(opponentAlive) {}
        Game() : turn(0), ammo(0), opponentAmmo(0), alive(false), opponentAlive(false) {}
    };

    struct Stat
    {
        int wins;
        int attempts;

        Stat() : wins(0), attempts(0) {}
    };

    /**
    * A Monte tree data structure.
    */
    struct MonteTree
    {
        //The state of the game.
        Game game;

        //myStats[i] returns the statistic for doing the i action in this state.
        Stat myStats[TOTAL_ACTIONS];
        //opponentStats[i] returns the statistic for the opponent doing the i action in this state.
        Stat opponentStats[TOTAL_ACTIONS];
        //Total number of times we've created statistics from this tree.
        int totalPlays = 0;
        //The action that led to this tree.
        int myAction;
        //The opponent action that led to this tree.
        int opponentAction;

        //The tree preceding this one.
        MonteTree *parent = NULL;

        //subtrees[i][j] is the tree that would follow if I did action i and the
        //opponent did action j.
        MonteTree *subtrees[TOTAL_ACTIONS][TOTAL_ACTIONS] = { { NULL } };

        MonteTree(int turn, int ammo, int opponentAmmo) :
            game(turn, ammo, opponentAmmo, true, true) {}


        MonteTree(Game game, MonteTree *parent, int myAction, int opponentAction) :
            game(game), parent(parent), myAction(myAction), opponentAction(opponentAction)
        {
            //Make sure the parent tree keeps track of this tree.
            parent->subtrees[myAction][opponentAction] = this;
        }

        //The destructor so we can avoid slow ptr types and memory leaks.
        ~MonteTree()
        {
            //Delete all subtrees.
            for (int i = 0; i < TOTAL_ACTIONS; i++)
            {
                for (int j = 0; j < TOTAL_ACTIONS; j++)
                {
                    auto branch = subtrees[i][j];

                    if (branch)
                    {
                        branch->parent = NULL;
                        delete branch;
                    }
                }
            }
        }
    };

    //The previous state.
    Game prevGame;
    //The id of the opponent.
    int opponent;
    //opponentHistory[a][b][c][d] returns the number of times
    //that opponent a did action d when I had b ammo and he had c ammo.
    static int opponentHistory[MAX_PLAYERS][MAX_TURNS][MAX_TURNS][TOTAL_ACTIONS];

public:
    MontePlayer(size_t opponent = -1) : Player(opponent)
    {
        srand(time(NULL));
        this->opponent = opponent;
    }

public:

    virtual Action fight()
    {
        //Create the root tree. Will be auto-destroyed after this function ends.
        MonteTree current(getTurn(), getAmmo(), getAmmoOpponent());

        //Set the previous game to this one.
        prevGame = current.game;

        //Get these variables so we can log later if nessecarry.
        int turn = getTurn(),
            ammo = getAmmo(),
            opponentAmmo = getAmmoOpponent();

        for (int i = 0; i < MONTE_ROUNDS; i++)
        {
            //Go down the tree until we find a leaf we haven't visites yet.
            MonteTree *leaf = selection(&current);

            //Randomly simulate the game at the leaf and get the result.
            int score = simulate(leaf->game);

            //Propagate the scores back up the root.
            update(leaf, score);
        }

        //Get the best move.
        int move = bestMove(current);

        //Move string for debugging purposes.
        const char* m;

        //We have to do this so our bots state is updated.
        switch (move)
        {
        case Action::LOAD:
            load();
            m = "load";
            break;
        case Action::BULLET:
            bullet();
            m = "bullet";
            break;
        case Action::PLASMA:
            plasma();
            m = "plasma";
            break;
        case Action::METAL:
            metal();
            m = "metal";
            break;
        case Action::THERMAL:
            thermal();
            m = "thermal";
            break;
        default: //???
            std::cout << move << " ???????\n";
            throw move;
        }

        return (Action)move;
    }

    /**
    * Record what the enemy does so we can predict him.
    */
    virtual void perceive(Action action)
    {
        Player::perceive(action);
        opponentHistory[opponent][prevGame.ammo][prevGame.opponentAmmo][action]++;
    }
private:

    /**
    * Trickle down root until we have to create a new leaf MonteTree or we hit the end of a game.
    */
    MonteTree * selection(MonteTree *root)
    {
        while (!atEnd(root->game))
        {
            //First pick the move that my bot will do.

            //The action my bot will do.
            int myAction;
            //The number of actions with the same bestScore.
            int same = 0;
            //The bestScore
            double bestScore = -1;

            for (int i = 0; i < TOTAL_ACTIONS; i++)
            {
                //Ignore invalid or idiot moves.
                if (!isValidMove(root->game, i, true))
                {
                    continue;
                }

                //Get the score for doing move i. Uses
                double score = computeScore(*root, i, true);

                //Randomly select one score if multiple actions have the same score.
                //Why this works is boring to explain.
                if (score == bestScore)
                {
                    same++;
                    if (Random(same) == 0)
                    {
                        myAction = i;
                    }
                }
                //Yay! We found a better action.
                else if (score > bestScore)
                {
                    same = 1;
                    myAction = i;
                    bestScore = score;
                }
            }

            //The action the enemy will do.
            int enemyAction;

            //The number of times the enemy has been in this same situation.
            int totalEnemyEncounters = 0;
            for (int i = 0; i < TOTAL_ACTIONS; i++)
            {
                totalEnemyEncounters += opponentHistory[opponent][root->game.ammo][root->game.opponentAmmo][i];
            }

            //Assume the enemy will choose an action it has chosen before if we've
            //seen it in this situation before. Otherwise we assume that the enemy is ourselves.
            if (totalEnemyEncounters > 0)
            {
                //Randomly select an action that the enemy has done with
                //weighted by the number of times that action has been done.
                int selection = Random(totalEnemyEncounters);
                for (int i = 0; i < TOTAL_ACTIONS; i++)
                {
                    selection -= opponentHistory[opponent][root->game.ammo][root->game.opponentAmmo][i];
                    if (selection < 0)
                    {
                        enemyAction = i;
                        break;
                    }
                }
            }
            else
            {
                //Use the same algorithm to pick the enemies move we use for ourselves.
                same = 0;
                bestScore = -1;
                for (int i = 0; i < TOTAL_ACTIONS; i++)
                {
                    if (!isValidMove(root->game, i, false))
                    {
                        continue;
                    }

                    double score = computeScore(*root, i, false);
                    if (score == bestScore)
                    {
                        same++;
                        if (Random(same) == 0)
                        {
                            enemyAction = i;
                        }
                    }
                    else if (score > bestScore)
                    {
                        same = 1;
                        enemyAction = i;
                        bestScore = score;
                    }
                }
            }

            //If this combination of actions hasn't been explored yet, create a new subtree to explore.
            if (!(*root).subtrees[myAction][enemyAction])
            {
                return expand(root, myAction, enemyAction);
            }

            //Do these actions and explore the next subtree.
            root = (*root).subtrees[myAction][enemyAction];
        }
        return root;
    }

    /**
    * Creates a new leaf under root for the actions.
    */
    MonteTree * expand(MonteTree *root, int myAction, int enemyAction)
    {
        return new MonteTree(
            doTurn(root->game, myAction, enemyAction),
            root,
            myAction,
            enemyAction);
    }

    /**
    * Computes the score of the given move in the given position.
    * Uses the UCB1 algorithm and returns infinity for moves not tried yet.
    */
    double computeScore(const MonteTree &root, int move, bool me)
    {
        const Stat &stat = me ? root.myStats[move] : root.opponentStats[move];
        return stat.attempts == 0 ?
            HUGE_VAL :
            double(stat.wins) / stat.attempts + sqrt(2 * log(root.totalPlays) / stat.attempts);
    }

    /**
    * Randomly simulates the given game.
    * Has me do random moves that are not stupid.
    * Has opponent do what it has done in similar positions or random moves if not
    * observed in those positions yet.
    *
    * Returns 1 for win. 0 for loss. -1 for draw.
    */
    int simulate(Game game)
    {
        while (!atEnd(game))
        {
            game = doRandomTurn(game);
        }

        if (game.alive > game.opponentAlive)
        {
            return 1;
        }
        else if (game.opponentAlive > game.alive)
        {
            return 0;
        }
        else //Draw
        {
            return -1;
        }
    }

    /**
    * Returns whether the game is over or not.
    */
    bool atEnd(Game game)
    {
        return !game.alive || !game.opponentAlive || game.turn > MAX_TURNS;
    }

    /**
    * Simulates the given actions on the game.
    */
    Game doTurn(Game game, int myAction, int enemyAction)
    {
        game.turn++;

        switch (myAction)
        {
        case Action::LOAD:
            game.ammo++;
            break;
        case Action::BULLET:
            if (game.ammo < 1)
            {
                game.alive = false;
                break;
            }
            game.ammo--;
            if (enemyAction == Action::LOAD || enemyAction == Action::THERMAL)
            {
                game.opponentAlive = false;
            }
            break;
        case Action::PLASMA:
            if (game.ammo < 2)
            {
                game.alive = false;
                break;
            }
            game.ammo -= 2;
            if (enemyAction != Action::PLASMA && enemyAction != Action::THERMAL)
            {
                game.opponentAlive = false;
            }
            break;
        }

        switch (enemyAction)
        {
        case Action::LOAD:
            game.opponentAmmo++;
            break;
        case Action::BULLET:
            if (game.opponentAmmo < 1)
            {
                game.opponentAlive = false;
                break;
            }
            game.opponentAmmo--;
            if (myAction == Action::LOAD || myAction == Action::THERMAL)
            {
                game.alive = false;
            }
            break;
        case Action::PLASMA:
            if (game.opponentAmmo < 2)
            {
                game.opponentAlive = false;
            }
            game.opponentAmmo -= 2;
            if (myAction != Action::PLASMA && myAction != Action::THERMAL)
            {
                game.alive = false;
            }
            break;
        }

        return game;
    }

    /**
    * Chooses a random move for me and my opponent and does it.
    */
    Game doRandomTurn(Game &game)
    {
        //Select my random move.
        int myAction;
        int validMoves = 0;

        for (int i = 0; i < TOTAL_ACTIONS; i++)
        {
            //Don't do idiotic moves.
            //Select one at random.
            if (isValidMove(game, i, true))
            {
                validMoves++;
                if (Random(validMoves) == 0)
                {
                    myAction = i;
                }
            }
        }

