Enigma combinatorio!


12

Introduzione: logica combinatoria

La logica combinatoria (CL) si basa su cose chiamate combinatori , che sono fondamentalmente funzioni. Esistono due combinatori "incorporati" di base Se K, che verranno spiegati in seguito.

Sinistra-associatività

CL è associativo di sinistra , il che significa che le parentesi (contenenti elementi) che si trovano all'estrema sinistra di un'altra coppia di parentesi che lo contengono possono essere rimosse, rilasciandole. Ad esempio, qualcosa del genere:

((a b) c)

Può essere ridotto a

(a b c)

Dove si (a b)trova all'estrema sinistra della staffa più grande ((a b) c), quindi può essere rimosso.

Un esempio molto più grande di associazione sinistra (le parentesi quadre sono spiegazioni):

  ((a b) c ((d e) f (((g h) i) j)))
= (a b c ((d e) f (((g h) i) j)))   [((a b) c...) = (a b c...)]
= (a b c (d e f (((g h) i) j)))     [((d e) f...) = (d e f...)]
= (a b c (d e f ((g h i) j)))       [((g h) i) = (g h i)]
= (a b c (d e f (g h i j)))         [((g h i) j) = (g h i j)]

Le parentesi possono anche essere ridotte quando più di una coppia avvolge gli stessi oggetti. Esempi:

((((a)))) -> a
a ((((b)))) -> a b
a (((b c))) -> a (b c) [(b c) is still a group, and therefore need brackets.
                        Note that this doesn't reduce to `a b c`, because
                        `(b c)` is not on the left.]

builtins

CL ha due combinatori "incorporati" Se K, che possono scambiare oggetti (combinatori singoli o un gruppo di combinatori / gruppi racchiusi tra parentesi) in questo modo:

K x y = x
S x y z = x z (y z)

Dove x, ye zpuò essere controfigure per qualsiasi cosa.

Un esempio di Se Ksono i seguenti:

  (S K K) x [x is a stand-in for anything]
= S K K x   [left-associativity]
= K x (K x) [S combinator]
= x         [K combinator]

Un altro esempio:

  S a b c d
= a c (b c) d [combinators only work on the n objects to the right of it,
               where n is the number of "arguments" n is defined to have -
               S takes 3 arguments, so it only works on 3 terms]

Quanto sopra sono esempi di normali istruzioni CL, in cui l'istruzione non può essere ulteriormente valutata e ottiene un risultato finale in un tempo limitato. Esistono istruzioni non normali (che sono istruzioni CL che non terminano e continueranno a essere valutate per sempre), ma non rientrano nell'ambito della sfida e non dovranno essere coperte.

Se vuoi saperne di più su CL, leggi questa pagina di Wikipedia .

Compito:

Il tuo compito è creare combinatori extra, dato il numero di argomenti e ciò che valuta come input, che è dato in questo modo:

{amount_of_args} = {evaluated}

Dove {amount_of_args}è un numero intero positivo uguale al numero di args ed è {evaluated}composto da:

  • argomenti fino alla quantità di argomenti, con 1il primo argomento, 2il secondo, eccetera.
    • Hai la garanzia che i numeri degli argomenti al di sopra della quantità di arg (quindi solo 4quando {amount_of_args}è 3) non verranno visualizzati {evaluated}.
  • parentesi ()

Quindi esempi di input sono:

3 = 2 3 1
4 = 1 (2 (3 4))

Il primo input richiede un combinatore (diciamo, R) con tre argomenti ( R 1 2 3), che quindi valuta in:

R 1 2 3 -> 2 3 1

Il secondo input richiede questo (con un nome combinatore A):

A 1 2 3 4 -> 1 (2 (3 4))

Dato l'input in questo formato, è necessario restituire una stringa di S, Kche (), quando sostituita con un nome combinatore ed eseguita con argomenti, restituisce la stessa istruzione valutata del {evaluated}blocco quando il blocco comandi viene sostituito con quel nome combinatore.

L'istruzione combinatore di output può avere il suo spazio bianco rimosso e le parentesi esterne rimosse, quindi qualcosa di simile (S K K (S S))può essere trasformato in SKK(SS).

Se si vuole testare le uscite del vostro programma, @aditsu ha fatto un parser logica combinatoria (che comprende S, K, Ie anche altri quelli come Be C) qui .

Punto:

Poiché si tratta di un , lo scopo di questa sfida è quello di ottenere il minor numero di byte nell'output possibile, dati questi 50 casi di test . Inserisci i risultati per i 50 casi di test nella risposta, oppure crea un pastebin (o qualcosa di simile) e pubblica un link a quel pastebin.

In caso di pareggio, vince la prima soluzione.

