Emula una CPU MOS 6502


29

Questo è un po 'ispirato alla sfida Intel 8086 che è anche qui, ma ho pensato che anche una sfida 6502 sarebbe stata interessante.

La sfida

Ho pensato che sarebbe stato divertente vedere i risultati. Questo è ovviamente verso il lato più avanzato dello spettro. La sfida è scrivere il tuo emulatore CPU 6502. Ciò comporta, ovviamente, la comprensione del set di istruzioni e del formato di codifica. Le risorse sono collegate in fondo a questo. Il 6502 è uno dei processori del mondo reale più facili da emulare. Ai fini di questa sfida, non dovrai preoccuparti dei tempi del ciclo se non vuoi, ma è sempre un vantaggio da includere!

NON COPIARE ALCUN CODICE DI ALTRO !! Certo, puoi sicuramente sbirciare altri emulatori per aiutarti a capire, ma nessuna copia e incolla! :)

Una volta che il codice funziona, puoi sempre fare il possibile, se lo desideri, e trasformarlo in un emulatore Apple II, o NES, C64, VIC-20 o uno qualsiasi degli altri miliardi di vecchi sistemi basati su 6502 dal passato.

Test dell'emulatore

Ho compilato una suite di test 6502 alla quale ho trovato il codice sorgente qui: http://code.google.com/p/hmc-6502/source/browse/trunk/emu/testvectors/AllSuiteA.asm

La mia versione compilata può essere scaricata qui: http://rubbermallet.org/AllSuiteA.zip

Carica il file binario da 48 KB nello spazio di memoria dell'emulatore a $ 4000, che lascia 16 KB di RAM di lettura / scrittura al di sotto di esso. Al termine dell'esecuzione del test, il valore nell'indirizzo $ 0210 dovrebbe essere $ FF, se la CPU ha superato. Saprai che il test è terminato quando il contatore del programma (PC) ha raggiunto l'indirizzo $ 45C0.

Altri test sono disponibili anche qui: http://visual6502.org/wiki/index.php?title=6502Programmi di test

Fare qualcosa di più interattivo con esso

Una volta che la tua CPU funziona, probabilmente vorrai fare qualcosa di più divertente che guardare l'output del test! Ho compilato un'immagine ROM di Enhanced BASIC per il 6502. È di 16 KB, quindi è necessario caricarlo in $ C000 dello spazio di memoria emulato, ripristinare il 6502 virtuale e iniziare l'esecuzione.

Scarica questo ZIP, che contiene ehbasic.bin: http://rubbermallet.org/ehbasic.zip

Il modo in cui EhBASIC gestisce input / output è molto semplice. Quando vuole scrivere un carattere sulla console, scrive il byte nella posizione di memoria $ F001. Quindi, quando l'emulatore vede il 6502 tentare di scrivere in quella posizione, è sufficiente stampare quel valore di carattere sulla console con un printf ("% c", valore); o comunque ti piacerebbe. (Questa sfida non è limitata a C ovviamente)

Quando viene eseguito il polling per un personaggio immesso dalla console, è abbastanza simile. Continua a leggere dalla posizione di memoria $ F004, dove dovresti avere il prossimo valore del carattere ASCII dalla tastiera in attesa di essere letto. Se non c'è più input da leggere, dovrebbe restituire un valore pari a zero.

EhBASIC esegue il polling del valore in quella posizione fino a quando è diverso da zero, il che gli fa sapere che il byte è un input di tastiera valido. Ecco perché se non c'è più input da leggere, l'emulatore dovrebbe restituire zero lì. EhBASIC ruoterà su di esso fino alla prossima chiave valida quando è in cerca di input.

Se non cancelli quel valore a zero dopo aver letto l'ultimo valore della chiave, lo farà ripetere come se avessi tenuto premuto il tasto, quindi fai attenzione a farlo correttamente!

Se il tuo emulatore funziona correttamente, questo è ciò che vedrai stampato sulla tua console quando esegue l'immagine ROM:

6502 EhBASIC [C]old/[W]arm ?

Premi C, quindi premi Invio e dovresti vedere:

Memory size ?

31999 Bytes free

Enhanced BASIC 2.22

Ready

I byte liberi possono essere diversi per te, ma nel mio emulatore ho limitato l'area di memoria scrivibile a un limite di 32 KB. Potresti davvero arrivare fino a dove inizia la ROM, che è il segno di 48 KB.

6502 collegamenti alle risorse della CPU

Ecco alcune risorse che dovrebbero darti informazioni sufficienti per lavorare con:

http://www.obelisk.demon.co.uk/6502/instructions.html

http://www.e-tradition.net/bytes/6502/6502_instruction_set.html

http://www.llx.com/~nparker/a2/opcodes.html <- questo ha alcune informazioni molto interessanti

http://en.wikipedia.org/wiki/MOS_Technology_6502

Se hai domande o hai bisogno di ulteriori informazioni tecniche, non esitare a chiedermelo. C'è anche un'enorme ricchezza di altre 6502 informazioni sul web. Google è tuo amico!


Sembra essere una disparità in questa frase: "Se non c'è più input da leggere, dovrebbe restituire un valore pari a zero. Questo fa sì che EhBASIC continui il polling fino a quando non è diverso da zero ."
Igby Largeman,

Ehm, errore mio. Non l'ho spiegato bene. Volevo spiegare che EhBASIC esegue il polling del valore in quella posizione fino a quando non è diverso da zero, il che gli fa sapere che il byte è un input di tastiera valido. Ecco perché se non c'è più input da leggere, l'emulatore dovrebbe restituire zero lì. Lo modificherò.
Mike C,

Potrei pubblicare il mio core 6502 alla fine, ma aspetterò prima alcune voci dagli altri. Spero che qualcuno dia una chance a questa sfida. C'erano alcune soluzioni alla sfida 8086, quindi chiaramente ci sono abbastanza persone intelligenti per farlo. 8086 è molto più difficile!
Mike C,

1
Mi piacerebbe provare questo, anche se non in senso competitivo. Il problema per me è trovare il tempo. Penso che sarebbe bello se tu potessi fornire un altro programma di test che eserciterà accuratamente l'emulatore e produrrà un output facilmente verificabile, simile a quello che è stato fatto per la sfida 8086.
Igby Largeman,

2
Come si determina chi vince? (deve esserci un vincitore)

Risposte:


22

Ho pensato di andare avanti e pubblicare la mia implementazione. È COMPLETAMENTE non golfato, ma è un'implementazione completa.

  • 668 righe di C. (senza contare le righe vuote o le righe con solo commenti)
  • Supporta (penso) tutte le istruzioni non documentate.
  • Supporta BCD.
  • Temporizzazione del ciclo del clock della CPU. (compresi gli aggiustamenti su determinati involucri di confine di pagina)
  • Può eseguire le istruzioni in un solo passaggio o specificando il numero di tick.
  • Supporta l'aggancio di una funzione esterna da chiamare dopo l'esecuzione di ogni istruzione. Questo perché originariamente era per un emulatore NES e l'ho usato per il timing audio.
/ * Fake6502 CPU emulator core v1.1 *******************
 * (c) Mike Chambers 2011-2013 *
 ************************************************** *** /

#include <stdio.h>
#include <stdint.h>

// funzioni fornite esternamente
exint uint8_t read6502 (indirizzo uint16_t);
extern void write6502 (indirizzo uint16_t, valore uint8_t);

// 6502 definisce
#define UNDOCUMENTED // quando questo è definito, vengono gestiti gli opcode non documentati.
                     // altrimenti, vengono semplicemente trattati come NOP.

// # define NES_CPU // quando questo è definito, il decimale con codice binario (BCD)
                     // flag di stato non è onorato da ADC e SBC. il 2A03
                     // La CPU del Nintendo Entertainment System no
                     // supporta il funzionamento BCD.