        //Choose random opponent action.
        int opponentAction;

        //Whether the enemy has encountered this situation before
        bool enemyEncountered = false;

        validMoves = 0;

        //Weird algorithm that works and I don't want to explain.
        //What it does:
        //If the enemy has encountered this position before,
        //then it chooses a random action weighted by how often it did that action.
        //If they haven't, makes the enemy choose a random not idiot move.
        for (int i = 0; i < TOTAL_ACTIONS; i++)
        {
            int weight = opponentHistory[opponent][game.ammo][game.opponentAmmo][i];
            if (weight > 0)
            {
                if (!enemyEncountered)
                {
                    enemyEncountered = true;
                    validMoves = 0;
                }
                validMoves += weight;
                if (Random(validMoves) < weight)
                {
                    opponentAction = i;
                }
            }
            else if (!enemyEncountered && isValidMove(game, i, false))
            {
                validMoves++;
                if (Random(validMoves) == 0)
                {
                    opponentAction = i;
                }
            }
        }

        return doTurn(game, myAction, opponentAction);
    }

    /**
    * Returns whether the given move is valid/not idiotic for the game.
    */
    bool isValidMove(Game game, int move, bool me)
    {
        switch (move)
        {
        case Action::LOAD:
            return true;
        case Action::BULLET:
            return me ? game.ammo > 0 : game.opponentAmmo > 0;
        case Action::PLASMA:
            return me ? game.ammo > 1 : game.opponentAmmo > 1;
        case Action::METAL:
            return me ? game.opponentAmmo > 0 : game.ammo > 0;
        case Action::THERMAL:
            return me ? game.opponentAmmo > 1 : game.ammo > 1;
        default:
            return false;
        }
    }

    /**
    * Propagates the score up the MonteTree from the leaf.
    */
    void update(MonteTree *leaf, int score)
    {
        while (true)
        {
            MonteTree *parent = leaf->parent;
            if (parent)
            {
                //-1 = draw, 1 = win for me, 0 = win for opponent
                if (score != -1)
                {
                    parent->myStats[leaf->myAction].wins += score;
                    parent->opponentStats[leaf->opponentAction].wins += 1 - score;
                }
                parent->myStats[leaf->myAction].attempts++;
                parent->opponentStats[leaf->opponentAction].attempts++;
                parent->totalPlays++;
                leaf = parent;
            }
            else
            {
                break;
            }
        }
    }

    /**
    * There are three different strategies in here.
    * The first is not random, the second more, the third most.
    */
    int bestMove(const MonteTree &root)
    {
        //Select the move with the highest win rate.
        int best;
        double bestScore = -1;
        for (int i = 0; i < TOTAL_ACTIONS; i++)
        {
            if (root.myStats[i].attempts == 0)
            {
                continue;
            }

            double score = double(root.myStats[i].wins) / root.myStats[i].attempts;
            if (score > bestScore)
            {
                bestScore = score;
                best = i;
            }
        }

        return best;

        ////Select a move weighted by the number of times it has won the game.
        //int totalScore = 0;
        //for (int i = 0; i < TOTAL_ACTIONS; i++)
        //{
        //  totalScore += root.myStats[i].wins;
        //}
        //int selection = Random(totalScore);
        //for (int i = 0; i < TOTAL_ACTIONS; i++)
        //{
        //  selection -= root.myStats[i].wins;
        //  if (selection < 0)
        //  {
        //      return i;
        //  }
        //}

        ////Select a random move weighted by win ratio.
        //double totalScore = 0;
        //for (int i = 0; i < TOTAL_ACTIONS; i++)
        //{
        //  if (root.myStats[i].attempts == 0)
        //  {
        //      continue;
        //  }
        //  totalScore += double(root.myStats[i].wins) / root.myStats[i].attempts;
        //}
        //double selection = Random(totalScore);
        //for (int i = 0; i < TOTAL_ACTIONS; i++)
        //{
        //  if (root.myStats[i].attempts == 0)
        //  {
        //      continue;
        //  }
        //  selection -= double(root.myStats[i].wins) / root.myStats[i].attempts;
        //  if (selection < 0)
        //  {
        //      return i;
        //  }
        //}
    }

    //My own random functions.
    int Random(int max)
    {
        return GetRandomInteger(max - 1);
    }
    double Random(double max)
    {
        static auto seed = std::chrono::system_clock::now().time_since_epoch().count();
        static std::default_random_engine generator((unsigned)seed);
        std::uniform_real_distribution<double> distribution(0.0, max);
        return distribution(generator);
    }
};
//We have to initialize this here for some reason.
int MontePlayer::opponentHistory[MAX_PLAYERS][MAX_TURNS][MAX_TURNS][TOTAL_ACTIONS]{ { { { 0 } } } };

#endif // !__Monte_PLAYER_HPP__

25

Il BlackHatPlayer

Il giocatore di BlackHat sa che proiettili e scudi appartengono al passato; le vere guerre vengono vinte da coloro che possono hackerare i programmi dell'avversario.

Quindi, indossa uno scudo di metallo fisso e inizia a fare le sue cose.

La prima volta che gli viene chiesto fight, cerca di localizzare il suo nemico in memoria. Data la struttura dell'arena di combattimento, è quasi certo che il compilatore finirà per mettere il suo indirizzo (racchiuso in un unique_ptr) e quello dell'avversario solo uno accanto all'altro.

Quindi, il BlackHat cammina con attenzione lo stack, usando alcune semplici euristiche per assicurarsi di non underflow, fino a quando non trova un puntatore a se stesso; quindi controlla se i valori nelle posizioni adiacenti sono plausibilmente il suo avversario - indirizzo simile, indirizzo simile della tabella, plausibile typeid.

Se riesce a trovarlo, si succhia i cervelli e li sostituisce con quelli di un idiota di testa calda. In pratica, questo viene fatto sostituendo il puntatore dell'avversario alla vtable con l'indirizzo della Idiotvtable - un giocatore stupido che spara sempre.

Se tutto ciò ha successo (e nei miei test - gcc 6 su Linux a 64 bit, MinGW 4.8 su wine a 32 bit - questo funziona in modo abbastanza affidabile), la guerra è vinta. Qualunque cosa l'avversario abbia fatto al primo turno non è importante - nel peggiore dei casi ci ha sparato e avevamo lo scudo di metallo.

Da ora in poi, abbiamo solo un idiota che spara; abbiamo sempre il nostro scudo attivato, quindi siamo protetti e lui esploderà in 1-3 round (a seconda di ciò che ha fatto il bot originale nella sua prima fightchiamata).


Ora: sono quasi sicuro che questo dovrebbe essere squalificato immediatamente, ma è divertente che non stia violando esplicitamente nessuna delle regole sopra indicate:

Cosa NON devi fare

  • NON devi usare alcun metodo diretto per riconoscere il tuo avversario diverso dall'identificativo avversario dato, che è completamente randomizzato all'inizio di ogni torneo. Puoi indovinare chi è un giocatore durante il suo gioco all'interno di un torneo.

BlackHat non cerca di riconoscere l'avversario - in realtà, è completamente irrilevante chi sia l'avversario, dato che il suo cervello viene immediatamente sostituito.

  • NON è necessario ignorare alcun metodo nella classe Player che non sia dichiarato virtuale.
  • NON è necessario dichiarare o inizializzare nulla nell'ambito globale.

Tutto accade localmente alla fightfunzione virtuale.


// BlackHatPlayer.hpp

#ifndef __BLACKHAT_PLAYER_HPP__
#define __BLACKHAT_PLAYER_HPP__

#include "Player.hpp"
#include <stddef.h>
#include <typeinfo>
#include <algorithm>
#include <string.h>

class BlackHatPlayer final : public Player
{
public:
    using Player::Player;

    virtual Action fight()
    {
        // Always metal; if the other is an Idiot, he only shoots,
        // and if he isn't an Idiot yet (=first round) it's the only move that
        // is always safe
        if(tricked) return metal();
        // Mark that at the next iterations we don't have to do all this stuff
        tricked = true;

        typedef uintptr_t word;
        typedef uintptr_t *pword;
        typedef uint8_t *pbyte;

        // Size of one memory page; we use it to walk the stack carefully
        const size_t pageSize = 4096;
        // Maximum allowed difference between the vtables
        const ptrdiff_t maxVTblDelta = 65536;
        // Maximum allowed difference between this and the other player
        ptrdiff_t maxObjsDelta = 131072;

        // Our adversary
        Player *c = nullptr;

        // Gets the start address of the memory page for the given object
        auto getPage = [&](void *obj) {
            return pword(word(obj) & (~word(pageSize-1)));
        };
        // Gets the start address of the memory page *next* to the one of the given object
        auto getNextPage = [&](void *obj) {
            return pword(pbyte(getPage(obj)) + pageSize);
        };

        // Gets a pointer to the first element of the vtable
        auto getVTbl = [](void *obj) {
            return pword(pword(obj)[0]);
        };

        // Let's make some mess to make sure that:
        // - we have an actual variable on the stack;
        // - we call an external (non-inline) function that ensures everything
        //   is spilled on the stack
        // - the compiler actually generates the full vtables (in the current
        //   tournament this shouldn't be an issue, but in earlier sketches
        //   the compiler inlined everything and killed the vtables)
        volatile word i = 0;
        for(const char *sz = typeid(*(this+i)).name(); *sz; ++sz) i+=*sz;

        // Grab my vtable
        word *myVTbl = getVTbl(this);