Regole:

  • La tua risposta deve restituire un output CORRETTO - quindi, dato un input, deve restituire l'output corretto secondo la definizione nell'attività.
  • La risposta deve essere emessa entro un'ora su un laptop moderno per ogni caso di test.
  • Non è consentito alcun hard-coding di soluzioni. Tuttavia, è consentito codificare fino a 10 combinatori.
  • Il tuo programma deve restituire la stessa soluzione ogni volta per lo stesso input.
  • Il programma deve restituire un risultato valido per qualsiasi input fornito, non solo per i casi di test.

Come puoi assicurarti che le persone non rubino i combinatori trovati in altre risposte?
Fatalizza il

@Fatalize Non dovrebbe importare troppo, poiché le persone possono trarre ispirazione dalle risposte degli altri e basarsi su questo per creare risposte migliori.
clismique,

A proposito di ispirazione, noto che quando il risultato desiderato non contiene un 1, puoi sottrarre 1da tutto e quindi avvolgere la soluzione per quella risposta K(). Esempio: soluzione per 2 -> 1is K, quindi soluzione per 3 -> 2is KK, soluzione per 4 -> 3is K(KK)etc.
Neil

Risposte:


8

Haskell , punteggio 5017

Questo combina l'algoritmo più stupido possibile per l'eliminazione dell'astrazione ((λ x . X ) = I; (λ x . Y ) = K y ; (λ x . M N ) = S (λ x . M ) (λ x . N ) ) con un ottimizzatore spioncino utilizzato dopo ogni applicazione. La regola di ottimizzazione più importante è S (K x ) (K y ) ↦ K ( xy ), che impedisce all'algoritmo di esplodere sempre in modo esponenziale.

L'insieme di regole è configurato come un elenco di coppie di stringhe, quindi è facile giocare con nuove regole. Come bonus speciale del riutilizzo del parser di input per questo scopo, S, K e I sono accettati anche nei combinatori di input.

Le regole non vengono applicate incondizionatamente; piuttosto, entrambe le versioni vecchie e nuove vengono mantenute e le versioni non ottimali vengono eliminate solo quando la loro lunghezza supera quella della versione migliore di più di alcune costanti (attualmente 3 byte).

Il punteggio è leggermente migliorato trattando I come un combinatore fondamentale fino a quando lo stadio di output lo riscrive in SKK. In questo modo KI = K (SKK) può essere abbreviato di 4 byte in SK sull'output senza confondere il resto delle ottimizzazioni.

{-# LANGUAGE ViewPatterns #-}

import qualified Data.IntMap as I
import qualified Data.List.NonEmpty as N
import System.IO

data Term
  = V Int
  | S
  | K
  | I
  | A (N.NonEmpty (Int, Term, Term))
  deriving (Show, Eq, Ord)

parse :: String -> (Term, String)
parse = parseApp . parse1

parseApp :: (Term, String) -> (Term, String)
parseApp (t, ' ':s) = parseApp (t, s)
parseApp (t, "") = (t, "")
parseApp (t, ')':s) = (t, ')' : s)
parseApp (t1, parse1 -> (t2, s)) =
  parseApp (A (pure (appLen (t1, t2), t1, t2)), s)

parse1 :: String -> (Term, String)
parse1 (' ':s) = parse1 s
parse1 ('(':(parse -> (t, ')':s))) = (t, s)
parse1 ('S':s) = (S, s)
parse1 ('K':s) = (K, s)
parse1 ('I':s) = (I, s)
parse1 (lex -> [(i, s)]) = (V (read i), s)

ruleStrings :: [(String, String)]
ruleStrings =
  [ ("1 3(2 3)", "S1 2 3")
  , ("S(K(S(K1)))(S(K(S(K2)))3)", "S(K(S(K(S(K1)2))))3")
  , ("S(K(S(K1)))(S(K2))", "S(K(S(K1)2))")
  , ("S(K1)(K2)", "K(1 2)")
  , ("S(K1)I", "1")
  , ("S(S(K1)2)(K3)", "S(K(S1(K3)))2")
  , ("S(SI1)I", "S(SSK)1")
  ]

rules :: [(Term, Term)]
rules = [(a, b) | (parse -> (a, ""), parse -> (b, "")) <- ruleStrings]

len :: Term -> Int
len (V _) = 1
len S = 1
len K = 1
len I = 3
len (A ((l, _, _) N.:| _)) = l

appLen :: (Term, Term) -> Int
appLen (t1, S) = len t1 + 1
appLen (t1, K) = len t1 + 1
appLen (K, I) = 2
appLen (t1, t2) = len t1 + len t2 + 2

notA :: Term -> Bool
notA (A _) = False
notA _ = True

alt :: N.NonEmpty Term -> Term
alt ts =
  head $
  N.filter notA ts ++
  [A (N.nub (a N.:| filter (\(l, _, _) -> l <= minLen + 3) aa))]
  where
    a@(minLen, _, _) N.:| aa =
      N.sort $ do
        A b <- ts
        b