#define FLAG_CARRY 0x01
#define FLAG_ZERO 0x02
#define FLAG_INTERRUPT 0x04
#define FLAG_DECIMAL 0x08
#define FLAG_BREAK 0x10
#define FLAG_CONSTANT 0x20
#define FLAG_OVERFLOW 0x40
#define FLAG_SIGN 0x80

#define BASE_STACK 0x100

#define saveaccum (n) a = (uint8_t) ((n) & 0x00FF)


// macro modificatore di flag
#define setcarry () status | = FLAG_CARRY
#define clearcarry () status & = (~ FLAG_CARRY)
#define setzero () status | = FLAG_ZERO
#define clearzero () status & = (~ FLAG_ZERO)
#define setinterrupt () status | = FLAG_INTERRUPT
#define clearinterrupt () status & = (~ FLAG_INTERRUPT)
#define setdecimal () status | = FLAG_DECIMAL
#define cleardecimal () status & = (~ FLAG_DECIMAL)
#define setoverflow () status | = FLAG_OVERFLOW
#define clearoverflow () status & = (~ FLAG_OVERFLOW)
#define setsign () status | = FLAG_SIGN
#define clearsign () status & = (~ FLAG_SIGN)


// macro di calcolo flag
#define zerocalc (n) {\
    if ((n) & 0x00FF) clearzero (); \
        else setzero (); \
}

#define signcalc (n) {\
    if ((n) & 0x0080) setsign (); \
        else clearsign (); \
}

#define carrycalc (n) {\
    if ((n) & 0xFF00) setcarry (); \
        else clearcarry (); \
}

#define overflowcalc (n, m, o) {/ * n = risultato, m = accumulatore, o = memoria * / \
    if (((n) ^ (uint16_t) (m)) & ((n) ^ (o)) & 0x0080) setoverflow (); \
        else clearoverflow (); \
}


// 6502 registri CPU
uint16_t pc;
uint8_t sp, a, x, y, status = FLAG_CONSTANT;


// variabili di supporto
istruzioni uint64_t = 0; // tiene traccia delle istruzioni totali eseguite
uint32_t clockticks6502 = 0, clockgoal6502 = 0;
uint16_t oldpc, ea, reladdr, valore, risultato;
uint8_t opcode, oldstatus;

// alcune funzioni generali utilizzate da varie altre funzioni
void push16 (uint16_t pushval) {
    write6502 (BASE_STACK + sp, (pushval >> 8) & 0xFF);
    write6502 (BASE_STACK + ((sp - 1) & 0xFF), pushval e 0xFF);
    sp - = 2;
}

void push8 (uint8_t pushval) {
    write6502 (BASE_STACK + sp--, pushval);
}

uint16_t pull16 () {
    uint16_t temp16;
    temp16 = read6502 (BASE_STACK + ((sp + 1) & 0xFF)) | ((uint16_t) read6502 (BASE_STACK + ((sp + 2) & 0xFF)) << 8);
    sp + = 2;
    ritorno (temp16);
}

uint8_t pull8 () {
    return (read6502 (BASE_STACK + ++ sp));
}

void reset6502 () {
    pc = (uint16_t) read6502 (0xFFFC) | ((uint16_t) read6502 (0xFFFD) << 8);
    a = 0;
    x = 0;
    y = 0;
    sp = 0xFD;
    status | = FLAG_CONSTANT;
}


void statico (* addrtable [256]) ();
vuoto statico (* optable [256]) ();
uint8_t penaop, penaaddr;

// funziona in modalità indirizzamento, calcola gli indirizzi effettivi
static void imp () {// implicito
}

void statico acc () {// accumulatore
}

static void imm () {// immediato
    ea = pc ++;
}

static void zp () {// zero-page
    ea = (uint16_t) read6502 ((uint16_t) pc ++);
}

void statico zpx () {// zero-page, X
    ea = ((uint16_t) read6502 ((uint16_t) pc ++) + (uint16_t) x) & 0xFF; // avvolgente a pagina zero
}

static void zpy () {// zero-page, Y
    ea = ((uint16_t) read6502 ((uint16_t) pc ++) + (uint16_t) y) & 0xFF; // avvolgente a pagina zero
}

static void rel () {// relativo per operazioni di filiale (valore immediato a 8 bit, estensione del segno)
    reladdr = (uint16_t) read6502 (pc ++);
    if (reladdr & 0x80) reladdr | = 0xFF00;
}

static void abso () {// absolute
    ea = (uint16_t) read6502 (pc) | ((uint16_t) read6502 (pc + 1) << 8);
    pc + = 2;
}

absid vuoto statico () {// assoluto, X
    uint16_t pagina iniziale;
    ea = ((uint16_t) read6502 (pc) | ((uint16_t) read6502 (pc + 1) << 8));
    startpage = ea & 0xFF00;
    ea + = (uint16_t) x;

    if (startpage! = (ea & 0xFF00)) {// un ciclo penlty per l'attraversamento della pagina su alcuni codici operativi
        penaladdr = 1;
    }

    pc + = 2;
}

static void absy () {// absolute, Y
    uint16_t pagina iniziale;
    ea = ((uint16_t) read6502 (pc) | ((uint16_t) read6502 (pc + 1) << 8));
    startpage = ea & 0xFF00;
    ea + = (uint16_t) y;

    if (startpage! = (ea & 0xFF00)) {// un ciclo penlty per l'attraversamento della pagina su alcuni codici operativi
        penaladdr = 1;
    }

    pc + = 2;
}

static void ind () {// indiretto
    uint16_t eahelp, eahelp2;
    eahelp = (uint16_t) read6502 (pc) | (uint16_t) ((uint16_t) read6502 (pc + 1) << 8);
    eahelp2 = (eahelp & 0xFF00) | ((eahelp + 1) & 0x00FF); // replica 6502 bug avvolgente a bordo pagina
    ea = (uint16_t) read6502 (eahelp) | ((uint16_t) read6502 (eahelp2) << 8);
    pc + = 2;
}

static void indx () {// (indiretto, X)
    uint16_t eahelp;
    eahelp = (uint16_t) (((uint16_t) read6502 (pc ++) + (uint16_t) x) & 0xFF); // wraparound a pagina zero per il puntatore della tabella
    ea = (uint16_t) read6502 (eahelp & 0x00FF) | ((uint16_t) read6502 ((eahelp + 1) & 0x00FF) << 8);
}

void statico indy () {// (indiretto), Y
    uint16_t eahelp, eahelp2, pagina iniziale;
    eahelp = (uint16_t) read6502 (pc ++);
    eahelp2 = (eahelp & 0xFF00) | ((eahelp + 1) & 0x00FF); // avvolgente a pagina zero
    ea = (uint16_t) read6502 (eahelp) | ((uint16_t) read6502 (eahelp2) << 8);
    startpage = ea & 0xFF00;
    ea + = (uint16_t) y;

    if (startpage! = (ea & 0xFF00)) {// un ciclo penlty per l'attraversamento della pagina su alcuni codici operativi
        penaladdr = 1;
    }
}

static uint16_t getvalue () {
    if (addrtable [opcode] == acc) return ((uint16_t) a);
        else return ((uint16_t) read6502 (ea));
}

putvalue vuoto statico (uint16_t saveval) {
    if (addrtable [opcode] == acc) a = (uint8_t) (saveval & 0x00FF);
        else write6502 (ea, (saveval & 0x00FF));
}


// funzioni del gestore di istruzioni
static void adc () {
    sanzione = 1;
    valore = getvalue ();
    risultato = (uint16_t) a + value + (uint16_t) (status & FLAG_CARRY);

    carrycalc (risultato);
    zerocalc (risultato);
    overflowcalc (risultato, a, valore);
    signcalc (risultato);

    #ifndef NES_CPU
    if (status & FLAG_DECIMAL) {
        clearcarry ();

        if ((a & 0x0F)> 0x09) {
            a + = 0x06;
        }
        if ((a & 0xF0)> 0x90) {
            a + = 0x60;
            setcarry ();
        }

        clockticks6502 ++;
    }
    #finisci se

    saveaccum (risultato);
}

vuoto statico e () {
    sanzione = 1;
    valore = getvalue ();
    risultato = (uint16_t) a & value;

    zerocalc (risultato);
    signcalc (risultato);

    saveaccum (risultato);
}

static void asl () {
    valore = getvalue ();
    risultato = valore << 1;

    carrycalc (risultato);
    zerocalc (risultato);
    signcalc (risultato);

    putvalue (risultato);
}

static void bcc () {
    if ((status & FLAG_CARRY) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

statico vuoto bcs () {
    if ((status & FLAG_CARRY) == FLAG_CARRY) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void beq () {
    if ((status & FLAG_ZERO) == FLAG_ZERO) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void bit () {
    valore = getvalue ();
    risultato = (uint16_t) a & value;

    zerocalc (risultato);
    status = (status & 0x3F) | (uint8_t) (valore & 0xC0);
}