        // Do the stack walk
        // Limit for the stack walk; use i as a reference
        word *stackEnd = getNextPage((pword)(&i));
        for(word *sp = pword(&i);       // start from the location of i
            sp!=stackEnd && c==nullptr;
            ++sp) {                     // assume that the stack grows downwards
            // If we find something that looks like a pointer to memory
            // in a page just further on the stack, take it as a clue that the
            // stack in facts does go on
            if(getPage(pword(*sp))==stackEnd) {
                stackEnd = getNextPage(pword(*sp));
            }
            // We are looking for our own address on the stack
            if(*sp!=(word)this) continue;

            auto checkCandidate = [&](void *candidate) -> Player* {
                // Don't even try with NULLs and the like
                if(getPage(candidate)==nullptr) return nullptr;
                // Don't trust objects too far away from us - it's probably something else
                if(abs(pbyte(candidate)-pbyte(this))>maxObjsDelta) return nullptr;
                // Grab the vtable, check if it actually looks like one (it should be
                // decently near to ours)
                pword vtbl = getVTbl(candidate);
                if(abs(vtbl-myVTbl)>maxVTblDelta) return nullptr;
                // Final check: try to see if its name looks like a "Player"
                Player *p = (Player *)candidate;
                if(strstr(typeid(*p).name(), "layer")==0) return nullptr;
                // Jackpot!
                return p;
            };

            // Look around us - a pointer to our opponent should be just near
            c = checkCandidate((void *)sp[-1]);
            if(c==nullptr) c=checkCandidate((void *)sp[1]);
        }

        if(c!=nullptr) {
            // We found it! Suck his brains out and put there the brains of a hothead idiot
            struct Idiot : Player {
                virtual Action fight() {
                    // Always fire, never reload; blow up in two turns
                    // (while we are always using the metal shield to protect ourselves)
                    return bullet();
                }
            };
            Idiot idiot;
            // replace the vptr
            (*(word *)(c)) = word(getVTbl(&idiot));
        }
        // Always metal shield to be protected from the Idiot
        return metal();
    }
private:
    bool tricked = false;
};

#endif // !__BLACKHAT_PLAYER_HPP__

6
@TheNumberOne: anche, come per il primo (e più votato) commento al thread delle scappatoie: "Le scappatoie fanno parte di ciò che rende interessante il gioco. Anche quelli comuni possono essere divertenti o intelligenti, a seconda del contesto". IMO questo è originale (almeno, non ho mai visto nulla di simile qui) e abbastanza interessante, dal punto di vista ingegneristico; ecco perché l'ho condiviso qui.
Matteo Italia,

3
#ifdef __BLACKHAT_PLAYER_HPP__#error "Dependency issue; to compile, please include this file before BlackHatPlayer.hpp"#else#define __BLACKHAT_PLAYER_HPP__#endif
H Walters il

1
@MatteoItalia BlackHat aumenta sempre la nostra conoscenza delle scappatoie standard :-)
Frenzy Li

2
@HWalters: immagino che dovrò passare a #pragma once;-)
Matteo Italia il

3
sembra abbastanza semplice eseguire ogni giocatore in un processo separato e utilizzare socket per comunicare con l'arbitro.
Jasen,

19

Successivamente, la più temuta di tutte le creature, è stata all'inferno e ha combattuto con letteralmente 900000 altri robot , il suo ...

Il BotRobot

BotRobot è stato nominato, addestrato e costruito automaticamente da un algoritmo genetico di base.

Due squadre di 9 erano schierate l'una contro l'altra, in ogni generazione, ogni robot della squadra 1 è messo contro ogni robot della squadra 2. I robot con più vittorie che perdite, hanno conservato la memoria, l'altro, è tornato all'ultimo passaggio e ho avuto la possibilità di dimenticare qualcosa, si spera male. I robot stessi sono tabelle di ricerca glorificate, dove se trovassero qualcosa che non avevano mai visto prima, avrebbero semplicemente scelto un'opzione casuale valida e l'avrebbero salvata in memoria. La versione C ++ non lo fa, avrebbe dovuto imparare . Come affermato in precedenza, i robot vincenti conservano questa nuova memoria trovata, poiché chiaramente ha funzionato. I robot perdenti non lo fanno e mantengono ciò con cui hanno iniziato.

Alla fine, i combattimenti dei bot erano abbastanza vicini, raramente in stallo. Il vincitore è stato scelto da un pool di due squadre post evoluzione, che era di 100000 generazioni.

BotRobot, con il suo nome casuale e BELLISSIMO , è stato il fortunato.

Generatore

bot.lua

Revisione: Sebbene il robot fosse abbastanza intelligente contro se stesso e altri robot generati in modo simile, si dimostrò abbastanza inutile nelle battaglie reali. Quindi, ho rigenerato il suo cervello contro alcuni dei robot già creati.

I risultati, come si può facilmente vedere, è un cervello molto più complesso, con opzioni che il giocatore nemico ha 12 munizioni.

Non sono sicuro di cosa stia combattendo per ottenere fino a 12 munizioni, ma qualcosa è successo.

E, naturalmente, il prodotto finito ...

// BotRobot
// ONE HUNDRED THOUSAND GENERATIONS TO MAKE THE ULTIMATE LIFEFORM!

#ifndef __BOT_ROBOT_PLAYER_HPP__
#define __BOT_ROBOT_PLAYER_HPP__

#include "Player.hpp"

class BotRobotPlayer final : public Player
{
public:
    BotRobotPlayer(size_t opponent = -1) : Player(opponent) {}

public:
    virtual Action fight()
    {
        std::string action = "";
        action += std::to_string(getAmmo());
        action += ":";
        action += std::to_string(getAmmoOpponent());

        int toDo = 3;

        for (int i = 0; i < int(sizeof(options)/sizeof(*options)); i++) {
            if (options[i].compare(action)==0) {
                toDo = outputs[i];
                break;
            }
        }

        switch (toDo) {
            case 0:
                return load();
            case 1:
                return bullet();
            case 2:
                return plasma();
            case 3:
                return metal();
            default:
                return thermal();
        }
    }

private:
    std::string options[29] =
    {
        "0:9",
        "1:12",
        "1:10",
        "0:10",
        "1:11",
        "0:11",
        "0:6",
        "2:2",
        "0:2",
        "2:6",
        "3:6",
        "0:7",
        "1:3",
        "2:3",
        "0:3",
        "2:0",
        "1:0",
        "0:4",
        "1:4",
        "2:4",
        "0:0",
        "3:0",
        "1:1",
        "2:1",
        "2:9",
        "0:5",
        "0:8",
        "3:1",
        "0:1"
    };

    int outputs[29] =
    {
        0,
        1,
        1,
        4,
        1,
        0,
        0,
        4,
        4,
        0,
        0,
        3,
        0,
        1,
        3,
        0,
        1,
        4,
        0,
        1,
        0,
        1,
        0,
        3,
        4,
        3,
        0,
        1,
        0
    };
};

#endif // !__BOT_ROBOT_PLAYER_HPP__

Io odio C ++ ora ...


@FrenzyLi Non sono sicuro di come non me ne sia accorto, risolvendolo ora.
ATaco,

Bene, dopo questo aggiornamento, il bot sembra avere un'apertura fissa di 00.
Frenzy Li,

Capisco perché adesso ... "1: 1" dà "0".
Frenzy Li,

1
molti giocatori qui hanno risolto il loro intero gioco in base ai turni, quindi non credo che un'apertura fissa dovrebbe essere un problema
eis

10

CBetaPlayer (Cβ)

Equilibrio approssimativo di Nash.

Questo bot è solo una fantasia matematica con un wrapper di codice.

Possiamo riformulare questo come un problema di teoria dei giochi. Indica una vittoria di +1 e una perdita di -1. Ora lascia che B (x, y) sia il valore del gioco in cui abbiamo x munizioni e il nostro avversario ha y munizioni. Nota che B (a, b) = -B (b, a) e quindi B (a, a) = 0. Per trovare i valori B in termini di altri valori B, possiamo calcolare il valore della matrice di payoff. Ad esempio, abbiamo che B (1, 0) è dato dal valore del seguente sottogioco:

       load      metal
load    B(0, 1)   B(2, 0)
bullet  +1        B(0, 0)

(Ho rimosso le opzioni "cattive", ovvero quelle che sono strettamente dominate dalle soluzioni esistenti. Ad esempio, non proveremmo a sparare al plasma poiché abbiamo solo 1 munizioni. Allo stesso modo il nostro avversario non userebbe mai un deflettore termico, poiché non spareremo mai al plasma.)

La teoria dei giochi ci consente di sapere come trovare il valore di questa matrice di payoff, presupponendo determinate condizioni tecniche. Otteniamo che il valore della matrice sopra è:

                B(2, 0)
B(1, 0) = ---------------------
          1 + B(2, 0) - B(2, 1)

Procedendo per tutti i giochi possibili e notando che B (x, y) -> 1 come x -> infinito con y fisso, possiamo trovare tutti i valori B, che a loro volta ci permettono di calcolare le mosse perfette!

Naturalmente, la teoria si allinea raramente alla realtà. Risolvere l'equazione anche per piccoli valori di xey diventa rapidamente troppo complicato. Per far fronte a questo, ho introdotto quella che chiamo approssimazione cβ. Ci sono 7 parametri per questa approssimazione: c0, β0, c1, β1, c, β e k. Ho assunto che i valori B prendessero la seguente forma (prima le forme più specifiche):

B(1, 0) = k
B(x, 0) = 1 - c0 β0^x
B(x, 1) = 1 - c1 β1^x
B(x, y) = 1 - c β^(x - y)   (if x > y)

Alcuni ragionamenti approssimativi sul perché ho scelto questi parametri. Innanzitutto sapevo che volevo assolutamente avere a che fare con 0, 1 e 2 o più munizioni separatamente, poiché ognuna apre opzioni diverse. Inoltre, ho pensato che una funzione di sopravvivenza geometrica sarebbe la più appropriata, perché il difensore sta essenzialmente indovinando quale mossa fare. Ho pensato che avere 2 o più munizioni fosse sostanzialmente lo stesso, quindi mi sono concentrato sulla differenza. Volevo anche trattare B (1, 0) come un caso super speciale perché pensavo che sarebbe apparso molto. L'uso di queste forme approssimative ha semplificato notevolmente i calcoli dei valori B.