match :: Term -> Term -> I.IntMap Term -> [I.IntMap Term]
match (V i) t m =
  case I.lookup i m of
    Just ((/= t) -> True) -> []
    _ -> [I.insert i t m]
match S S m = [m]
match K K m = [m]
match I I m = [m]
match (A a) (A a') m = do
  (_, t1, t2) <- N.toList a
  (_, t1', t2') <- N.toList a'
  m1 <- match t1 t1' m
  match t2 t2' m1
match _ _ _ = []

sub :: I.IntMap Term -> Term -> Term
sub _ S = S
sub _ K = K
sub _ I = I
sub m (V i) = m I.! i
sub m (A a) =
  alt $ do
    (_, t1, t2) <- a
    pure (sub m t1 & sub m t2)

optimize :: Term -> Term
optimize t = alt $ t N.:| [sub m b | (a, b) <- rules, m <- match a t I.empty]

infixl 5 &

(&) :: Term -> Term -> Term
t1 & t2 = optimize (A (pure (appLen (t1, t2), t1, t2)))

elim :: Int -> Term -> Term
elim n (V ((== n) -> True)) = I
elim n (A a) =
  alt $ do
    (_, t1, t2) <- a
    pure (S & elim n t1 & elim n t2)
elim _ t = K & t

paren :: String -> Bool -> String
paren s True = "(" ++ s ++ ")"
paren s False = s

output :: Term -> Bool -> String
output S = const "S"
output K = const "K"
output I = paren "SKK"
output (V i) = \_ -> show i ++ " "
output (A ((_, K, I) N.:| _)) = paren "SK"
output (A ((_, t1, t2) N.:| _)) = paren (output t1 False ++ output t2 True)

convert :: Int -> Term -> Term
convert 0 t = t
convert n t = convert (n - 1) (elim n t)

process :: String -> String
process (lex -> [(n, lex -> [((`elem` ["=", "->"]) -> True, parse -> (t, ""))])]) =
  output (convert (read n) t) False

main :: IO ()
main = do
  line <- getLine
  putStrLn (process line)
  hFlush stdout
  main

Provalo online!