static void bmi () {
    if ((status & FLAG_SIGN) == FLAG_SIGN) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void bne () {
    if ((status & FLAG_ZERO) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void bpl () {
    if ((status & FLAG_SIGN) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void brk () {
    pc ++;
    push16 (PC); // spinge l'indirizzo dell'istruzione successiva nello stack
    push8 (stato | FLAG_BREAK); // invia lo stato della CPU allo stack
    setinterrupt (); // imposta il flag di interrupt
    pc = (uint16_t) read6502 (0xFFFE) | ((uint16_t) read6502 (0xFFFF) << 8);
}

static void bvc () {
    if ((status & FLAG_OVERFLOW) == 0) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void bvs () {
    if ((status & FLAG_OVERFLOW) == FLAG_OVERFLOW) {
        oldpc = pc;
        pc + = reladdr;
        if ((oldpc & 0xFF00)! = (pc & 0xFF00)) clockticks6502 + = 2; // controlla se il salto ha oltrepassato un limite di pagina
            else clockticks6502 ++;
    }
}

static void clc () {
    clearcarry ();
}

static void cld () {
    cleardecimal ();
}

static void cli () {
    clearinterrupt ();
}

static void clv () {
    clearoverflow ();
}

static void cmp () {
    sanzione = 1;
    valore = getvalue ();
    risultato = (uint16_t) a - valore;

    if (a> = (uint8_t) (value & 0x00FF)) setcarry ();
        altrimenti clearcarry ();
    if (a == (uint8_t) (value & 0x00FF)) setzero ();
        else clearzero ();
    signcalc (risultato);
}

static void cpx () {
    valore = getvalue ();
    risultato = (uint16_t) x - valore;

    if (x> = (uint8_t) (value & 0x00FF)) setcarry ();
        altrimenti clearcarry ();
    if (x == (uint8_t) (value & 0x00FF)) setzero ();
        else clearzero ();
    signcalc (risultato);
}

static void cpy () {
    valore = getvalue ();
    risultato = (uint16_t) y - valore;

    if (y> = (uint8_t) (value & 0x00FF)) setcarry ();
        altrimenti clearcarry ();
    if (y == (uint8_t) (value & 0x00FF)) setzero ();
        else clearzero ();
    signcalc (risultato);
}

static void dec () {
    valore = getvalue ();
    risultato = valore - 1;

    zerocalc (risultato);
    signcalc (risultato);

    putvalue (risultato);
}

static void dex () {
    X--;

    zerocalc (x);
    signcalc (x);
}

static void dey () {
    y--;

    zerocalc (y);
    signcalc (y);
}

static void eor () {
    sanzione = 1;
    valore = getvalue ();
    risultato = (uint16_t) un valore ^;

    zerocalc (risultato);
    signcalc (risultato);

    saveaccum (risultato);
}

static void inc () {
    valore = getvalue ();
    risultato = valore + 1;

    zerocalc (risultato);
    signcalc (risultato);

    putvalue (risultato);
}

static void inx () {
    x ++;

    zerocalc (x);
    signcalc (x);
}

static void iny () {
    y ++;

    zerocalc (y);
    signcalc (y);
}

static void jmp () {
    pc = ea;
}

static void jsr () {
    push16 (pc - 1);
    pc = ea;
}

static void lda () {
    sanzione = 1;
    valore = getvalue ();
    a = (uint8_t) (valore & 0x00FF);

    zerocalc (a);
    signcalc (a);
}

static void ldx () {
    sanzione = 1;
    valore = getvalue ();
    x = (uint8_t) (valore & 0x00FF);

    zerocalc (x);
    signcalc (x);
}

static void ldy () {
    sanzione = 1;
    valore = getvalue ();
    y = (uint8_t) (valore & 0x00FF);

    zerocalc (y);
    signcalc (y);
}

static void lsr () {
    valore = getvalue ();
    risultato = valore >> 1;

    if (value & 1) setcarry ();
        altrimenti clearcarry ();
    zerocalc (risultato);
    signcalc (risultato);

    putvalue (risultato);
}

static void nop () {
    switch (opcode) {
        caso 0x1C:
        caso 0x3C:
        caso 0x5C:
        caso 0x7C:
        caso 0xDC:
        caso 0xFC:
            sanzione = 1;
            rompere;
    }
}

static void ora () {
    sanzione = 1;
    valore = getvalue ();
    risultato = (uint16_t) a | valore;

    zerocalc (risultato);
    signcalc (risultato);

    saveaccum (risultato);
}

static void pha () {
    push8 (a);
}

static void php () {
    push8 (stato | FLAG_BREAK);
}

static void pla () {
    a = pull8 ();

    zerocalc (a);
    signcalc (a);
}

static void plp () {
    status = pull8 () | FLAG_CONSTANT;
}

static void rol () {
    valore = getvalue ();
    result = (value << 1) | (status & FLAG_CARRY);

    carrycalc(result);
    zerocalc(result);
    signcalc(result);

    putvalue(result);
}

static void ror() {
    value = getvalue();
    result = (value >> 1) | ((status & FLAG_CARRY) << 7);

    if (value & 1) setcarry();
        else clearcarry();
    zerocalc(result);
    signcalc(result);

    putvalue(result);
}

static void rti() {
    status = pull8();
    value = pull16();
    pc = value;
}

static void rts() {
    value = pull16();
    pc = value + 1;
}

static void sbc() {
    penaltyop = 1;
    value = getvalue() ^ 0x00FF;
    result = (uint16_t)a + value + (uint16_t)(status & FLAG_CARRY);

    carrycalc(result);
    zerocalc(result);
    overflowcalc(result, a, value);
    signcalc(result);

    #ifndef NES_CPU
    if (status & FLAG_DECIMAL) {
        clearcarry();

        a -= 0x66;
        if ((a & 0x0F) > 0x09) {
            a += 0x06;
        }
        if ((a & 0xF0) > 0x90) {
            a += 0x60;
            setcarry();
        }

        clockticks6502++;
    }
    #endif

    saveaccum(result);
}

static void sec() {
    setcarry();
}

static void sed() {
    setdecimal();
}

static void sei() {
    setinterrupt();
}

static void sta() {
    putvalue(a);
}

static void stx() {
    putvalue(x);
}

static void sty() {
    putvalue(y);
}

static void tax() {
    x = a;

    zerocalc(x);
    signcalc(x);
}

static void tay() {
    y = a;

    zerocalc(y);
    signcalc(y);
}

static void tsx() {
    x = sp;

    zerocalc(x);
    signcalc(x);
}

static void txa() {
    a = x;

    zerocalc(a);
    signcalc(a);
}

static void txs() {
    sp = x;
}

static void tya() {
    a = y;

    zerocalc(a);
    signcalc(a);
}

//undocumented instructions
#ifdef UNDOCUMENTED
    static void lax() {
        lda();
        ldx();
    }

    static void sax() {
        sta();
        stx();
        putvalue(a & x);
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void dcp() {
        dec();
        cmp();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void isb() {
        inc();
        sbc();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void slo() {
        asl();
        ora();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void rla() {
        rol();
        and();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void sre() {
        lsr();
        eor();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }

    static void rra() {
        ror();
        adc();
        if (penaltyop && penaltyaddr) clockticks6502--;
    }
#else
    #define lax nop
    #define sax nop
    #define dcp nop
    #define isb nop
    #define slo nop
    #define rla nop
    #define sre nop
    #define rra nop
#endif


static void (*addrtable[256])() = {
/*        |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F  |     */
/* 0 */     imp, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm, abso, abso, abso, abso, /* 0 */
/* 1 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 1 */
/* 2 */    abso, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm, abso, abso, abso, abso, /* 2 */
/* 3 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 3 */
/* 4 */     imp, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm, abso, abso, abso, abso, /* 4 */
/* 5 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 5 */
/* 6 */     imp, indx,  imp, indx,   zp,   zp,   zp,   zp,  imp,  imm,  acc,  imm,  ind, abso, abso, abso, /* 6 */
/* 7 */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* 7 */
/* 8 */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* 8 */
/* 9 */     rel, indy,  imp, indy,  zpx,  zpx,  zpy,  zpy,  imp, absy,  imp, absy, absx, absx, absy, absy, /* 9 */
/* A */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* A */
/* B */     rel, indy,  imp, indy,  zpx,  zpx,  zpy,  zpy,  imp, absy,  imp, absy, absx, absx, absy, absy, /* B */
/* C */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* C */
/* D */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx, /* D */
/* E */     imm, indx,  imm, indx,   zp,   zp,   zp,   zp,  imp,  imm,  imp,  imm, abso, abso, abso, abso, /* E */
/* F */     rel, indy,  imp, indy,  zpx,  zpx,  zpx,  zpx,  imp, absy,  imp, absy, absx, absx, absx, absx  /* F */
};