Ho approssimativamente risolto le equazioni risultanti per ottenere ciascun valore B, che ho quindi reinserito nella matrice per ottenere le matrici di payoff. Quindi, usando un risolutore di programmazione lineare, ho trovato le probabilità ottimali per effettuare ogni mossa e le ho spinte nel programma.

Il programma è una tabella di ricerca glorificata. Se entrambi i giocatori hanno tra 0 e 4 munizioni, usa la matrice di probabilità per determinare in modo casuale quale mossa dovrebbe effettuare. Altrimenti, tenta di estrapolare in base alla sua tabella.

Ha problemi contro stupidi robot deterministici, ma fa abbastanza bene contro robot razionali. A causa di tutte le approssimazioni, questo a volte perderà StudiousPlayer quando non dovrebbe davvero.

Naturalmente, se dovessi farlo di nuovo, probabilmente proverei ad aggiungere parametri più indipendenti o forse un modulo di risposta migliore e trovare una soluzione più esatta. Anche io (volutamente) ho ignorato il limite di virata, perché ha reso le cose più difficili. Una rapida modifica potrebbe essere fatta per sparare sempre al plasma se abbiamo abbastanza munizioni e non ci sono abbastanza svolte.

// CBetaPlayer (cβ)
// PPCG: George V. Williams

#ifndef __CBETA_PLAYER_HPP__
#define __CBETA_PLAYER_HPP__

#include "Player.hpp"
#include <iostream>

class CBetaPlayer final : public Player
{
public:
    CBetaPlayer(size_t opponent = -1) : Player(opponent)
    {
    }

public:
    virtual Action fight()
    {
        int my_ammo = getAmmo(), opp_ammo = getAmmoOpponent();

        while (my_ammo >= MAX_AMMO || opp_ammo >= MAX_AMMO) {
            my_ammo--;
            opp_ammo--;
        }

        if (my_ammo < 0) my_ammo = 0;
        if (opp_ammo < 0) opp_ammo = 0;

        double cdf = GetRandomDouble();
        int move = -1;
        while (cdf > 0 && move < MAX_MOVES - 1)
            cdf -= probs[my_ammo][opp_ammo][++move];

        switch (move) {
            case 0: return load();
            case 1: return bullet();
            case 2: return plasma();
            case 3: return metal();
            case 4: return thermal();
            default: return fight();
        }
    }

    static double GetRandomDouble() {
        static auto seed = std::chrono::system_clock::now().time_since_epoch().count();
        static std::default_random_engine generator((unsigned)seed);
        std::uniform_real_distribution<double> distribution(0.0, 1.0);
        return distribution(generator);
    }

private:
    static const int MAX_AMMO = 5;
    static const int MAX_MOVES = 5;

    double probs[MAX_AMMO][MAX_AMMO][5] =
        {
            {{1, 0, 0, 0, 0}, {0.58359, 0, 0, 0.41641, 0}, {0.28835, 0, 0, 0.50247, 0.20918}, {0.17984, 0, 0, 0.54611, 0.27405}, {0.12707, 0, 0, 0.56275, 0.31018}},
            {{0.7377, 0.2623, 0, 0, 0}, {0.28907, 0.21569, 0, 0.49524, 0}, {0.0461, 0.06632, 0, 0.53336, 0.35422}, {0.06464, 0.05069, 0, 0.43704, 0.44763}, {0.02215, 0.038, 0, 0.33631, 0.60354}},
            {{0.47406, 0.37135, 0.1546, 0, 0}, {0.1862, 0.24577, 0.15519, 0.41284, 0}, {0, 0.28343, 0.35828, 0, 0.35828}, {0, 0.20234, 0.31224, 0, 0.48542}, {0, 0.12953, 0.26546, 0, 0.605}},
            {{0.33075, 0.44563, 0.22362, 0, 0}, {0.17867, 0.20071, 0.20071, 0.41991, 0}, {0, 0.30849, 0.43234, 0, 0.25916}, {0, 0.21836, 0.39082, 0, 0.39082}, {0, 0.14328, 0.33659, 0, 0.52013}},
            {{0.24032, 0.48974, 0.26994, 0, 0}, {0.14807, 0.15668, 0.27756, 0.41769, 0}, {0, 0.26804, 0.53575, 0, 0.19621}, {0, 0.22106, 0.48124, 0, 0.2977}, {0, 0.15411, 0.42294, 0, 0.42294}}
        };


};

#endif // !__CBETA_PLAYER_HPP__

Dal momento che non si passa un parametro in GetRandomDouble, è possibile rimuovere l'argomento max.
Frenzy Li,

@FrenzyLi, whoops, grazie!
George V. Williams,

Ti dispiacerebbe aggiungere qualche informazione in più sul tuo lettore, come ad esempio come sei arrivato al probabilità ... tensore?
Frenzy Li,

2
Io amo questo bot. Penso che SP abbia il vantaggio finora solo a causa del determinismo delle altre voci; più vengono aggiunti robot casuali (non ponderati in modo ottimale), migliori saranno le tariffe CBP. Questo è supportato da test; nei miei test interni con i soliti sospetti SP vince sempre con il secondo CBP ... tuttavia, in un mini contest che coinvolge CBP, SP e FP, CBP supera il 55% delle volte, con SP e FP che si muovono in modo uniforme.
H Walters,

1
A proposito, questa è un'approssimazione straordinariamente accurata dell'equilibrio di Nash. Monte non cerca di trovare la strategia dell'equilbrium, ma la mossa migliore contro un dato avversario. Il fatto che vinca solo il 52% dei duelli tra esso e cβ significa che cβ è abbastanza vicino all'equilibrio di Nash.
TheNumberOne

8

Mi manca il commento ovunque, quindi non posso ancora porre le mie domande. Quindi questo è un giocatore molto semplice per vincere contro il primo bot.

[Modifica] Grazie, ora lo stato precedente non è più vero ma penso che sia meglio mantenerlo in modo da poter capire il contesto di questo bot.

Il Opportunist

L'opportunista frequenta lo stesso club di cannoni dei GunClubPlayer, tuttavia, ha scommesso su un nuovo arrivato che avrebbe potuto battere tutti i GunClubPlayer. Quindi sfrutta l'abitudine che ha da tempo notato e si costringe a non sparare, ma aspetta solo un po 'per vincere.

#ifndef __OPPORTUNIST_PLAYER_HPP__
#define __OPPORTUNIST_PLAYER_HPP__

#include <string>
#include <vector>

class OpportunistPlayer final: public Player
{
public:
    OpportunistPlayer(size_t opponent = -1) : Player(opponent) {}

public:
    virtual Action fight()
    {
        switch (getTurn() % 3)
        {
        case 0:
            return load();
            break;
        case 1:
            return metal();
            break;
        case 2:
            return bullet();
            break;
        }
        return plasma();
    }
};
#endif // !__OPPORTUNIST_PLAYER_HPP__

7

Il BarricadePlayer

Il Barricade Player carica un proiettile al primo round, quindi mantiene uno scudo appropriato (ancora un po 'casuale). Inoltre carica un altro colpo ogni 5 round. Ad ogni round, c'è una probabilità del 15% di ignorare l'algoritmo (tranne per ricaricare il primo turno) e sparare un proiettile. Quando il nemico non ha munizioni, si carica. Se in qualche modo tutto va storto, oh ragazzo, spara e basta.

Modifiche più recenti:

Numeri casuali migliorati (grazie Frenzy Li).

// BarricadePlayer by devRicher
// PPCG: http://codegolf.stackexchange.com/a/104909/11933

// BarricadePlayer.hpp
// A very tactical player.

#ifndef __BARRICADE_PLAYER_HPP__
#define __BARRICADE_PLAYER_HPP__

#include "Player.hpp"
#include <cstdlib>
#include <ctime>

class BarricadePlayer final : public Player
{
public:
    BarricadePlayer(size_t opponent = -1) : Player(opponent) {}

public:
    virtual Action fight()
    {
        srand(time(NULL));
        if (getTurn() == 0) { return load(); }
        int r = GetRandomInteger(99) + 1; //Get a random
        if ((r <= 15) && (getAmmo() > 0)) { return bullet(); } //Override any action, and just shoot
        else
        {
            if (getTurn() % 5 == 0) //Every first and fifth turn
                return load();
            if (getAmmoOpponent() == 1) return metal();
            if (getAmmoOpponent() > 1) { return r <= 50 ? metal() : thermal(); }
            if (getAmmoOpponent() == 0) return load();

        }
        return bullet();
    }
};

#endif // !__BARRICADE_PLAYER_HPP__

1
Vuoi almeno controllare se ci sono munizioni prima di sparare?
Pavel,

8
No. Vivo la vita pericolosa. @Pavel
devRicher,

1
Non è inutile usare il deflettore termico al secondo turno? Non puoi caricare due proiettili al primo turno. Penso che anche se vuoi che sia casuale, dovresti evitare di usare lo scudo termico se i proiettili dell'avversario sono 1 (o meno).
Southpaw Hare

1
Grazie per tutti i suggerimenti, ho modificato molto la classe. @SouthpawHare
devRicher,

2
Non lo getAmmoOpponentè getOpponentAmmo. Ti stai perdendo anche#endif // !__BARRICADE_PLAYER_HPP__
Blue

7

Il StudiousPlayer

Lo Studious Player studia la sua preda, modellando ogni avversario che incontra. Questo giocatore inizia con una strategia di base, guidata casualmente in alcuni punti, e passa a semplici strategie adattive basate su misure frequenti della risposta dell'avversario. Usa un semplice modello di avversari basato su come reagiscono alle combinazioni di munizioni.