Produzione

  1. S (KS) K
  2. S (K (SS (KK))) (S (KK) S)
  3. S (K (SS)) (S (KK) K)
  4. S (K (SS (KK))) (S (KK) (S (KS) (S (K (S (SKK))) K)))
  5. S (K (S (K (SS (SK))))) (S (K (SS (SK))) (S (SKK) (SKK)))
  6. KK
  7. S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K)
  8. S (K (SS (K (S (KK) (S (SKK) (SKK)))))) (S (SSK (KS)) (S (S (KS) (S (KK) (S (KS) K))) (K (S (K (S (SSK))) K))))
  9. S (K (S (KK))) (S (K (S (S (SKK) (SKK)))) K)
  10. SK
  11. S (KS) (S (KK) (S (K (SS)) (S (KK) K)))
  12. S (K (SS (K (S (KK) K)))) (S (KK) (S (KS) (S (SSK (KS)) (S (K (SS)) (S (KK) K) ))))
  13. S (K (S (K (S (K (SS (KK))) (S (KK) S))))) (S (K (SS (KK))) (S (KK) (S (KS) (S (K (S (SKK))) K))))
  14. S (K (S (K (S (K (SS (KK))) (S (KK) S))))) (S (K (S (SKK))) K)
  15. S (K (S (K (S (KS) K)))) (S (KS) K)
  16. S (K (S (KS) K))
  17. S (K (S (K (S (K (SS (K (S (S (KS) (S (KK) (SSK))) (K (S (SKK) (SKK))))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (SSK)))) (S (KK) (S (KS) (S (KK) (SSK)))) )
  18. SSS (KK)
  19. KK
  20. S (KK) (S (KK) (S (S (KS) K) (S (K (S (SKK))) (S (K (S (SKK))) K))))
  21. S (S (KS) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (K (S (K (S ( S (KS) (S (K (S (SKK))) K)))) (S (KK) K)))
  22. S (KK)
  23. S (KS) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))
  24. S (K (S (K (S (KS) K)))) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K))) ))) (S (KK) (S (K (SS)) (S (KK) K))))
  25. S (KS) (S (KK) (S (KS) K))
  26. S (S (KS) (S (KK) (S (KS) (S (KK) (S (K (S (K (SS (KK))))) (S (KS) (S (KK) (S (SSK (KS)) (S (KS) (S (SKK) (SKK))))))))))) (K (S (S (KS) (S (K (S (K (S (KS ) (S (K (S (KS) (S (K (S (SKK))) K)))))))) (S (K (S (SKK))) K))) (S (K ( S (K (S (KK) K)))) (S (K (S (SKK))) K))))
  27. S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K)) ))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S ( KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  28. K (S (KK))
  29. S (K (S (K (S (K (S (K (S (KS) K)))) (S (K (S (S (KS) (S (KK) (S (K (SS)) ( S (KK) K)))))) K))))) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K))) ))) (S (KK) (S (K (SS)) (S (KK) K))))
  30. S (KK) (S (K (SSS (KK))))
  31. K (SSS (KK))
  32. S (K (SS (K (S (S (KS) (S (KK) (S (KS) K))) (K (S (K (S (SKK))) K)))))) (S (KK) (S (KS) (SS (S (S (KS) (S (KK) (S (KS) (S (K (S (KS) (S (KK) (S (KS) K))) )))))) (KK))))
  33. S (K (S (K (S (K (S (K (SS (KK))) (S (KK) S))))))) (S (K (SS (K (S (KK) K) ))) (S (KK) (SSS (KS))))
  34. S (K (S (K (S (KK) K))))
  35. S (K (S (K (S (K (S (K (SS (K (S (K (S (SKK))) K)))) (S (KK) (S (KS) (S (KK) (S (K (SS (K (S (K (S (SKK))) K)))) (S (KK) (S (K (SS)) (S (KK) K))))))) )))))) (S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K))
  36. S (K (SS (K (S (K (SS (K (S (K (S (SKK))) K)))) (S (KK) (S (KS) (SS (S (S (KS) (S (KK) (S (KS) (S (K (S (SKK))) K))))) (KK)))))))) (S (KK) (S (KS) (S ( KK) (S (K (S (K (S (K (S (K (S (K (SS (KK))) (S (KK) S))))))))) (S (K (SS (KK))) (S (KK) (S (KS) (S (K (S (KS) (S (KK) (S (KS) K))))))))))))
  37. S (KK) (S (K (S (K (S (KK) (S (KK) K))))) (SS (SK)))
  38. K (S (K (SSS (KK))))
  39. S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S (K (S (SKK ))) K)))) (S (KK) K))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (K (SS )) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S ( KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K)) ))) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  40. S (K (S (KK))) (S (KS) (S (KK) (S (K (S (KK) (S (KK) K))))))
  41. S (K (SS (K (S (S (KS) (S (KK) (S (KS) K))) (K (S (K (S (SKK))) K)))))) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (KK) (S (K (SS)) K))))) (S (KK) (S ( K (SS)) (S (KK) (S (K (S (K (S (KK) (S (KS) K))))) (S (KS) K))))))))))
  42. S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K))))) (S (KK) (S (KS) K)))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S ( K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  43. K (K (K (K (K (S (KK) (S (KK) (S (K (SS (SK))) (SSK))))))))
  44. S (KK) (S (K (S (KK) (S (KK) (S (KK) (S (KK) K))))))
  45. S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (S (K (SS (K (S ( K (S (S (KS) (S (K (S (SKK))) K)))) (S (KK) K))))) (S (KK) (S (KS) K)))) )) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S ( K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K ( SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))
  46. S (K (S (K (S (K (S (K (S (K (SS (K (S (K (SS (K (S (K (SS (KK))) (S (KK) (S ( KS) (S (K (S (SKK))) K))))))) (S (KK) (S (KS) (S (KK) (S (SSK (KS)) (S (K (SS )) (S (KK) K)))))))))) (S (KK) (S (KS) (S (KK) (S (K (SS (K (S (KK) (S (KS ) (S (KK) (S (K (SS (K (S (KK) (S (KS) K))))) (S (KK) (S (K (SS)) (S (KK) (S (K (SS (K (S (KK) K)))) (S (KK) S)))))))))))) (S (KK) (S (K (SS)) K)) )))))))) (S (K (SS (K (S (KK) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (S (KK) (S (K (SS)) (S (KK) K)))))))) (S (KK) S)))))) (S (K (SS (K (S (K (S (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))) (S (KK) (S (K ( SS)) (S (KK) K))))))) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (KS) (S (KK) ( S (KS) K)))))) (S (KS) (S (KK) (S (K (SS)) (S (KK) K)))))))))
  47. S (K (SS (K (SS (S (S (KS) (S (KK) S))) (KK))))) (S (KK) (S (KS) (S (K (S (K (S (KS) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (K (SS (K (S (K (S (S (KS) (S ( KK) (S (K (SS)) (S (KK) K)))))) (S (KK) (S (K (SS)) (S (KK) K))))))) (S (KK) (S (KS) K)))))))))))))) (S (K (S (S (KS) (S (KK) (S (K (SS)) (S ( KK) (S (K (S (K (S (KS) K)))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S ( KK) (S (KS) (S (KK) (S (K (SS)) (S (KK) K))))))))))))) (S (KK) (S (K (S (K (S (KK) (S (KS) (S (KK) (S (K (SS (K (S (KK) (S (KS) K))))) (S (KK) (S (K (SS)) K))))))))) (S (KS) (S (KK) (S (K (SS (K (S (KK) K)))) (S (KK) (S ( KS) (S (SSK (KS)) (S (K (SS (KK))) (S (KK) (S (KS) (S (K (S (SKK))) K))))))) )))))))))
  48. K (S (K (S (KK) (S (K (S (KK) (S (K (S (KK) (S (KK) K))))))))))
  49. S (KK) (S (K (S (K (S (KK) (S (K (S (K (S (KK) (S (K (S (K (S (KK) (S (K (S ( K (S (KK) (S (K (S (KK))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K))) ))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K)))))) (S (K (S (SKK))) K))
  50. S (K (S (K (S (K (S (K (S (K (S (KK))) (S (K (SS (K (S (K (S (S (KS) (S (K ( S (SKK))) K)))) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS)) (S (KK) K))))) (S (KK) (S (KS) K))))))) (S (K (SS (K (S (K (SS) ) (S (KK) K))))) (S (KK) (S (KS) (S (KK) (S (K (S (K (S (KK) (S (KK) (S (KK) (S (KK) K))))))) (S (K (SS)) (S (KK) K)))))))