static void (*optable[256])() = {
/*        |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F  |      */
/* 0 */      brk,  ora,  nop,  slo,  nop,  ora,  asl,  slo,  php,  ora,  asl,  nop,  nop,  ora,  asl,  slo, /* 0 */
/* 1 */      bpl,  ora,  nop,  slo,  nop,  ora,  asl,  slo,  clc,  ora,  nop,  slo,  nop,  ora,  asl,  slo, /* 1 */
/* 2 */      jsr,  and,  nop,  rla,  bit,  and,  rol,  rla,  plp,  and,  rol,  nop,  bit,  and,  rol,  rla, /* 2 */
/* 3 */      bmi,  and,  nop,  rla,  nop,  and,  rol,  rla,  sec,  and,  nop,  rla,  nop,  and,  rol,  rla, /* 3 */
/* 4 */      rti,  eor,  nop,  sre,  nop,  eor,  lsr,  sre,  pha,  eor,  lsr,  nop,  jmp,  eor,  lsr,  sre, /* 4 */
/* 5 */      bvc,  eor,  nop,  sre,  nop,  eor,  lsr,  sre,  cli,  eor,  nop,  sre,  nop,  eor,  lsr,  sre, /* 5 */
/* 6 */      rts,  adc,  nop,  rra,  nop,  adc,  ror,  rra,  pla,  adc,  ror,  nop,  jmp,  adc,  ror,  rra, /* 6 */
/* 7 */      bvs,  adc,  nop,  rra,  nop,  adc,  ror,  rra,  sei,  adc,  nop,  rra,  nop,  adc,  ror,  rra, /* 7 */
/* 8 */      nop,  sta,  nop,  sax,  sty,  sta,  stx,  sax,  dey,  nop,  txa,  nop,  sty,  sta,  stx,  sax, /* 8 */
/* 9 */      bcc,  sta,  nop,  nop,  sty,  sta,  stx,  sax,  tya,  sta,  txs,  nop,  nop,  sta,  nop,  nop, /* 9 */
/* A */      ldy,  lda,  ldx,  lax,  ldy,  lda,  ldx,  lax,  tay,  lda,  tax,  nop,  ldy,  lda,  ldx,  lax, /* A */
/* B */      bcs,  lda,  nop,  lax,  ldy,  lda,  ldx,  lax,  clv,  lda,  tsx,  lax,  ldy,  lda,  ldx,  lax, /* B */
/* C */      cpy,  cmp,  nop,  dcp,  cpy,  cmp,  dec,  dcp,  iny,  cmp,  dex,  nop,  cpy,  cmp,  dec,  dcp, /* C */
/* D */      bne,  cmp,  nop,  dcp,  nop,  cmp,  dec,  dcp,  cld,  cmp,  nop,  dcp,  nop,  cmp,  dec,  dcp, /* D */
/* E */      cpx,  sbc,  nop,  isb,  cpx,  sbc,  inc,  isb,  inx,  sbc,  nop,  sbc,  cpx,  sbc,  inc,  isb, /* E */
/* F */      beq,  sbc,  nop,  isb,  nop,  sbc,  inc,  isb,  sed,  sbc,  nop,  isb,  nop,  sbc,  inc,  isb  /* F */
};

static const uint32_t ticktable[256] = {
/*        |  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F  |     */
/* 0 */      7,    6,    2,    8,    3,    3,    5,    5,    3,    2,    2,    2,    4,    4,    6,    6,  /* 0 */
/* 1 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 1 */
/* 2 */      6,    6,    2,    8,    3,    3,    5,    5,    4,    2,    2,    2,    4,    4,    6,    6,  /* 2 */
/* 3 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 3 */
/* 4 */      6,    6,    2,    8,    3,    3,    5,    5,    3,    2,    2,    2,    3,    4,    6,    6,  /* 4 */
/* 5 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 5 */
/* 6 */      6,    6,    2,    8,    3,    3,    5,    5,    4,    2,    2,    2,    5,    4,    6,    6,  /* 6 */
/* 7 */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* 7 */
/* 8 */      2,    6,    2,    6,    3,    3,    3,    3,    2,    2,    2,    2,    4,    4,    4,    4,  /* 8 */
/* 9 */      2,    6,    2,    6,    4,    4,    4,    4,    2,    5,    2,    5,    5,    5,    5,    5,  /* 9 */
/* A */      2,    6,    2,    6,    3,    3,    3,    3,    2,    2,    2,    2,    4,    4,    4,    4,  /* A */
/* B */      2,    5,    2,    5,    4,    4,    4,    4,    2,    4,    2,    4,    4,    4,    4,    4,  /* B */
/* C */      2,    6,    2,    8,    3,    3,    5,    5,    2,    2,    2,    2,    4,    4,    6,    6,  /* C */
/* D */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7,  /* D */
/* E */      2,    6,    2,    8,    3,    3,    5,    5,    2,    2,    2,    2,    4,    4,    6,    6,  /* E */
/* F */      2,    5,    2,    8,    4,    4,    6,    6,    2,    4,    2,    7,    4,    4,    7,    7   /* F */
};


void nmi6502() {
    push16(pc);
    push8(status);
    status |= FLAG_INTERRUPT;
    pc = (uint16_t)read6502(0xFFFA) | ((uint16_t)read6502(0xFFFB) << 8);
}

void irq6502() {
    push16(pc);
    push8(status);
    status |= FLAG_INTERRUPT;
    pc = (uint16_t)read6502(0xFFFE) | ((uint16_t)read6502(0xFFFF) << 8);
}

uint8_t callexternal = 0;
void (*loopexternal)();

void exec6502(uint32_t tickcount) {
    clockgoal6502 += tickcount;

    while (clockticks6502 < clockgoal6502) {
        opcode = read6502(pc++);

        penaltyop = 0;
        penaltyaddr = 0;

        (*addrtable[opcode])();
        (*optable[opcode])();
        clockticks6502 += ticktable[opcode];
        if (penaltyop && penaltyaddr) clockticks6502++;

        instructions++;

        if (callexternal) (*loopexternal)();
    }

}

void step6502() {
    opcode = read6502(pc++);

    penaltyop = 0;
    penaltyaddr = 0;

    (*addrtable[opcode])();
    (*optable[opcode])();
    clockticks6502 += ticktable[opcode];
    if (penaltyop && penaltyaddr) clockticks6502++;
    clockgoal6502 = clockticks6502;

    instructions++;

    if (callexternal) (*loopexternal)();
}

void hookexternal(void *funcptr) {
    if (funcptr != (void *)NULL) {
        loopexternal = funcptr;
        callexternal = 1;
    } else callexternal = 0;
}

FYI, If you use the markdown method of marking code (indent by four spaces), it will be in a screen-sized scrollable region; and you don't need to html-ize <tag brackets>. ... But for this answer, I actually think it's better as it is. As a reference-implementation, it puts the space it takes to very good use. ... If/when more answers arrive, you may want to switch to the 4-space indent so it doesn't dominate the page. $0.02 ... Love the question... +1 +1 +1! I'm working on mine, don't you worry! :)
luser droog

21

A MOS 6502 emulator in Haskell. Features include:

  • bit accurate implementation including subtle P register handling and page wrapping during indexing and indirection
  • memory mapped IO, with spin loop detection (so host CPU doesn't peg while waiting for input)
  • halt detection (jumps/branches to self)
  • CPU implemented in exactly 200 lines & 6502 characters of code
  • CPU implementation is pure state monad

This is a somewhat golf'd version of a full implementation (with more features) I did for this challenge that I'll post later. Despite the golf, the code is still straight forward. Only known missing feature is BCD mode (coming...)

Runs the ehBASIC code:

& ghc -O2 -o z6502min -Wall -fwarn-tabs -fno-warn-missing-signatures Z6502.hs
[1 of 1] Compiling Main             ( Z6502.hs, Z6502.o )

Z6502.hs:173:1: Warning: Defined but not used: `nmi'

Z6502.hs:174:1: Warning: Defined but not used: `irq'
Linking z6502min ...

& ./z6502min ehbasic.bin 
6502 EhBASIC [C]old/[W]arm ?

Memory size ? 