#ifndef __STUDIOUS_PLAYER_H__
#define __STUDIOUS_PLAYER_H__

#include "Player.hpp"
#include <unordered_map>

class StudiousPlayer final : public Player
{
public:
   using Player::GetRandomInteger;
   // Represents an opponent's action for a specific state.
   struct OpponentAction {
      OpponentAction(){}
      unsigned l=0;
      unsigned b=0;
      unsigned p=0;
      unsigned m=0;
      unsigned t=0;
   };
   // StudiousPlayer models every opponent that it plays,
   // and factors said model into its decisions.
   //
   // There are 16 states, corresponding to
   // 4 inner states (0,1,2,3) and 4 outer states
   // (0,1,2,3). The inner states represent our
   // (SP's) ammo; the outer represents the
   // Opponent's ammo.  For the inner or outer
   // states, 0-2 represent the exact ammo; and
   // 3 represents "3 or more".
   //
   // State n is (4*outer)+inner.
   //
   // State 0 itself is ignored, since we don't care
   // what action the opponent takes (we always load);
   // thus, it's not represented here.
   //
   // os stores states 1 through 15 (index 0 through 14).
   struct Opponent {
      std::vector<OpponentAction> os;
      Opponent() : os(15) {}
   };
   StudiousPlayer(size_t opponent)
      : Player(opponent)
      , strat(storedLs()[opponent])
      , ammoOpponent()
   {
   }
   Player::Action fight() {
      // Compute the current "ammo state".
      // For convenience here (aka, readability in switch),
      // this is a two digit octal number.  The lso is the
      // inner state, and the mso the outer state.
      unsigned ss,os;
      switch (ammoOpponent) {
      default: os=030; break;
      case 2 : os=020; break;
      case 1 : os=010; break;
      case 0 : os=000; break;
      }
      switch (getAmmo()) {
      default: ss=003; break;
      case 2 : ss=002; break;
      case 1 : ss=001; break;
      case 0 : ss=000; break;
      }
      // Store the ammo state.  This has a side effect
      // of causing actn() to return an OpponentAction
      // struct, with the opponent's history during this
      // state.
      osa = os+ss;
      // Get the opponent action pointer
      const OpponentAction* a=actn(osa);
      // If there's no such action structure, assume
      // we're just supposed to load.
      if (!a) return load();
      // Apply ammo-state based strategies:
      switch (osa) {
      case 001:
         // If opponent's likely to load, shoot; else load
         if (a->l > a->m) return bullet();
         return load();
      case 002:
      case 003:
         // Shoot in the way most likely to kill (or randomly)
         if (a->t > a->m+a->l) return bullet();
         if (a->m > a->t+a->l) return plasma();
         if (GetRandomInteger(1)) return bullet();
         return plasma();
      case 010:
         // If opponent tends to load, load; else defend
         if (a->l > a->b) return load();
         return metal();
      case 011:
         // Shoot if opponent tends to load
         if (a->l > a->b+a->m) return bullet();
         // Defend if opponent tends to shoot
         if (a->b > a->l+a->m) return metal();
         // Load if opponent tends to defend
         if (a->m > a->b+a->l) return load();
         // Otherwise randomly respond
         if (!GetRandomInteger(2)) return metal();
         if (!GetRandomInteger(1)) return load(); 
         return bullet();                         
      case 012:
      case 013:
         // If opponent most often shoots, defend
         if (a->b > a->l+a->m+a->t) return metal();
         // If opponent most often thermals, use bullet
         if (a->t > a->m) return bullet();
         // If opponent most often metals, use plasma
         if (a->m > a->t) return plasma();
         // Otherwise use a random weapon
         return (GetRandomInteger(1))?bullet():plasma();
      case 020:
         // If opponent most often loads or defends, load
         if (a->l+a->m+a->t > a->b+a->p) return load();
         // If opponent most often shoots bullets, raise metal
         if (a->b > a->p) return metal();
         // If opponent most often shoots plasma, raise thermal
         if (a->p > a->b) return thermal();
         // Otherwise raise random defense
         return (GetRandomInteger(1))?metal():thermal();
      case 021:
      case 031:
         // If opponent loads more often than not,
         if (a->l > a->m+a->b+a->p) {
            // Tend to shoot (67%), but possibly load (33%)
            return (GetRandomInteger(2))?bullet():load();
         }
         // If opponent metals more often than loads or shoots, load
         if (a->m > a->l+a->b+a->p) return load();
         // If opponent thermals (shrug) more often than loads or shoots, load
         if (a->t > a->l+a->b+a->p) return load();
         // If opponent tends to shoot bullets, raise metal
         if (a->b > a->p) return metal();
         // If opponent tends to shoot plasma, raise thermal
         if (a->p > a->b) return thermal();
         // Raise random shield
         return (GetRandomInteger(2))?metal():thermal();
      case 022:
         // If opponent loads or thermals more often than not, shoot bullet
         if (a->l+a->t > a->b+a->p+a->m) return bullet();
         // If opponent loads or metals more often than not, shoot plasma
         if (a->l+a->m > a->b+a->p+a->t) return plasma();
         // If opponent shoots more than loads or defends, defend
         if (a->b+a->p > a->l+a->m+a->t) {
            if (a->b > a->p) return metal();
            if (a->p > a->b) return thermal();
            return (GetRandomInteger(1))?metal():thermal();
         }
         // If opponent defends more than opponent shoots, load
         if (a->m+a->t > a->b+a->p) return load();
         // Use random substrategy;
         // load(33%)
         if (GetRandomInteger(2)) return load();
         // defend(33%)
         if (GetRandomInteger(1)) {
            if (a->b > a->p) return metal();
            if (a->b > a->b) return thermal();
            return (GetRandomInteger(1))?metal():thermal();
         }
         // Shoot in a way that most often kills (or randomly)
         if (a->m > a->t) return plasma();
         if (a->t > a->m) return bullet();
         return (GetRandomInteger(1))?bullet():plasma();
      case 023:
         // If opponent loads or raises thermal more often than not, shoot bullets
         if (a->l+a->t > a->b+a->p+a->m) return bullet();
         // If opponent loads or raises metal more often than not, shoot plasma
         if (a->l+a->m > a->b+a->p+a->t) return plasma();
         // If opponent shoots more than loads or defends, defend
         if (a->b+a->p > a->l+a->m+a->t) {
            if (a->b > a->p) return metal();
            if (a->p > a->b) return thermal();
            return (GetRandomInteger(1))?metal():thermal();
         }
         // If opponent defends more than shoots, shoot
         if (a->m+a->t > a->b+a->p) {
            if (a->m > a->t) return plasma();
            if (a->t > a->m) return bullet();
            return GetRandomInteger(1)?bullet():plasma();
         }
         // 50% defend
         if (GetRandomInteger(1)) {
            if (a->b > a->p) return metal();
            return thermal();
         }
         // 50% shoot
         if (a->m > a->t) return plasma();
         if (a->t > a->m) return bullet();
         return (GetRandomInteger(1))?bullet():plasma();
      case 030:
         // If opponent loads or shields more often than not, load
         if (a->l+a->m+a->t > a->b+a->p) return load();
         // If opponent tends to shoot, defend
         if (a->b+a->p >= a->l+a->m+a->t) {
            if (a->b > a->p) return metal();
            if (a->p > a->b) return thermal();
            return (GetRandomInteger(1))?metal():thermal();
         }
         // Otherwise, randomly shield (50%) or load
         if (GetRandomInteger(1)) {
            return (GetRandomInteger(1))?metal():thermal();
         }
         return load();
      case 032:
         // If opponent loads or thermals more often than not, shoot bullets
         if (a->l+a->t > a->b+a->p+a->m) return bullet();
         // If opponent loads or metals more often than not, shoot plasma
         if (a->l+a->m > a->b+a->p+a->t) return plasma();
         // If opponent shoots more often than loads or shields, defend
         if (a->b+a->p > a->l+a->m+a->t) {
            if (a->b > a->p) return metal();
            if (a->p > a->b) return thermal();
            return (GetRandomInteger(1))?metal():thermal();
         }
         // If opponent shields more often than shoots, load
         if (a->m+a->t > a->b+a->p) return load();
         // Otherwise use random strategy
         if (GetRandomInteger(2)) return load();
         if (GetRandomInteger(1)) {
            if (a->b > a->p) return metal();
            return thermal();
         }
         if (a->m > a->t) return plasma();
         if (a->t > a->m) return bullet();
         return (GetRandomInteger(1))?bullet():plasma();
      case 033:
         {
            // At full 3 on 3, apply random strategy
            // weighted by opponent's histogram of this state...
            // (the extra 1 weights towards plasma)
            unsigned sr=
               GetRandomInteger
               (a->l+a->t+a->p+a->b+a->m+1);
            // Shoot bullets proportional to how much
            // opponent loads or defends using thermal
            if (sr < a->l+a->t) return bullet();
            sr-=(a->l+a->t);
            // Defend with thermal proportional to how
            // much opponent attacks with plasma (tending to
            // waste his ammo)
            if (sr < a->p) return thermal();
            // Shoot plasma proportional to how
            // much opponent shoots bullets or raises metal
            return plasma();
         }
      }
      // Should never hit this; but rather than ruin everyone's fun,
      // if we do, we just load
      return load();
   }
   // Complete override; we use our opponent's model, not history.
   void perceive(Player::Action action) {
      // We want the ammo but not the history; since
      // the framework (Player::perceive) is "all or nothing", 
      // StudiousPlayer just tracks the ammo itself
      switch (action) {
      default: break;
      case Player::LOAD:   ++ammoOpponent; break;
      case Player::BULLET: --ammoOpponent; break;
      case Player::PLASMA: ammoOpponent-=2; break;
      }
      // Now we get the opponent's action based
      // on the last (incoming) ammo state
      OpponentAction* a = actn(osa);
      // ...if it's null just bail
      if (!a) return;
      // Otherwise, count the action
      switch (action) {
      case Player::LOAD    : ++a->l; break;
      case Player::BULLET  : ++a->b; break;
      case Player::PLASMA  : ++a->p; break;
      case Player::METAL   : ++a->m; break;
      case Player::THERMAL : ++a->t; break;
      }
   }
private:
   Opponent& strat;
   OpponentAction* actn(unsigned octalOsa) {
      unsigned ndx = (octalOsa%4)+4*(octalOsa/8);
      if (ndx==0) return 0;
      --ndx;
      if (ndx<15) return &strat.os[ndx];
      return 0;
   }
   unsigned osa;
   unsigned ammoOpponent;
   // Welcome, non-C++ persons, to the "Meyers style singleton".
   // "theMap" is initialized (constructed; initially empty)
   // the first time the declaration is executed.
   static std::unordered_map<size_t, Opponent>& storedLs() {
      static std::unordered_map<size_t, Opponent> theMap;
      return theMap;
   }
};

#endif

Nota che questo tiene traccia delle informazioni sugli avversari secondo le regole della sfida; vedere il metodo "storedLs ()" con ambito "singleton style singleton" in fondo. (Alcune persone si chiedevano come farlo; ora lo sai!)