Sarebbe possibile ottimizzare automaticamente le espressioni (ad es. S (K x) (K y) = K (x y))?
CalcolatriceFeline

@CalculatorFeline Non capisco la tua domanda; S (K x ) (K y ) viene automaticamente ottimizzato su K ( xy ).
Anders Kaseorg l'

Aspetta, queste espressioni sono rappresentate come funzioni parzialmente applicate o qualcos'altro? Se funzioni parzialmente applicate, forse potresti fare qualcosa come il mio ultimo commento.
CalcolatriceFeline

@CalculatorFeline La rappresentazione appare, ad esempio, 3 = 1 (2 3) ↦ 2 = S (K1) (S (K2) I) ↦ 2 = S (K1) 2 ↦ 1 = S (S (KS) (S (KK) (K1))) I ↦ 1 = S (S (KS) (K (K1))) I ↦ 1 = S (K (S (K1))) I ↦ 1 = S (K (S (K1 ))) I ↦ 1 = S (K1) ↦ S (KS) (S (KK) I) ↦ S (KS) K. Come puoi vedere, abbiamo già usato la regola S (K x ) (K y ) ↦ K ( xy ) molte volte, insieme alle altre in cui ho elencato ruleStrings. Se non lo facessimo, l'uscita sarebbe esponenzialmente più lunga: per questo piccolo esempio, avremmo ottenuto S (S (KS) (S (S (KS) (S (KK) (KS))) (S (S (KS) (S (KK) (KK))) (S (KK) (SKK))))) (S (S (KS) (S (S (KS) (S (KK) (KS))) ( S (S (KS) (S (KK) (KK))) (SK)))) (S (KK) (SK))) anziché S (KS) K.
Anders Kaseorg l'

5

Somma delle lunghezze della soluzione: 12945 8508 5872

Codice di Haskell che prende le righe di input da stdin e non importa se il separatore è =o ->:

data E=S|K|V Int|A E E deriving Eq

instance Show E where
  showsPrec _ S = showChar 'S'
  showsPrec _ K = showChar 'K'
  showsPrec _ (V i) = shows i
  showsPrec p (A e f) = showParen (p>0) $ showsPrec 0 e . showsPrec 1 f

type SRead a = String -> (a,String) -- a simpler variation of ReadS

parse :: String -> E
parse s = let (e,"")=parseList (s++")") in e
parseList :: SRead E
parseList s = let (l,s')=parseL s in (foldl1 A l,s')
parseL :: SRead [E]
parseL (c:s) | c==' ' = parseL s
             | c==')' = ([],s)
parseL s = let (p,s')=parseExp s; (l,s'')=parseL s' in (p:l,s'')
parseExp :: SRead E
parseExp ('(':s) = parseList s
parseExp s = let [(n,s')]=reads s in (V n,s')

k e = A K e
s e f = A (A S e) f
i = s K K
s3 e f g = A (s e f) g
sk = A S K
ssk e f = A (s3 S K e) f

n `invars` (A e f) = n `invars` e || n `invars` f
n `invars` (V m)   = n==m
_ `invars` _       = False