48383 Bytes free

Enhanced BASIC 2.22

Ready
PRINT "Hello World"
Hello World

Ready
10 FOR I = 1 TO 10
20 FOR J = 1 TO I
30 PRINT J;
40 NEXT J
50 PRINT
60 NEXT I
RUN
 1
 1 2
 1 2 3
 1 2 3 4
 1 2 3 4 5
 1 2 3 4 5 6
 1 2 3 4 5 6 7
 1 2 3 4 5 6 7 8
 1 2 3 4 5 6 7 8 9
 1 2 3 4 5 6 7 8 9 10

Ready

And the code, at under 300 lines total:

-- Z6502: a 6502 emulator
-- by Mark Lentczner

module Main (main) where

import Control.Applicative
import Control.Monad
import Control.Monad.State.Strict
import Data.Bits
import qualified Data.ByteString as B
import Data.List
import qualified Data.Vector as V
import qualified Data.Vector.Unboxed as VU
import Data.Word
import System.Environment
import System.IO

{- === CPU: 200 lines, 6502 characters === -}
type Addr = Word16
toAd = fromIntegral :: Int -> Addr
addr :: Word8 -> Word8 -> Addr
addr lo hi = fromIntegral hi `shiftL` 8 .|. fromIntegral lo
lohi ad = (fromIntegral ad, fromIntegral $ ad `shiftR` 8)
zeroPage v = addr v 0
index ad idx = ad + fromIntegral (idx :: Word8)
relativeAddr ad off = index ad off - if off > 0x7f then 256 else 0

data Page = Missing | ROM !B.ByteString | RAM !(VU.Vector Word8)
type Memory = V.Vector Page
emptyMemory = V.replicate 256 Missing

fetchByte ad mv = case mv V.! hi of
    ROM bs -> B.index bs lo
    RAM vs -> vs VU.! lo
    _ -> 0
  where (hi,lo) = fromIntegral ad `divMod` 256
storeByte ad v mv = case mv V.! hi of
    RAM vs -> mv V.// [(hi, RAM $ vs VU.// [(lo, v)])]
    _ -> mv
  where (hi,lo) = fromIntegral ad `divMod` 256

data S = S { rA, rX, rY, rP, rS :: !Word8, rPC :: !Addr
           , mem :: !Memory, busR,busW :: Maybe Addr }
powerOnState = S 0 0 0 0 0 0 emptyMemory Nothing Nothing

[bitN, bitV, bitX, bitB, bitD, bitI, bitZ, bitC] = [7,6..0]
toBit b t v = (if t then setBit else clearBit) v b
toZ v = toBit bitZ (v == 0)
toZN v = toBit bitZ (v == 0) . toBit bitN (testBit v 7)
to67 v = toBit bitV (testBit v 6) . toBit bitN (testBit v 7)

setZN v = modify $ \s -> s { rP = toZN v $ rP s }
setAZN v = modify $ \s -> s { rA = v, rP=toZN v $ rP s }
setXZN v = modify $ \s -> s { rX = v, rP=toZN v $ rP s }
setYZN v = modify $ \s -> s { rY = v, rP=toZN v $ rP s }
setZVNbit (a,v) = modify $ \s -> s { rP = toZ (a .&. v) $ to67 v $ rP s }
setACZVN (c,v,a) = modify $ \s ->
    s { rA = a, rP = toBit bitC c $ toBit bitV v $ toZN a $ rP s }
setCZN (c,v) = modify $ \s -> s { rP = toBit bitC c $ toZN v $ rP s }

fetch a = state $ \s -> (fetchByte a $ mem s, s { busR = Just a })
fetchIndirectAddr a0 = do
    m <- gets mem
    let (lo,hi) = lohi a0
        a1 = addr (lo+1) hi
        bLo = fetchByte a0 m
        bHi = fetchByte a1 m
    return $ addr bLo bHi
store a v = modify $ \s -> s { mem = storeByte a v $ mem s, busW = Just a }

clearBus = modify $ \s -> s { busR = Nothing, busW = Nothing }
nextPC = state $ \s -> (rPC s, s { rPC = rPC s + 1 })
fetchPC = nextPC >>= \a -> gets mem >>= return . fetchByte a

adjSP n m = state $ \s -> (addr (rS s + m) 1, s { rS = rS s + n })
push v = adjSP (-1) 0 >>= flip store v
pull = adjSP 1 1 >>= fetch
pushAddr a = let (lo, hi) = lohi a in push hi >> push lo
pullAddr = addr <$> pull <*> pull
pushP fromSW = gets rP >>= push . toBit bitX True . toBit bitB fromSW
pullP = pull >>= \v -> modify $ \s -> s { rP = v .&. 0xCF }

indexX a = gets rX >>= return . index a
indexY a = gets rY >>= return . index a
aImm=nextPC
aZero=zeroPage<$>fetchPC
aZeroX=zeroPage<$>((+)<$>fetchPC<*>gets rX)
aZeroY=zeroPage<$>((+)<$>fetchPC<*>gets rY)
aRel=flip relativeAddr<$>fetchPC<*>gets rPC
aAbs=addr<$>fetchPC<*>fetchPC
aAbsX=aAbs>>=indexX
aAbsY=aAbs>>=indexY
aInd=aAbs>>=fetchIndirectAddr
aIndIdx=aZeroX>>=fetchIndirectAddr
aIdxInd=aZero>>=fetchIndirectAddr>>=indexY

decode = V.fromList $ concat $ transpose
 [[iBRK,iBPL,iJSR&aAbs,iBMI,iRTI,iBVC,iRTS,iBVS
  ,iErr,iBCC,iLDY&aImm,iBCS,iCPY&aImm,iBNE,iCPX&aImm,iBEQ]
 ,cAlu aIndIdx aIdxInd
 ,cErr//(10,iLDX&aImm)
 ,cErr
 ,[iErr,iErr,iBIT&aZero,iErr,iErr,iErr,iErr,iErr
  ,iSTY&aZero,iSTY&aZeroX,iLDY&aZero,iLDY&aZeroX,iCPY&aZero,iErr,iCPX&aZero,iErr]
 ,cAlu aZero aZeroX
 ,cBit aZero aZeroX//(9,iSTX&aZeroY)//(11,iLDX&aZeroY)
 ,cErr
 ,[iPHP,iCLC,iPLP,iSEC,iPHA,iCLI,iPLA,iSEI,iDEY,iTYA,iTAY,iCLV,iINY,iCLD,iINX,iSED]
 ,cAlu aImm aAbsY//(8,iErr)
 ,[iASLa,iErr,iROLa,iErr,iLSRa,iErr,iRORa,iErr
  ,iTXA,iTXS,iTAX,iTSX,iDEX,iErr,iNOP,iErr ]
 ,cErr
 ,[iErr,iErr,iBIT&aAbs,iErr,iJMP&aAbs,iErr,iJMP&aInd,iErr
  ,iSTY&aAbs,iErr,iLDY&aAbs,iLDY&aAbsX,iCPY&aAbs,iErr,iCPX&aAbs,iErr]
 ,cAlu aAbs aAbsX
 ,cBit aAbs aAbsX//(9,iErr)//(11,iLDX&aAbsY)
 ,cErr
 ]
cAlt is e o = is >>= (\i->[i&e,i&o])
cAlu = cAlt [iORA,iAND,iEOR,iADC,iSTA,iLDA,iCMP,iSBC]
cBit = cAlt [iASL,iROL,iLSR,iROR,iSTX,iLDX,iDEC,iINC]
cErr = replicate 16 iErr
is//(n,j) = let (f,_:h) = splitAt n is in f++j:h
i&a=a>>=i

loadIns l a = fetch a >>= l
storeIns f a = f >>= store a

aluIns set op ad = do
    v <- fetch ad
    a <- gets rA
    set $ op a v

modIns op a = fetch a >>= op >>= store a
modAccIns op = gets rA >>= op >>= \v -> modify $ \s -> s { rA = v }

stIns b op = modify $ \s -> s { rP = op (rP s) b }

jump a = modify $ \s -> s { rPC = a }
brIns b t = do
    a <- aRel
    p <- gets rP
    when (testBit p b == t) $ jump a

adcOp a b cIn = (cOut, v, s)
  where
    h = b + (if cIn then 1 else 0)
    s = a + h
    cOut = h < b || s < a
    v = testBit (a `xor` s .&. b `xor` s) 7
sbcOp a b cIn = adcOp a (complement b) cIn
carryOp f = gets rP >>= setACZVN . f . flip testBit bitC

cmpOp a b = (a >= b, a - b)

shiftOp shifter isRot inBit outBit v = do
    s <- get
    let newC = testBit v outBit
        bitIn = toBit inBit $ isRot && testBit (rP s) bitC
        v' = bitIn $ shifter v 1
    put s { rP = toBit bitC newC $ toZN v' $ rP s }
    return v'

vector a = fetchIndirectAddr a >>= jump

interrupt isBrk pcOffset a = do
    gets rPC >>= pushAddr . flip index pcOffset
    pushP isBrk
    iSEI
    vector a

reset = vector $ toAd 0xFFFC
nmi = interrupt False 0 $ toAd 0xFFFA
irq = interrupt False 0 $ toAd 0xFFFE