1
Non avevo idea che fosse chiamato singleton in stile Meyers fino a quando non l'ho visto!
Frenzy Li,

1
Non prendere il termine troppo sul serio - è una specie di abuso di termini, poiché il "singleton" è un'istanza modello piuttosto che una struttura dichiarata, ma è la stessa tecnica.
H Walters,

6

Il GunClubPlayer

Tagliato dalla domanda originale. Questo serve come esempio di implementazione minimalista di un giocatore derivato. Questo giocatore parteciperà al torneo.

I GunClubPlayers piace andare al club pistola. Durante ogni duello, caricavano prima le munizioni, quindi sparavano un proiettile e ripetevano questo processo fino alla fine del duello mondiale . In realtà non gli importa se vincono o meno e si concentrano esclusivamente sull'esperienza piacevole.

// GunClubPlayer.hpp
// A gun club enthusiast. Minimalistic example of derived class

#ifndef __GUN_CLUB_PLAYER_HPP__
#define __GUN_CLUB_PLAYER_HPP__

#include "Player.hpp"

class GunClubPlayer final: public Player
{
public:
    GunClubPlayer(size_t opponent = -1) : Player(opponent) {}

public:
    virtual Action fight()
    {
        return getTurn() % 2 ? bullet() : load();
    }
};

#endif // !__GUN_CLUB_PLAYER_HPP__

1
Non hai bisogno dell'altro dopo una dichiarazione di ritorno, giusto? So che non è il golf del codice ma sembra sbagliato.
Pavel,

2
@Pavel Bene, OK, quindi ... è ... una specie di golf adesso.
Frenzy Li,

5

Il PlasmaPlayer

Al Plasma Player piace sparare i suoi bulloni al plasma. Proverà a caricare e sparare il più possibile. Tuttavia, mentre l'avversario ha munizioni al plasma, utilizzerà il suo scudo termico (i proiettili sono per i deboli).

#ifndef __PLASMA_PLAYER_HPP__
#define __PLASMA_PLAYER_HPP__

#include "Player.hpp"

class PlasmaPlayer final : public Player
{
public:
    PlasmaPlayer(size_t opponent = -1) : Player(opponent) {}

    virtual Action fight()
    {
        // Imma Firin Mah Lazer!
        if (getAmmo() > 1) return plasma();

        // Imma Block Yur Lazer!
        if (getAmmoOpponent() > 1) return thermal();

        // Imma need more Lazer ammo
        return load();
    }
};

#endif // !__PLASMA_PLAYER_HPP__

@FrenzyLi grazie per il costruttore! Il mio C ++ è un po 'arrugginito e non ho un compilatore su questa macchina.
Brian J,

Prego! Sto ancora aggiungendo più codice (stampa tabellone segnapunti, leggi script esterni, ecc.) Al progetto ed è molto fortunato che nessuno dei contributi sia ancora rotto.
Frenzy Li,

Funzionerà bene per qualsiasi avversario tranne GunClub. Sì, ucciderà SadisticShooter (il migliore). @BrianJ
devRicher

5

Il vero SadisticShooter

Preferirebbe vederti soffrire piuttosto che ucciderti. Non è stupido e si coprirà come richiesto.

Se sei assolutamente noioso e prevedibile, ti ucciderà immediatamente.

// SadisticShooter by muddyfish
// PPCG: http://codegolf.stackexchange.com/a/104947/11933

// SadisticShooter.hpp
// A very sad person. He likes to shoot people.

#ifndef __SAD_SHOOTER_PLAYER_HPP__
#define __SAD_SHOOTER_PLAYER_HPP__

#include <cstdlib>
#include "Player.hpp"
// #include <iostream>

class SadisticShooter final : public Player
{
public:
    SadisticShooter(size_t opponent = -1) : Player(opponent) {}
private:
    bool historySame(std::vector<Action> const &history, int elements) {
        if (history.size() < elements) return false;

        std::vector<Action> lastElements(history.end() - elements, history.end());

        for (Action const &action : lastElements)
            if (action != lastElements[0]) return false;
        return true;
    }
public:
    virtual Action fight()
    {
        int my_ammo = getAmmo();
        int opponent_ammo = getAmmoOpponent();
        int turn_number = getTurn();
        //std::cout << " :: Turn " << turn_number << " ammo: " << my_ammo << " oppo: " << opponent_ammo << std::endl;

        if (turn_number == 90) {
            // Getting impatient
            return load();
        }
        if (my_ammo == 0 && opponent_ammo == 0) {
            // It would be idiotic not to load here
            return load();
        }
        if (my_ammo >= 2 && historySame(getHistoryOpponent(), 3)) {
            if (getHistoryOpponent()[turn_number - 1] == THERMAL) return bullet();
            if (getHistoryOpponent()[turn_number - 1] == METAL) return thermal();
        }
        if (my_ammo < 2 && opponent_ammo == 1) {
            // I'd rather not die thank you very much
            return metal();
        }
        if (my_ammo == 1) {
            if (opponent_ammo == 0) {
                // You think I would just shoot you?
                return load();
            }
            if (turn_number == 2) {
                return thermal();
            }
            return bullet();
        }
        if (opponent_ammo >= 2) {
            // Your plasma weapon doesn't scare me
            return thermal();
        }
        if (my_ammo >= 2) {
            // 85% more bullet per bullet
            if (turn_number == 4) return bullet();
            return plasma();
        }
        // Just load the gun already
        return load();
    }
};

#endif // !__SAD_SHOOTER_PLAYER_HPP__

Vedo che l'hai risolto.
devRicher,

4

Il TurtlePlayer

TurtlePlayerè un codardo. Passa la maggior parte del tempo a nascondersi dietro i suoi scudi, da cui il nome. A volte, può uscire dal suo guscio (nessun gioco di parole previsto) e avere un tiro, ma normalmente giace basso mentre il nemico ha munizioni.


Questo bot non è particolarmente eccezionale, tuttavia ogni KOTH ha bisogno di alcune voci iniziali per farlo funzionare :)

I test locali hanno scoperto che questo vince contro entrambi GunClubPlayere il Opportunist100% delle volte. Una battaglia contro BotRobotPlayersembrava sempre portare a un pareggio mentre entrambi si nascondono dietro i loro scudi.

#include "Player.hpp"

// For randomness:
#include <ctime>
#include <cstdlib>

class TurtlePlayer final : public Player {

public:
    TurtlePlayer(size_t opponent = -1) : Player(opponent) { srand(time(0)); }

public:
    virtual Action fight() {
        if (getAmmoOpponent() > 0) {
            // Beware! Opponent has ammo!

            if (rand() % 5 == 0 && getAmmo() > 0) 
                // YOLO it:
                return getAmmo() > 1 ? plasma() : bullet();

            // Play it safe:
            if (getAmmoOpponent() == 1) return metal();
            return rand() % 2 ? metal() : thermal();
        }

        if (getAmmo() == 0) 
            // Nobody has ammo: Time to load up.
            return load();

        else if (getAmmo() > 1) 
            // We have enough ammo for a plasma: fire it!
            return plasma();

        else 
            // Either load, or take a shot.
            return rand() % 2 ? load() : bullet();
    }
};

4

Il DeceptivePlayer

Il giocatore ingannevole prova a caricare due proiettili e poi ne lancia uno.

// DeceiverPlayer.hpp
// If we have two shoots, better shoot one by one

#ifndef __DECEPTIVE_PLAYER_HPP__
#define __DECEPTIVE_PLAYER_HPP__

#include "Player.hpp"

class DeceptivePlayer final: public Player
{
public:
    DeceptivePlayer(size_t opponent = -1) : Player(opponent) {}

public:
    virtual Action fight()
    {
        int ammo = getAmmo();
        int opponentAmmo = getAmmoOpponent();
        int turn = getTurn();

        // Without ammo, always load
        if (ammo == 0)
        {
            return load();
        }

        // Every 10 turns the Deceiver goes crazy
        if (turn % 10 || opponentAmmo >= 3)
        {
            // Generate random integer in [0, 5)
            int random = GetRandomInteger() % 5;
            switch (random)
            {
            case 0:
                return bullet();
            case 1:
                return metal();
            case 2:
                if (ammo == 1)
                {
                    return bullet();
                }

                return plasma();
            case 3:
                return thermal();
            case 4:
                return load();
            }
        }

        // The Deceiver shoots one bullet
        if (ammo == 2)
        {
            return bullet();
        }

        // Protect until we can get bullet 2
        if (opponentAmmo == 0)
        {
            return load();
        }

        if (opponentAmmo == 1)
        {
            return metal();
        }

        if (opponentAmmo == 2)
        {
            return thermal();
        }
    }
};

#endif // !__DECEPTIVE_PLAYER_HPP__

Non scrivo in c ++ quindi eventuali miglioramenti al codice saranno i benvenuti.


La mia modifica è sulla definizione del modulo e della macro. Non sei sicuro che ti piacerà, ma forse DeceptivePlayerè un nome migliore?
Frenzy Li,

@FrenzyLi Sì, mi piace, cambierò il nome
Sxntk

1
@Sxntk Mi piace l'ironia in cui questo giocatore si aspetta che le persone con 2 munizioni sparino al plasma, ma lui stesso terrà due munizioni e sparerà un proiettile.
Brian J,

@Sxntk Non hai la possibilità di non restituire nulla al momento. A un giocatore sono consentite più di due munizioni. Quindi se il tuo avversario ha 3+ munizioni, non prendi nessuna azione. Potresti finire con una pistola esplosa da qualche parte. (ovviamente, quello potrebbe essere il tuo piano generale comunque :))
Brian J,

@BrianJ Grazie, ci penserò, nel frattempo farò impazzire l'ingannevole e deciderò cosa fare quando oponnent ha 3+ munizioni
Sxntk

2

HanSoloPlayer

Prima spara! Sto ancora lavorando per rivederlo, ma questo è abbastanza buono.