comb (A e f) = comb e && comb f
comb (V _)   = False
comb _       = True

abstract _ (A (A S K) _) = sk
abstract n e | not (n `invars` e) = k e
abstract n (A e (V _)) | not (n `invars` e) = e
abstract n (A (A (V i) e) (V j)) | n==i && n==j =
                                   abstract n (ssk (V i) e)
abstract n (A e (A f g)) | comb e && comb f =
                                   abstract n (s3 (abstract n e) f g)
abstract n (A (A e f) g) | comb e && comb g =
                                   abstract n (s3 e (abstract n g) f)
abstract n (A (A e f) (A g h)) | comb e && comb g && f==h =
                                   abstract n (s3 e g f)
abstract n (A e f) = s (abstract n e) (abstract n f)
abstract n _ = i

abstractAll 0 e = e
abstractAll n e = abstractAll (n-1) $ abstract n e

parseLine :: String -> (Int,E)
parseLine s = let [(n,s')] = reads s
                  s''=dropWhile(`elem` " =->") s'
              in (n, parse s'')

solveLine :: String -> E
solveLine s = let (n,e) = parseLine s in abstractAll n e

main = interact $ unlines . map (show . solveLine) . lines

Implementa l'astrazione di parentesi migliorata dalla sezione 3.2 di John Tromp: Binary Lambda Calculus e Combinatory Logic a cui è collegato l'articolo di Wikipedia sulla logica combinatoria. I casi speciali più utili usano il Scombinatore solo per soffermare i sotterfugi in modo da evitare l'annidamento profondo delle variabili. Il caso che verifica l'uguaglianza di alcuni sottotermmi non è necessario per nessuno dei casi di test. Sebbene non vi siano casi particolari per la gestione del Wcombinatore (vedi la risposta di Peter), le regole lavorano insieme per trovare l' SS(SK)espressione più breve . (Prima ho fatto un errore cercando di ottimizzare le chiamate interne abstract, quindi questa Wottimizzazione non è avvenuta e il risultato complessivo è stato di 16 byte più lungo.)

Ed ecco i risultati dei casi di test:

S(KS)K
S(K(S(K(SS(KK)))K))S
S(K(S(K(SS))K))K
S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K
S(K(S(K(SS(SK)))))(S(K(SS(SK)))(S(SKK)(SKK)))
KK
S(K(S(K(S(S(K(S(KS)(S(SKK))))K)))K))K
S(K(S(K(SS(K(S(KK)(S(SKK)(SKK))))))(S(KS))))(S(K(S(K(S(K(SS(K(S(K(S(SSK)))K))))K))S))K)
S(K(S(K(S(KK)))(S(S(SKK)(SKK)))))K
SK
S(K(S(K(S(K(S(S(KS)(S(KS)))))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS))))(SS)))K))K
S(K(S(K(S(K(S(K(SS(KK)))K))S))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K)
S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))(S(SKK))))K
S(K(S(K(S(K(S(K(S(K(SS(K(S(KS)K))))K))S))K))S))K
S(K(S(KS)K))
S(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(SS(K(S(S(KS)(S(K(SS(K(S(SKK)(SKK)))))K))K))))K))S))K))(S(KK)K)))))K))S))K))S))K))(S(K(S(KK)K))K)
S(KK)(S(KK))
KK
S(K(S(KK)K))(S(S(KS)K)(S(K(S(K(S(SKK)))(S(SKK))))K))
S(K(S(K(S(K(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K)))K))K))K
S(KK)
S(K(S(K(S(K(S(K(S(S(KS)(S(K(S(KS)(S(KS))))))))K))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(KS)(S(KS))))))K))K))K
S(K(S(K(S(KS)K))S))K
S(K(S(K(S(K(S(K(SS(KK)))(S(KS))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)(S(SKK))))K))))))))(S(SKK))))K)(S(K(S(K(S(K(S(KK)K))))(S(SKK))))K)))))K))S))K))S))K))S))(S(SKK)(SKK)))
S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K)))K))K))K))K
K(S(KK))
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(KS)(S(KS))))))K))K))K)
S(KK)(S(K(S(KK)(S(KK)))))
K(S(KK)(S(KK)))
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)))(S(K(S(K(S(K(SS(K(S(K(S(SKK)))K))))K))S))K)))))K))S))K))S))(S(K(S(K(S(K(S(KS)K))S))K)))
S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))))(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS)))
S(K(S(K(S(KK)K))))
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(SKK))))K)))))(S(SKK))))K)))K))K))K))))))(S(S(K(S(KS)(S(SKK))))K))))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(KK)))K))S))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)))(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)))(S(SKK))))K))))K))S))K))S))(S(SKK))))K)))))K))S))K))S))(S(K(S(K(S(K(S(KS)K))S))K))))
S(K(S(KK)(S(K(S(K(S(KK)K))K)))))(SS(SK))
K(S(K(S(KK)(S(KK)))))
S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K)))K))K))K))K))K))K
S(K(S(K(S(K(S(KK)(S(K(S(K(S(KK)K))K)))))))S))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(KS)K))S))K))))K))))(S(K(S(K(S(K(SS(K(S(K(S(SKK)))K))))K))S))K)))))K))S))K))S))K))S))K))S))K))S))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K)))K))K))K))K))K))K))K
K(K(K(K(K(S(K(S(KK)K))(S(K(SS(SK)))(SSK)))))))
S(KK)(S(K(S(K(S(K(S(K(S(KK)K))K))K))K)))
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K))))K))K))K))K))K))K))K)))K))K))K))K))K))K))K))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(KK)K))K))K))))K))S))(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(K(S(K(S(K(S(K(SS(K(S(KK)K))))K))S))(S(KS)))))))(S(S(K(S(KS)(S(KS))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K)))))K))K))K))))K))K))K))K))K))))K))K))K))K))K))K))K)))K))K))K))K))K))K))K))K))K
S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KK)K))K))K))K))K))K))K))))K))S))(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))))))))(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(KK)K))K))K))K))))K))S))(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))(S(K(S(K(S(K(S(K(SS(K(S(K(S(KK)K))K))))K))S))(S(K(S(KS)(S(KS)))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(SS(K(S(K(S(K(S(K(S(K(S(KK)K))))))))(S(K(S(K(SS(KK)))K))S)))))K))S))K))S))K))S))K))S))(S(KS))))(S(K(S(K(S(K(S(K(SS(KK)))K))S))(S(SKK))))K))
K(S(K(S(KK)(S(K(S(KK)(S(K(S(K(S(KK)K))K)))))))))
S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(KK)(S(KK))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K)))))(S(SKK))))K
S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KK)(S(K(S(K(S(K(S(K(S(KK)K))K))K))K)))))))))))(S(S(K(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(K(S(KS)(S(KS))))))))))(S(S(K(S(K(S(K(S(K(S(KS)(S(K(S(KS)(S(KS)))))))(S(S(K(S(K(S(K(S(KS)(S(KS))))(S(S(K(S(KS)(S(SKK))))K))))K))K))))K))K))K))))K))K))K))K))))K))K))K))K))K