[iORA,iAND,iEOR]=aluIns setAZN<$>[(.|.),(.&.),xor]
[iADC,iSBC]=aluIns carryOp<$>[adcOp,sbcOp]
iSTA=storeIns$gets rA
iLDA=loadIns setAZN
iCMP=aluIns setCZN cmpOp

[iSTX,iSTY]=storeIns.gets<$>[rX,rY]
[iLDX,iLDY]=loadIns<$>[setXZN,setYZN]
[iCPX,iCPY]=(\r a->gets r>>= \v->fetch a>>=setCZN.cmpOp v)<$>[rX,rY]
[iDEC,iINC]=modIns.(\i v->setZN(v+i)>>return(v+i))<$>[-1,1]
[iDEX,iINX]=(gets rX>>=).(setXZN.).(+)<$>[-1,1]
[iDEY,iINY]=(gets rY>>=).(setYZN.).(+)<$>[-1,1]

shOps=[shiftOp d r b(7-b)|(d,b)<-[(shiftL,0),(shiftR,7)],r<-[False,True]]
[iASL,iROL,iLSR,iROR]=modIns<$>shOps
[iASLa,iROLa,iLSRa,iRORa]=modAccIns<$>shOps

iBIT=aluIns setZVNbit(,)
iJMP=jump

[iBPL,iBMI,iBVC,iBVS,iBCC,iBCS,iBNE,iBEQ]=brIns<$>[bitN,bitV,bitC,bitZ]<*>[False,True]
[iCLC,iSEC,iCLI,iSEI,iCLV,_,iCLD,iSED]=stIns<$>[bitC,bitI,bitV,bitD]<*>[clearBit,setBit]

iBRK=interrupt True 1 $ toAd 0xFFFE
iJSR a=gets rPC>>=pushAddr.(-1+)>>jump a
iRTI=iPLP>>pullAddr>>=jump
iRTS=pullAddr>>=jump.(1+)

iPHP=pushP True
iPLP=pullP
iPHA=gets rA>>=push
iPLA=pull>>=setAZN

iNOP=return ()

[iTAX,iTAY]=(gets rA>>=)<$>[setXZN,setYZN]
[iTXA,iTYA]=(>>=setAZN).gets<$>[rX,rY]
iTXS=modify $ \s -> s { rS=rX s }
iTSX=gets rS>>=setXZN

iErr=gets rPC>>=jump.(-1+)

executeOne = clearBus >> fetchPC >>= (decode V.!) . fromIntegral
{- === END OF CPU === -}


{- === MOTHERBOARD === -}
buildMemory rom =
    loadRAM 0xF0 1 $ loadRAM 0x00 ramSize $ loadROM romStart rom $ emptyMemory
  where
    ramSize = 256 - (B.length rom `div` 256)
    romStart = fromIntegral ramSize

    loadRAM p0 n = (V.// zip [p0..] (map RAM $ replicate n ramPage))
    ramPage = VU.replicate 256 0

    loadROM p0 bs = (V.// zip [p0..] (map ROM $ romPages bs))
    romPages b = case B.length b of
        l | l == 0    -> []
          | l < 256   -> [b `B.append` B.replicate (256 - l) 0]
          | l == 256  -> [b]
          | otherwise -> let (b0,bn) = B.splitAt 256 b in b0 : romPages bn

main = getArgs >>= go
  where
    go [romFile] = B.readFile romFile >>= exec . buildState . buildMemory
    go _ = putStrLn "agument should be a single ROM file"

    buildState m = execState reset (powerOnState { mem = m })

    exec s0 = do
        stopIO <- startIO
        loop (0 :: Int) s0
        stopIO

    loop n s = do
        let pcsp = (rPC s, rS s)
        (n',s') <- processIO n (execState executeOne s)
        let pcsp' = (rPC s', rS s')
        if pcsp /= pcsp'
            then (loop $! n') $! s'
            else do
                putStrLn $ "Execution snagged at " ++ show (fst pcsp')

    startIO = do
        ibuf <- hGetBuffering stdin
        obuf <- hGetBuffering stdout
        iecho <- hGetEcho stdin
        hSetBuffering stdin NoBuffering
        hSetBuffering stdout NoBuffering
        hSetEcho stdin False
        return $ do
            hSetEcho stdin iecho
            hSetBuffering stdin ibuf
            hSetBuffering stdout obuf
            putStr "\n\n"

    processIO n s = do
        when (busW s == Just outPortAddr) $ do
            let c = fetchByte outPortAddr $ mem s
            when (c /= 0) $ hPutChar stdout $ toEnum $ fromIntegral c
        if (busR s == Just inPortAddr)
            then do
                r <- if n < 16
                        then hWaitForInput stdin 50
                        else hReady stdin
                c <- if r then (fromIntegral . fromEnum) <$> hGetChar stdin else return 0
                let c' = if c == 0xA then 0xD else c
                let s' = s { mem = storeByte inPortAddr c' $ mem s }
                return (0,s')
            else return (n+1,s)

    inPortAddr = toAd 0xF004
    outPortAddr = toAd 0xF001

5
Buon lavoro! Molto piccolo. Non conosco Haskell, forse dovrei imparare. Adoro il fatto che siano 6502 personaggi. :)
Mike C

6

For anyone interested I thought I would share my implementation of the 6502 in C#. As with other posts here it is completely ungolfed but is a feature complete implementation.

  • Supports NMOS and CMOS
  • Includes several test programs including the AllSuite test above as Unit Tests.
  • Supports BCD

Ho iniziato questo progetto creando un foglio di calcolo di istruzioni quando ho iniziato a conoscere la CPU. Mi sono reso conto che avrei potuto usare questo foglio di calcolo per salvarmi un po 'di battitura. Ho trasformato questo in una tabella di file di testo che l'emulatore carica per aiutare i cicli di conteggio e per l'output di smontaggio facile.

L'intero progetto è disponibile su Github https://github.com/amensch/e6502

/*
 * e6502: A complete 6502 CPU emulator.
 * Copyright 2016 Adam Mensch
 */

using System;

namespace e6502CPU
{
    public enum e6502Type
    {
        CMOS,
        NMOS
    };

    public class e6502
    {
        // Main Register
        public byte A;

        // Index Registers
        public byte X;
        public byte Y;

        // Program Counter
        public ushort PC;

        // Stack Pointer
        // Memory location is hard coded to 0x01xx
        // Stack is descending (decrement on push, increment on pop)
        // 6502 is an empty stack so SP points to where next value is stored
        public byte SP;

        // Status Registers (in order bit 7 to 0)
        public bool NF;    // negative flag (N)
        public bool VF;    // overflow flag (V)
                           // bit 5 is unused
                           // bit 4 is the break flag however it is not a physical flag in the CPU
        public bool DF;    // binary coded decimal flag (D)
        public bool IF;    // interrupt flag (I)
        public bool ZF;    // zero flag (Z)
        public bool CF;    // carry flag (C)

        // RAM - 16 bit address bus means 64KB of addressable memory
        public byte[] memory;

        // List of op codes and their attributes
        private OpCodeTable _opCodeTable;

        // The current opcode
        private OpCodeRecord _currentOP;

        // Clock cycles to adjust due to page boundaries being crossed, branches taken, or NMOS/CMOS differences
        private int _extraCycles;

        // Flag for hardware interrupt (IRQ)
        public bool IRQWaiting { get; set; }

        // Flag for non maskable interrupt (NMI)
        public bool NMIWaiting { get; set; }

        public e6502Type _cpuType { get; set; }

        public e6502(e6502Type type)
        {
            memory = new byte[0x10000];
            _opCodeTable = new OpCodeTable();

            // Set these on instantiation so they are known values when using this object in testing.
            // Real programs should explicitly load these values before using them.
            A = 0;
            X = 0;
            Y = 0;
            SP = 0;
            PC = 0;
            NF = false;
            VF = false;
            DF = false;
            IF = true;
            ZF = false;
            CF = false;
            NMIWaiting = false;
            IRQWaiting = false;
            _cpuType = type;
        }

        public void Boot()
        {
            // On reset the addresses 0xfffc and 0xfffd are read and PC is loaded with this value.
            // It is expected that the initial program loaded will have these values set to something.
            // Most 6502 systems contain ROM in the upper region (around 0xe000-0xffff)
            PC = GetWordFromMemory(0xfffc);

