La sfocatura gaussiana è un metodo usato per sfocare le immagini senza problemi. Implica la creazione di una matrice che verrà utilizzata contorcendola con i pixel di un'immagine. In questa sfida, il tuo compito è costruire quella matrice usata nella sfocatura gaussiana. Prenderai un input r che sarà il raggio della sfocatura e un input σ che sarà la deviazione standard per costruire una matrice con dimensioni (2 r + 1 × 2 r + 1). Ogni valore in quella matrice avrà un valore ( x , y ) che dipende dalla sua distanza assoluta in ciascuna direzione dal centro e sarà usato per calcolare G ( x , y ) dove la formulaG è
Ad esempio, se r = 2, vogliamo generare una matrice 5 x 5. Innanzitutto, la matrice dei valori ( x , y ) è
(2, 2) (1, 2) (0, 2) (1, 2) (2, 2)
(2, 1) (1, 1) (0, 1) (1, 1) (2, 1)
(2, 0) (1, 0) (0, 0) (1, 0) (2, 0)
(2, 1) (1, 1) (0, 1) (1, 1) (2, 1)
(2, 2) (1, 2) (0, 2) (1, 2) (2, 2)
Quindi, lascia σ = 1.5 e applica G a ciascuno ( x , y )
0.0119552 0.0232856 0.0290802 0.0232856 0.0119552
0.0232856 0.0453542 0.0566406 0.0453542 0.0232856
0.0290802 0.0566406 0.0707355 0.0566406 0.0290802
0.0232856 0.0453542 0.0566406 0.0453542 0.0232856
0.0119552 0.0232856 0.0290802 0.0232856 0.0119552
Normalmente nella sfocatura delle immagini, questa matrice sarebbe normalizzata prendendo la somma di tutti i valori in quella matrice e dividendola per essa. Per questa sfida, ciò non è necessario e i valori grezzi calcolati dalla formula sono quelli che dovrebbero essere i risultati.
Regole
- Questo è code-golf, quindi vince il codice più corto.
- L'ingresso r sarà un numero intero non negativo e σ sarà un numero reale positivo.
- L'output deve rappresentare una matrice. Può essere formattato come un array 2d, una stringa che rappresenta un array 2d o qualcosa di simile.
- Le imprecisioni in virgola mobile non verranno conteggiate nei tuoi confronti.
Casi test
(r, σ) = (0, 0.25)
2.54648
(1, 7)
0.00318244 0.00321509 0.00318244
0.00321509 0.00324806 0.00321509
0.00318244 0.00321509 0.00318244
(3, 2.5)
0.00603332 0.00900065 0.0114421 0.012395 0.0114421 0.00900065 0.00603332
0.00900065 0.0134274 0.0170696 0.0184912 0.0170696 0.0134274 0.00900065
0.0114421 0.0170696 0.0216997 0.023507 0.0216997 0.0170696 0.0114421
0.012395 0.0184912 0.023507 0.0254648 0.023507 0.0184912 0.012395
0.0114421 0.0170696 0.0216997 0.023507 0.0216997 0.0170696 0.0114421
0.00900065 0.0134274 0.0170696 0.0184912 0.0170696 0.0134274 0.00900065
0.00603332 0.00900065 0.0114421 0.012395 0.0114421 0.00900065 0.00603332
(4, 3.33)
0.00339074 0.00464913 0.00582484 0.00666854 0.00697611 0.00666854 0.00582484 0.00464913 0.00339074
0.00464913 0.00637454 0.00798657 0.0091434 0.00956511 0.0091434 0.00798657 0.00637454 0.00464913
0.00582484 0.00798657 0.0100063 0.0114556 0.011984 0.0114556 0.0100063 0.00798657 0.00582484
0.00666854 0.0091434 0.0114556 0.013115 0.0137198 0.013115 0.0114556 0.0091434 0.00666854
0.00697611 0.00956511 0.011984 0.0137198 0.0143526 0.0137198 0.011984 0.00956511 0.00697611
0.00666854 0.0091434 0.0114556 0.013115 0.0137198 0.013115 0.0114556 0.0091434 0.00666854
0.00582484 0.00798657 0.0100063 0.0114556 0.011984 0.0114556 0.0100063 0.00798657 0.00582484
0.00464913 0.00637454 0.00798657 0.0091434 0.00956511 0.0091434 0.00798657 0.00637454 0.00464913
0.00339074 0.00464913 0.00582484 0.00666854 0.00697611 0.00666854 0.00582484 0.00464913 0.00339074