3

8486 utilizzando S, K, I, W

Spiegazione

L'algoritmo standard (come ad esempio descritto nel capitolo 18 della To Mock a Mockingbird ) utilizza quattro casi, corrispondenti ai combinatori S, K, I = SKK, e semplice sinistro associazione. Penso che questo sia ciò che la risposta di Christian attua. Questo è sufficiente, ma non necessariamente ottimale, e dato che ci è permesso codificare fino a 10 combinatori lascia 7 opzioni.

Altri noti combinatori combinatori sono

B x y z = x (y z)
C x y z = x z y
W x y = x y y

che, insieme K, costituiscono una base completa . In SK questi sono

B = S (K S) K
C = S (S (K (S (K S) K)) S) (K K)
W = S S (S K)

e le SKIregole derivano quelle stesse espressioni per Be C, ma per Wesse derivano S S (K (S K K)). Ho quindi scelto di implementare Wun caso speciale.

Programma (CJam)

e# A tests whether argument is an array
{W=!!}:A;

e# F "flattens" an expression by removing unnecessary parentheses, although if the expression is a primitive
e# it actually wraps it in an array
{
  e# A primitive is already flat, so we only need to process arrays
  _A{
    ee{
      ~
      e# Stack: ... index elt
      e# First recurse to see how far that simplifies the element
      F
      e# If it's an array...
      _A{
        e# ... we can drop a level of nesting if either it's the first one (since combinator application
        e# is left-associative) or if it's a one-element array
        _,1=@!|{
          e# The tricky bit is that it might be a string, so we can't just use ~
          {}/
        }*
      }{
        \;
      }?
    }%
  }{a}?
}:F;


qN%{

e# Parse line of input
"->=()"" [[[]"er']+~
e# Eliminate the appropriate variables in reverse order. E eliminates the variable currently stored in V.
\,:)W%{
  e# Flatten current expression
  F

  e# Identify cases; X holds the eXpression and is guaranteed to be non-primitive
  :X
  [
    XVa=                  e# [V]
    Xe_V&!                e# case V-free expression
    X)_A0{V=}?\e_V&!*     e# case array with exactly one V, which is the last element
    X_e_Ve=~)>[VV]=X,2>*  e# case array with exactly two Vs, which are the last two elements
  ]
  1#
  e# Corresponding combinators
  [
    {;"SKK"}              e# I
    {['K\]}               e# K
    {);}                  e# X (less that final V)
    {););['S 'S "SK"]\a+} e# W special-cased as SS(SK) because the general-case algorithm derives SS(K(SKK))
    {['S\)E\E\]}          e# S (catch-all case)
  ]=~
}:EfV

e# Format for output
F
{
  _A{
    '(\{P}%')
  }*
}:P%

oNo}/

Suite di test online

Uscite generate:

S(KS)K
S(S(KS)(S(KK)S))(KK)
S(K(SS))(S(KK)K)
S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK)
S(K(S(K(SS(SK)))))(S(K(SS(SK)))(S(SKK)(SKK)))
KK
S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K)
S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(S(KS)(S(K(S(SKK)))K))(K(SKK)))))))(K(S(KK)(S(SKK)(SKK))))
S(K(S(KK)))(S(K(S(S(SKK)(SKK))))K)
K(SKK)
S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(SS))(S(KK)K))))))(K(S(KK)K))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))(K(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(SKK)))K)))))(K(KK))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))(K(S(KS)K))
S(K(S(KS)))(S(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))(K(S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(S(KS)(S(S(KS)K)(K(S(SKK)(SKK)))))K)))))(S(KK)K)))))))(S(KK)(S(KK)K))
S(KK)(S(KK))
KK
S(KK)(S(KK)(S(S(KS)K)(S(K(S(SKK)))(S(K(S(SKK)))K))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))
S(KK)
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(KS))))))))(S(KK)(S(KK)(S(KK)K)))
S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))))))))(K(S(KK)(S(KK)K)))
S(KS)(S(KK)(S(KS)K))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(SKK)(SKK)))))))))(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(SKK)))))))(S(K(S(K(S(KK)))))(S(K(S(SKK)))K))))))(S(K(S(KK)))(S(K(S(KK)))(S(K(S(SKK)))K))))))))))(K(K(KK)))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K)))
K(S(KK))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(KS)))))(S(KK)(S(KK)K))))))))(K(S(KK)(S(KK)K))))))))))(K(K(S(KK)(S(KK)K))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))))
K(S(KK)(S(KK)))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(KK))))))))))(K(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(K(S(SKK)))K)))))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KS)))))(S(S(KS)(S(KK)(S(KS)(S(KS)))))(K(S(KK)K))))))))(K(K(KK)))
S(K(S(K(S(KK)))))(S(K(S(KK))))
S(K(S(K(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(SKK)))))(S(K(S(KK)))(S(K(S(SKK)))K)))))))))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K)))))
S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(KK))))))))))(K(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))))(K(S(K(S(KK)))(S(K(S(SKK)))K))))))))))))))(K(K(K(K(KK)))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(SS(SK)))))
K(S(K(S(KK)))(S(K(S(KK)))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))
S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KK)))))(S(KS)K))))
S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)K)))))))))))(K(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(S(KS)(S(KK)(S(KS)K)))))))(S(K(S(KK)))(S(S(KS)(S(KK)(S(KS)K)))(K(S(K(S(SKK)))K)))))))))))(K(K(S(KK)(S(KK)K))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))
K(K(K(K(K(S(KK)(S(KK)(S(S(KS)(SSK))(K(SKK)))))))))
S(KK)(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(S(K(S(KK)))(S(KK))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))))
S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(KK)))))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))(S(KK)(S(KK)K))))))))(K(K(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))(K(K(K(S(KK)(S(KK)K))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))(K(K(K(K(S(KK)(S(KK)(S(KK)K))))))))))))))))))(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K))))))))
S(S(KS)(S(K(S(KS)))(S(K(S(KK)))(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(K(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))))(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(K(S(K(S(K(S(KS)))))))))(S(K(S(K(S(K(S(K(S(K(S(KS)))))))))))(S(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(KK)(S(KS)(S(K(S(KS)))(S(S(KS)(S(KK)(S(KS)(S(K(S(SKK)))K))))(KK))))))))))))(K(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KK)))))))(S(S(KS)(S(KK)S))(KK))))))))))))))(K(K(K(K(S(KK)(S(KK)K))))))))))))))))(K(K(K(K(K(S(KK)(S(KK)K))))))))))))))))))(K(K(K(K(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))))))))))))(K(K(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)(S(KK)K)))))))))
K(S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(KK))))))))))
S(KK)(S(K(S(KK)))(S(K(S(K(S(KK)))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(K(S(KK)))))))))))(S(K(S(K(S(K(S(K(S(K(S(SKK)))))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(SKK)))))))))(S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(SKK)))))))(S(K(S(K(S(KK)))))(S(K(S(K(S(SKK)))))(S(K(S(KK)))(S(K(S(SKK)))K))))))))))))))
S(K(S(K(S(K(S(KK)))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(K(S(K(S(K(S(KK)))))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(K(S(K(S(KS)))))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(K(S(KS)))))(S(K(S(S(KS)(S(K(S(KS)))(S(K(S(S(KS)(S(K(S(SKK)))K))))(S(KK)K))))))(S(KK)(S(KK)K))))))))(S(KK)(S(KK)(S(KK)K))))))))))(S(KK)(S(KK)(S(KK)(S(KK)K))))))))))
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.