            // interrupt disabled is set on powerup
            IF = true;

            NMIWaiting = false;
            IRQWaiting = false;
        }

        public void LoadProgram(ushort startingAddress, byte[] program)
        {
            program.CopyTo(memory, startingAddress);
            PC = startingAddress;
        }

        public string DasmNextInstruction()
        {
            OpCodeRecord oprec = _opCodeTable.OpCodes[ memory[PC] ];
            if (oprec.Bytes == 3)
                return oprec.Dasm( GetImmWord() );
            else
                return oprec.Dasm( GetImmByte() );
        }

        // returns # of clock cycles needed to execute the instruction
        public int ExecuteNext()
        {
            _extraCycles = 0;

            // Check for non maskable interrupt (has higher priority over IRQ)
            if (NMIWaiting)
            {
                DoIRQ(0xfffa);
                NMIWaiting = false;
                _extraCycles += 6;
            }
            // Check for hardware interrupt, if enabled
            else if (!IF)
            {
                if(IRQWaiting)
                {
                    DoIRQ(0xfffe);
                    IRQWaiting = false;
                    _extraCycles += 6;
                }
            }

            _currentOP = _opCodeTable.OpCodes[memory[PC]];

            ExecuteInstruction();

            return _currentOP.Cycles + _extraCycles;
        }

        private void ExecuteInstruction()
        {
            int result;
            int oper = GetOperand(_currentOP.AddressMode);

            switch (_currentOP.OpCode)
            {
                // ADC - add memory to accumulator with carry
                // A+M+C -> A,C (NZCV)
                case 0x61:
                case 0x65:
                case 0x69:
                case 0x6d:
                case 0x71:
                case 0x72:
                case 0x75:
                case 0x79:
                case 0x7d:

                    if (DF)
                    {
                        result = HexToBCD(A) + HexToBCD((byte)oper);
                        if (CF) result++;

                        CF = (result > 99);

                        if (result > 99 )
                        {
                            result -= 100;
                        }
                        ZF = (result == 0);

                        // convert decimal result to hex BCD result
                        A = BCDToHex(result);

                        // Unlike ZF and CF, the NF flag represents the MSB after conversion
                        // to BCD.
                        NF = (A > 0x7f);

                        // extra clock cycle on CMOS in decimal mode
                        if (_cpuType == e6502Type.CMOS)
                            _extraCycles++;
                    }
                    else
                    {
                        ADC((byte)oper);
                    }
                    PC += _currentOP.Bytes;
                    break;

                // AND - and memory with accumulator
                // A AND M -> A (NZ)
                case 0x21:
                case 0x25:
                case 0x29:
                case 0x2d:
                case 0x31:
                case 0x32:
                case 0x35:
                case 0x39:
                case 0x3d:
                    result = A & oper;

                    NF = ((result & 0x80) == 0x80);
                    ZF = ((result & 0xff) == 0x00);

                    A = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // ASL - shift left one bit (NZC)
                // C <- (76543210) <- 0

                case 0x06:
                case 0x16:
                case 0x0a:
                case 0x0e:
                case 0x1e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x1e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // shift bit 7 into carry
                    CF = (oper >= 0x80);

                    // shift operand
                    result = oper << 1;

                    NF = ((result & 0x80) == 0x80);
                    ZF = ((result & 0xff) == 0x00);

                    SaveOperand(_currentOP.AddressMode, result);
                    PC += _currentOP.Bytes;

                    break;

                // BBRx - test bit in memory (no flags)
                // Test the zero page location and branch of the specified bit is clear
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                // Number of clock cycles is the same regardless if the branch is taken.
                case 0x0f:
                case 0x1f:
                case 0x2f:
                case 0x3f:
                case 0x4f:
                case 0x5f:
                case 0x6f:
                case 0x7f:

                    // upper nibble specifies the bit to check
                    byte check_bit = (byte)(_currentOP.OpCode >> 4);
                    byte check_value = 0x01;
                    for( int ii=0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }

                    // if the specified bit is 0 then branch
                    byte offset = memory[PC + 2];
                    PC += _currentOP.Bytes;

                    if ((oper & check_value) == 0x00)
                        PC += offset;

                    break;

                // BBSx - test bit in memory (no flags)
                // Test the zero page location and branch of the specified bit is set
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                // Number of clock cycles is the same regardless if the branch is taken.
                case 0x8f:
                case 0x9f:
                case 0xaf:
                case 0xbf:
                case 0xcf:
                case 0xdf:
                case 0xef:
                case 0xff:

                    // upper nibble specifies the bit to check (but ignore bit 7)
                    check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4);
                    check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }

                    // if the specified bit is 1 then branch
                    offset = memory[PC + 2];
                    PC += _currentOP.Bytes;

                    if ((oper & check_value) == check_value)
                        PC += offset;

                    break;

                // BCC - branch on carry clear
                case 0x90:
                    PC += _currentOP.Bytes;
                    CheckBranch(!CF, oper);
                    break;

                // BCS - branch on carry set
                case 0xb0:
                    PC += _currentOP.Bytes;
                    CheckBranch(CF, oper);
                    break;

                // BEQ - branch on zero
                case 0xf0:
                    PC += _currentOP.Bytes;
                    CheckBranch(ZF, oper);
                    break;

                // BIT - test bits in memory with accumulator (NZV)
                // bits 7 and 6 of oper are transferred to bits 7 and 6 of conditional register (N and V)
                // the zero flag is set to the result of oper AND accumulator
                case 0x24:
                case 0x2c:
                // added by 65C02
                case 0x34:
                case 0x3c:
                case 0x89:
                    result = A & oper;

                    // The WDC programming manual for 65C02 indicates NV are unaffected in immediate mode.
                    // The extended op code test program reflects this.
                    if (_currentOP.AddressMode != AddressModes.Immediate)
                    {
                        NF = ((oper & 0x80) == 0x80);
                        VF = ((oper & 0x40) == 0x40);
                    }

                    ZF = ((result & 0xff) == 0x00);

                    PC += _currentOP.Bytes;
                    break;

                // BMI - branch on negative
                case 0x30:
                    PC += _currentOP.Bytes;
                    CheckBranch(NF, oper);
                    break;

                // BNE - branch on non zero
                case 0xd0:
                    PC += _currentOP.Bytes;
                    CheckBranch(!ZF, oper);
                    break;

                // BPL - branch on non negative
                case 0x10:
                    PC += _currentOP.Bytes;
                    CheckBranch(!NF, oper);
                    break;

                // BRA - unconditional branch to immediate address
                // NOTE: In OpcodeList.txt the number of clock cycles is one less than the documentation.
                // This is because CheckBranch() adds one when a branch is taken, which in this case is always.
                case 0x80:
                    PC += _currentOP.Bytes;
                    CheckBranch(true, oper);
                    break;

                // BRK - force break (I)
                case 0x00:

                    // This is a software interrupt (IRQ).  These events happen in a specific order.

                    // Processor adds two to the current PC
                    PC += 2;

                    // Call IRQ routine
                    DoIRQ(0xfffe, true);

                    // Whether or not the decimal flag is cleared depends on the type of 6502 CPU.
                    // The CMOS 65C02 clears this flag but the NMOS 6502 does not.
                    if( _cpuType == e6502Type.CMOS )
                        DF = false;

                    break;
                // BVC - branch on overflow clear
                case 0x50:
                    PC += _currentOP.Bytes;
                    CheckBranch(!VF, oper);
                    break;

                // BVS - branch on overflow set
                case 0x70:
                    PC += _currentOP.Bytes;
                    CheckBranch(VF, oper);
                    break;

                // CLC - clear carry flag
                case 0x18:
                    CF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLD - clear decimal mode
                case 0xd8:
                    DF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLI - clear interrupt disable bit
                case 0x58:
                    IF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CLV - clear overflow flag
                case 0xb8:
                    VF = false;
                    PC += _currentOP.Bytes;
                    break;

                // CMP - compare memory with accumulator (NZC)
                // CMP, CPX and CPY are unsigned comparisions
                case 0xc5:
                case 0xc9:
                case 0xc1:
                case 0xcd:
                case 0xd1:
                case 0xd2:
                case 0xd5:
                case 0xd9:
                case 0xdd:

                    byte temp = (byte)(A - oper);