// HanSoloPlayer.hpp
// A reluctant rebel. Always shoots first.

// Revision 1: [13HanSoloPlayer][17] | 6 rounds | 2863

#ifndef __HAN_SOLO_PLAYER_HPP__
#define __HAN_SOLO_PLAYER_HPP__

#include "Player.hpp"

class HanSoloPlayer final: public Player
{
public:
    HanSoloPlayer(size_t opponent = -1) : Player(opponent) {}

public:
    virtual Action fight()
    {
        if(getTurn() == 0){
            // let's do some initial work
            agenda.push_back(bullet());     // action 2--han shot first!
            agenda.push_back(load());       // action 1--load a shot
        } else if(getTurn() == 2){
            randomDefensive();
        } else if(getRandomBool(2)){
            // go on the defensive about 1/3rd of the time
            randomDefensive();
        } else if(getRandomBool(5)){
            // all-out attack!
            if(getAmmo() == 0){
                // do nothing, let the agenda work its course
            } else if(getAmmo() == 1){
                // not quite all-out... :/
                agenda.push_back(load());   // overnext
                agenda.push_back(bullet()); // next
            } else if(getAmmo() == 2){
                agenda.push_back(load());   // overnext
                agenda.push_back(plasma()); // next
            } else {
                int ammoCopy = getAmmo();
                while(ammoCopy >= 2){
                    agenda.push_back(plasma());
                    ammoCopy -= 2;
                }
            }
        }

        // execute the next item on the agenda
        if(agenda.size() > 0){
            Action nextAction = agenda.back();
            agenda.pop_back();
            return nextAction;
        } else {
            agenda.push_back(getRandomBool() ? thermal() : bullet()); // overnext
            agenda.push_back(load());                                 // next
            return load();
        }
    }
private:
    std::vector<Action> agenda;
    bool getRandomBool(int weight = 1){
        return GetRandomInteger(weight) == 0;
    }
    void randomDefensive(){
        switch(getAmmoOpponent()){
            case 0:
                // they most likely loaded and fired. load, then metal shield
                agenda.push_back(metal());  // action 4
                agenda.push_back(load());   // action 3
                break;
            case 1:
                agenda.push_back(metal());
                break;
            case 2:
                agenda.push_back(getRandomBool() ? thermal() : metal());
                break;
            default:
                agenda.push_back(getRandomBool(2) ? metal() : thermal());
                break;
        }
        return;
    }
};

#endif // !__HAN_SOLO_PLAYER_HPP__

2

Il CamtoPlayer

CamtoPlayer HATES disegna e uscirà dai loop, qualunque cosa serva . (tranne il suicidio)

È il mio primo programma C ++ che fa qualsiasi cosa, quindi non giudicarlo troppo.

So che potrebbe essere migliore, ma per favore non modificarlo.
Se vuoi modificare il codice, commenta un suggerimento.

#ifndef __CAMTO_HPP__
#define __CAMTO_HPP__

#include "Player.hpp"
#include <iostream>

class CamtoPlayer final : public Player
{
public:
    CamtoPlayer(size_t opponent = -1) : Player(opponent) {}
        int S = 1; // Switch between options. (like a randomness function without any randomness)
        bool ltb = false; // L.ast T.urn B.locked
        bool loop = false; // If there a loop going on.
        int histarray[10]={0,0,0,0,0,0,0,0,0,0}; // The last ten turns.
        int appears(int number) { // How many times a number appears(); in histarray, used for checking for infinite loops.
            int things = 0; // The amount of times the number appears(); is stored in things.
            for(int count = 0; count < 10; count++) { // For(every item in histarray) {if its the correct number increment thing}.
                if(histarray[count]==number) {things++;}
            }
            return things; // Return the result
        }
    virtual Action fight()
    {
        int ammo = getAmmo(); // Ammo count.
        int bad_ammo = getAmmoOpponent(); // Enemy ammo count.
        int turn = getTurn(); // Turn count.
        int pick = 0; // This turn's weapon.

        if(appears(2)>=4){loop=true;} // Simple loop detection
        if(appears(3)>=4){loop=true;} // by checking if
        if(appears(4)>=4){loop=true;} // any weapong is picked a lot
        if(appears(5)>=4){loop=true;} // except for load();

        if(ammo==0&&bad_ammo==1){pick=4;} // Block when he can shoot me.
        if(ammo==0&&bad_ammo>=2){S++;S%2?(pick=4):(pick=5);} // Block against whatever might come!
        if(ammo==0&&bad_ammo>=1&&ltb){pick=1;} // If L.ast T.urn B.locked, then reload instead.
        if(ammo==1&&bad_ammo==0){pick=2;} // Shoot when the opponent can't shoot.
        if(ammo==1&&bad_ammo==1){S++;S%2?(pick=2):(pick=4);} // No risk here.
        if(ammo==1&&bad_ammo>=2){S++;S%2?(pick=4):(pick=5);} // Block!
        if(ammo==1&&bad_ammo>=1&&ltb){pick=2;} // If ltb shoot instead.
        if(ammo>=2){S++;S%2?(pick=2):(pick=3);} // Shoot something!

        /* debugging
            std :: cout << "Turn data: turn: ";
            std :: cout << turn;
            std :: cout << " loop: ";
            std :: cout << loop;
            std :: cout << " ";
            std :: cout << "ltb: ";
            std :: cout << ltb;
            std :: cout << " ";
        */

        // Attempt to break out of the loop. (hoping there is one)
        if(ammo==0&&loop){pick=1;} // After many turns of waiting, just load();
        if(ammo==1&&bad_ammo==0&&loop){loop=false;pick=1;} // Get out of the loop by loading instead of shooting.
        if(ammo==1&&bad_ammo==1&&loop){loop=false;pick=4;} // Get out of the loop (hopefully) by blocking.
        if(ammo>=2&&loop){loop=false;S++;S%2?(pick=2):(pick=3);} // Just shoot.
        if(turn==3&&(appears(1)==2)&&(appears(2)==1)){pick=4;} // If it's just load();, shoot();, load(); then metal(); because it might be a loop.
        // End of loop breaking.

        if(turn==1){pick=2;} // Shoot right after reloading!
        if(ammo==0&&bad_ammo==0){pick=1;} // Always load when no one can shoot.

        for(int count = 0; count < 10; count++) {
            histarray[count]=histarray[count+1]; // Shift all values in histarray[] by 1.
        }
        histarray[9] = pick; // Add the picked weapon to end of histarray[].

        /*  more debugging
            std :: cout << "history: ";
            std :: cout << histarray[0];
            std :: cout << histarray[1];
            std :: cout << histarray[2];
            std :: cout << histarray[3];
            std :: cout << histarray[4];
            std :: cout << histarray[5];
            std :: cout << histarray[6];
            std :: cout << histarray[7];
            std :: cout << histarray[8];
            std :: cout << histarray[9];

            std :: cout << " pick, ammo, bammo: ";
            std :: cout << pick;
            std :: cout << " ";
            std :: cout << ammo;
            std :: cout << " ";
            std :: cout << bad_ammo;
            std :: cout << "\n";
        */
        switch(pick) {
            case 1:
                ltb = false; return load();
            case 2:
                ltb = false; return bullet();
            case 3:
                ltb = false; return plasma();
            case 4:
                ltb = true;return metal();
            case 5:
                ltb = true;return thermal();
        }

    }
};

#endif // !__CAMTO_HPP__

Stai dimenticando un#endif // ! __CAMTO_HPP__
Blue

@muddyfish Grazie per avermelo detto, ho molti meno dei simboli che hanno impedito il rendering del codice! XD
Benjamin Philippe,

Ancora non si presenta. Consiglio di abbandonare del tutto i tag HTML e di usare semplicemente il markdown (il pulsante "Esempio di codice" con "{}" su di esso). Citare manualmente <>&è un dolore.
H Walters,

@HWalters Grazie per il suggerimento!
Benjamin Philippe,

Grazie per aver partecipato. E una cosa: rimuovila using namespace stdperché interferisce con il torneo. Se vuoi eseguire il debug, puoi usare std::coutecc.
Frenzy Li

1

Il SurvivorPlayer

Il giocatore sopravvissuto si comporta in modo simile al giocatore tartaruga e barricata. Non intraprenderà mai un'azione che potrebbe portare alla sua morte e preferirebbe imporre un pareggio piuttosto che perdere la lotta.

// SurvivorPlayer.hpp
// Live to fight another day

#ifndef __SURVIVOR_PLAYER_HPP__
#define __SURVIVOR_PLAYER_HPP__

#include "Player.hpp"

class SurvivorPlayer final : public Player
{
public:
SurvivorPlayer(size_t opponent = -1) : Player(opponent)
{
}

public:
    virtual Action fight()
    {
        int myAmmo = getAmmo();
        int opponentAmmo = getAmmoOpponent();
        int turn = getTurn();
        if (turn == 0) {
            return load();
        }
        switch (opponentAmmo) {
        case 0:
            if (myAmmo > 2) {
                return GetRandomInteger(1) % 2 ? bullet() : plasma();
            }
            return load();
        case 1:
            if (myAmmo > 2) {
                return plasma();
            }
            return metal();
        default:
            if (myAmmo > 2) {
                return plasma();
            }
            return GetRandomInteger(1) % 2 ? metal() : thermal();
        }
    }
};

#endif // !__SURVIVOR_PLAYER_HPP__

1

Il FatedPlayer

Realizzato da Clotho, segnato da Lachesis e ucciso da Atropo ; L'unica strategia di questo giocatore è quella di usare ciò che sa sulle munizioni per determinare quali azioni sono ragionevoli.

Tuttavia, non è possibile scegliere l'azione; quella parte è lasciata agli dei.

#ifndef __FATEDPLAYER_H__
#define __FATEDPLAYER_H__

#include "Player.hpp"
#include <functional>
class FatedPlayer final : public Player
{
public:
   FatedPlayer(size_t o) : Player(o){}
   Action fight() {
      std::vector<std::function<Action()>>c{[&]{return load();}};
      switch(getAmmo()){
      default:c.push_back([&]{return plasma();});
      case 1 :c.push_back([&]{return bullet();});
      case 0 :;}
      switch(getAmmoOpponent()){
      default:c.push_back([&]{return thermal();});
      case 1 :c.push_back([&]{return metal();});
      case 0 :;}
      return c[GetRandomInteger(c.size()-1)]();
   }
};

#endif

... perché mi piacerebbe vedere come si classifica un giocatore a caso.


1

SpecificPlayer

SpecificPlayer segue un semplice piano di scelta di alcune azioni casuali (valide). Tuttavia la sua caratteristica principale è che cerca determinate situazioni analizzando il numero di munizioni e la mossa precedente dell'avversario.

Questa è la prima volta che scrivo qualcosa in C ++, e la prima volta che provo a fare qualsiasi tipo di scrittura competitiva su bot. Quindi spero che il mio scarso tentativo faccia almeno qualcosa di interessante. :)

// SpecificPlayer by Charles Jackson (Dysnomian) -- 21/01/2017
// PPCG: http://codegolf.stackexchange.com/a/104933/11933

#ifndef __SPECIFIC_PLAYER_HPP__
#define __SPECIFIC_PLAYER_HPP__

#include "Player.hpp"

class SpecificPlayer final : public Player
{
public:
    SpecificPlayer(size_t opponent = -1) : Player(opponent) {}

    //override
    virtual Action fight()
    {
        returnval = load(); //this should always be overwritten

        // if both players have no ammo we of course load
        if (oa == 0 && ma == 0) { returnval = load(); }

        // if (opponent has increased their ammo to a point they can fire something) then shield from it
        else if (oa == 1 && op == LOAD) { returnval = metal(); }
        else if (oa == 2 && op == LOAD) { returnval = thermal(); }
        else if (op == LOAD) { returnval = randomBlock(oa); }

        // if we have a master plan to follow through on do so, unless a defensive measure above is deemed necessary
        else if (nextDefined) { returnval = next; nextDefined = false; }

        // if opponent didn't fire their first shot on the second turn (turn 1) then we should block
        else if (t == 2 && oa >= 1) { returnval = randomBlock(oa); }

        //if opponent may be doing two attacks in a row
        else if (oa == 1 && op == BULLET) { returnval = metal(); }
        else if (oa == 2 && op == PLASMA) { returnval = thermal(); }

        // if we had no ammo last turn and still don't, load
        else if (ma == 0 && pa == 0) { returnval = load(); }

        // if we have just collected enough ammo to plasma, wait a turn before firing
        else if (ma == 2 && pa == 1) { 
            returnval = randomBlock(oa); next = plasma(); nextDefined = true; }

        // time for some random actions
        else
        {
            int caseval = GetRandomInteger(4) % 3; //loading is less likely than attacking or blocking
            switch (caseval) 
            {
            case 0: returnval = randomBlock(oa); break; // 40%
            case 1: returnval = randomAttack(ma); break; // 40%
            case 2: returnval = load(); break; // 20%
            }
        }

        pa = ma; //update previous ammo then update our current ammo
        switch (returnval)
        {
        case LOAD:
            ma += 1;
            break;
        case BULLET:
            ma -= 1;
            break;
        case PLASMA:
            ma -= 2;
            break;
        }
        t++; //also increment turn counter

        return returnval;
    }

    //override
     void perceive(Action action)
    {
         //record what action opponent took and update their ammo
         op = action;
         switch (action)
         {
         case LOAD:
             oa += 1;
             break;
         case BULLET:
             oa -= 1;
             break;
         case PLASMA:
             oa -= 2;
             break;
         }
    }

private:
    Action returnval; //our action to return
    Action next; //the action we want to take next turn - no matter what!
    bool nextDefined = false; //flag for if we want to be taking the "next" action.
    int t = 0; //turn number
    int ma = 0; //my ammo
    int oa = 0; //opponent ammo
    int pa = 0; //my previous ammo
    Action op; //opponent previous action

    Action randomBlock(int oa)
    {
        Action a;
        if (oa == 0) { a = load(); }
        else if (oa == 1) { a = metal(); }
        else
        {
            // more chance of ordianry block than laser block
            a = GetRandomInteger(2) % 2 ? metal() : thermal();
        }
        return a;
    }

    Action randomAttack(int ma)
    {
        Action a;
        if (ma == 0) { a = load(); }
        else if (ma == 1) { a = bullet(); }
        else
        {
            // more chance of ordianry attack than plasma
            a = GetRandomInteger(2) % 2 ? bullet() : plasma();
        }
        return a;
    }
};

#endif // !__SPECIFIC_PLAYER_HPP__

1

NotSoPatientPlayer

La storia della sua creazione verrà dopo.

// NotSoPatientPlayer.hpp

#ifndef __NOT_SO_PATIENT_PLAYER_HPP__
#define __NOT_SO_PATIENT_PLAYER_HPP__

#include "Player.hpp"
#include <iostream>

class NotSoPatientPlayer final : public Player
{
    static const int TOTAL_PLAYERS = 50;
    static const int TOTAL_ACTIONS = 5;
    static const int MAX_TURNS = 100;
public:
    NotSoPatientPlayer(size_t opponent = -1) : Player(opponent)
    {
        this->opponent = opponent;
    }

public:
    virtual Action fight()
    {
        /*Part which is shamelessly copied from MontePlayer.*/
        int turn = getTurn(),
            ammo = getAmmo(),
            opponentAmmo = getAmmoOpponent();
        int turnsRemaining = MAX_TURNS - turn;
        //The bot starts to shoot when there is enough ammo to fire plasma at least (turnsRemaining-2) times.
        //Did you know that you cannot die when you shoot plasma?
        //Also chooses 1 or 2 move(s) in which will shoot bullet(s) or none if there is plenty of ammo.
        //Also check !burstMode because it needs to be done only once.
        if (!burstMode && ammo + 2 >= turnsRemaining * 2)
        {
            burstMode = true;
            if (!(ammo == turnsRemaining * 2)) {
                turnForBullet1 = GetRandomInteger(turnsRemaining - 1) + turn;
                if (ammo + 2 == turnsRemaining * 2) {
                    //turnForBullet1 should be excluded in range for turnForBullet2
                    turnForBullet2 = GetRandomInteger(turnsRemaining - 2) + turn;
                    if (turnForBullet2 >= turnForBullet1) turnForBullet2++;
                }
            }
        }
        if (burstMode) {
            if (turn == turnForBullet1 || turn == turnForBullet2) {
                return bullet();
            }
            else return plasma();
        }

        //if opponent defended last 3 turns, the bot tries to go with something different
        if (turn >= 3) {
            auto historyOpponent = getHistoryOpponent();
            //if opponent used metal last 3 turns
            if (METAL == historyOpponent[turn - 1] && METAL == historyOpponent[turn - 2] && METAL == historyOpponent[turn - 3]) {
                if (ammo >= 2) return plasma();
                else return load();
            }
            //if opponent used thermal last 3 turns
            if (THERMAL == historyOpponent[turn - 1] && THERMAL == historyOpponent[turn - 2] && THERMAL == historyOpponent[turn - 3]) {
                if (ammo >= 1) return bullet();
                else return load();
            }
            //if the opponent defends, but not consistently
            if ((historyOpponent[turn - 1] == METAL || historyOpponent[turn - 1] == THERMAL)
                && (historyOpponent[turn - 2] == METAL || historyOpponent[turn - 2] == THERMAL)
                && (historyOpponent[turn - 3] == METAL || historyOpponent[turn - 3] == THERMAL)) {
                if (ammo >= 2) return plasma();
                else if (ammo == 1) return bullet();
                else return load();
            }
        }

        /*else*/ {
            if (opponentAmmo == 0) return load();
            if (opponentAmmo == 1) return metal();
            //if opponent prefers bullets or plasmas, choose the appropriate defence
            if (opponentMoves[opponent][BULLET] * 2 >= opponentMoves[opponent][PLASMA]) return metal();
            else return thermal();
        }
    }

    virtual void perceive(Action action)
    {
        Player::perceive(action);
        opponentMoves[opponent][action]++;
    }

    /*virtual void declared(Result result)
    {
        currentRoundResults[opponent][result]++;
        totalResults[opponent][result]++;
        int duels = 0;
        for (int i = 0; i < 3; i++) duels += currentRoundResults[opponent][i];
        if (duels == 100) {
            std::cout << "Score against P" << opponent << ": " <<
                currentRoundResults[opponent][WIN] << "-" << currentRoundResults[opponent][DRAW] << "-" << currentRoundResults[opponent][LOSS] << "\n";
            for (int i = 0; i < 3; i++) currentRoundResults[opponent][i] = 0;
        }
    };*/

private:
    static long opponentMoves[TOTAL_PLAYERS][TOTAL_ACTIONS];
    int opponent;
    //When it becomes true, the bot starts shooting.
    bool burstMode = false;
    //turnForBullet1 and turnForBullet2,
    //the 2 turns in which the bot will shoot bullets
    int turnForBullet1 = -1, turnForBullet2 = -1;
    //For debugging purposes
    //Reminder: enum Result { DRAW, WIN, LOSS };
    static int currentRoundResults[TOTAL_PLAYERS][3], totalResults[TOTAL_PLAYERS][3];
};
long NotSoPatientPlayer::opponentMoves[TOTAL_PLAYERS][TOTAL_ACTIONS] = { { 0 } };
int NotSoPatientPlayer::currentRoundResults[TOTAL_PLAYERS][3] = { { 0 } };
int NotSoPatientPlayer::totalResults[TOTAL_PLAYERS][3] = { { 0 } };
#endif // !__NOT_SO_PATIENT_PLAYER_HPP__

"La storia della sua creazione verrà dopo" sono trascorsi più di 3 mesi :)
HyperNeutrino,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.