                    CF = A >= (byte)oper;
                    ZF = A == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // CPX - compare memory and X (NZC)
                case 0xe0:
                case 0xe4:
                case 0xec:
                    temp = (byte)(X - oper);

                    CF = X >= (byte)oper;
                    ZF = X == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // CPY - compare memory and Y (NZC)
                case 0xc0:
                case 0xc4:
                case 0xcc:
                    temp = (byte)(Y - oper);

                    CF = Y >= (byte)oper;
                    ZF = Y == (byte)oper;
                    NF = ((temp & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // DEC - decrement memory by 1 (NZ)
                case 0xc6:
                case 0xce:
                case 0xd6:
                case 0xde:
                // added by 65C02
                case 0x3a:
                    result = oper - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // DEX - decrement X by one (NZ)
                case 0xca:
                    result = X - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    X = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // DEY - decrement Y by one (NZ)
                case 0x88:
                    result = Y - 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    Y = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // EOR - XOR memory with accumulator (NZ)
                case 0x41:
                case 0x45:
                case 0x49:
                case 0x4d:
                case 0x51:
                case 0x52:
                case 0x55:
                case 0x59:
                case 0x5d:
                    result = A ^ (byte)oper;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    A = (byte)result;

                    PC += _currentOP.Bytes;
                    break;

                // INC - increment memory by 1 (NZ)
                case 0xe6:
                case 0xee:
                case 0xf6:
                case 0xfe:
                // added by 65C02
                case 0x1a:
                    result = oper + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // INX - increment X by one (NZ)
                case 0xe8:
                    result = X + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    X = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // INY - increment Y by one (NZ)
                case 0xc8:
                    result = Y + 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    Y = (byte)result;
                    PC += _currentOP.Bytes;
                    break;

                // JMP - jump to new location (two byte immediate)
                case 0x4c:
                case 0x6c:
                // added for 65C02
                case 0x7c:

                    if (_currentOP.AddressMode == AddressModes.Absolute)
                    {
                        PC = GetImmWord();
                    }
                    else if (_currentOP.AddressMode == AddressModes.Indirect)
                    {
                        PC = (ushort)(GetWordFromMemory(GetImmWord()));
                    }
                    else if( _currentOP.AddressMode == AddressModes.AbsoluteX)
                    {
                        PC = GetWordFromMemory((GetImmWord() + X));
                    }
                    else
                    {
                        throw new InvalidOperationException("This address mode is invalid with the JMP instruction");
                    }

                    // CMOS fixes a bug in this op code which results in an extra clock cycle
                    if (_currentOP.OpCode == 0x6c && _cpuType == e6502Type.CMOS)
                        _extraCycles++;
                    break;

                // JSR - jump to new location and save return address
                case 0x20:
                    // documentation says push PC+2 even though this is a 3 byte instruction
                    // When pulled via RTS 1 is added to the result
                    Push((ushort)(PC+2));  
                    PC = GetImmWord();
                    break;

                // LDA - load accumulator with memory (NZ)
                case 0xa1:
                case 0xa5:
                case 0xa9:
                case 0xad:
                case 0xb1:
                case 0xb2:
                case 0xb5:
                case 0xb9:
                case 0xbd:
                    A = (byte)oper;

                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // LDX - load index X with memory (NZ)
                case 0xa2:
                case 0xa6:
                case 0xae:
                case 0xb6:
                case 0xbe:
                    X = (byte)oper;

                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;

                // LDY - load index Y with memory (NZ)
                case 0xa0:
                case 0xa4:
                case 0xac:
                case 0xb4:
                case 0xbc:
                    Y = (byte)oper;

                    ZF = ((Y & 0xff) == 0x00);
                    NF = ((Y & 0x80) == 0x80);

                    PC += _currentOP.Bytes;
                    break;


                // LSR - shift right one bit (NZC)
                // 0 -> (76543210) -> C
                case 0x46:
                case 0x4a:
                case 0x4e:
                case 0x56:
                case 0x5e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x5e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // shift bit 0 into carry
                    CF = ((oper & 0x01) == 0x01);

                    // shift operand
                    result = oper >> 1;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // NOP - no operation
                case 0xea:
                    PC += _currentOP.Bytes;
                    break;

                // ORA - OR memory with accumulator (NZ)
                case 0x01:
                case 0x05:
                case 0x09:
                case 0x0d:
                case 0x11:
                case 0x12:
                case 0x15:
                case 0x19:
                case 0x1d:
                    result = A | (byte)oper;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);

                    A = (byte)result;

                    PC += _currentOP.Bytes;
                    break;

                // PHA - push accumulator on stack
                case 0x48:
                    Push(A);
                    PC += _currentOP.Bytes;
                    break;

                // PHP - push processor status on stack
                case 0x08:
                    int sr = 0x00;

                    if (NF) sr = sr | 0x80;
                    if (VF) sr = sr | 0x40;
                    sr = sr | 0x20; // bit 5 is always 1
                    sr = sr | 0x10; // bit 4 is always 1 for PHP
                    if (DF) sr = sr | 0x08;
                    if (IF) sr = sr | 0x04;
                    if (ZF) sr = sr | 0x02;
                    if (CF) sr = sr | 0x01;

                    Push((byte)sr);
                    PC += _currentOP.Bytes;
                    break;

                // PHX - push X on stack
                case 0xda:
                    Push(X);
                    PC += _currentOP.Bytes;
                    break;

                // PHY - push Y on stack
                case 0x5a:
                    Push(Y);
                    PC += _currentOP.Bytes;
                    break;

                // PLA - pull accumulator from stack (NZ)
                case 0x68:
                    A = PopByte();
                    NF = (A & 0x80) == 0x80;
                    ZF = (A & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // PLP - pull status from stack
                case 0x28:
                    sr = PopByte();

                    NF = (sr & 0x80) == 0x80;
                    VF = (sr & 0x40) == 0x40;
                    DF = (sr & 0x08) == 0x08;
                    IF = (sr & 0x04) == 0x04;
                    ZF = (sr & 0x02) == 0x02;
                    CF = (sr & 0x01) == 0x01;
                    PC += _currentOP.Bytes;
                    break;

                // PLX - pull X from stack (NZ)
                case 0xfa:
                    X = PopByte();
                    NF = (X & 0x80) == 0x80;
                    ZF = (X & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // PLY - pull Y from stack (NZ)
                case 0x7a:
                    Y = PopByte();
                    NF = (Y & 0x80) == 0x80;
                    ZF = (Y & 0xff) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // RMBx - clear bit in memory (no flags)
                // Clear the zero page location of the specified bit
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                case 0x07:
                case 0x17:
                case 0x27:
                case 0x37:
                case 0x47:
                case 0x57:
                case 0x67:
                case 0x77:

                    // upper nibble specifies the bit to check
                     check_bit = (byte)(_currentOP.OpCode >> 4);
                     check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }
                    check_value = (byte)~check_value;
                    SaveOperand(_currentOP.AddressMode, oper & check_value);
                    PC += _currentOP.Bytes;
                    break;

                // SMBx - set bit in memory (no flags)
                // Set the zero page location of the specified bit
                // These instructions are only available on Rockwell and WDC 65C02 chips.
                case 0x87:
                case 0x97:
                case 0xa7:
                case 0xb7:
                case 0xc7:
                case 0xd7:
                case 0xe7:
                case 0xf7:

                    // upper nibble specifies the bit to check (but ignore bit 7)
                    check_bit = (byte)((_currentOP.OpCode & 0x70) >> 4);
                    check_value = 0x01;
                    for (int ii = 0; ii < check_bit; ii++)
                    {
                        check_value = (byte)(check_value << 1);
                    }
                    SaveOperand(_currentOP.AddressMode, oper | check_value);
                    PC += _currentOP.Bytes;
                    break;

                // ROL - rotate left one bit (NZC)
                // C <- 76543210 <- C
                case 0x26:
                case 0x2a:
                case 0x2e:
                case 0x36:
                case 0x3e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x3e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // perserve existing cf value
                    bool old_cf = CF;

                    // shift bit 7 into carry flag
                    CF = (oper >= 0x80);

                    // shift operand
                    result = oper << 1;

                    // old carry flag goes to bit zero
                    if (old_cf) result = result | 0x01;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);
                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // ROR - rotate right one bit (NZC)
                // C -> 76543210 -> C
                case 0x66:
                case 0x6a:
                case 0x6e:
                case 0x76:
                case 0x7e:

                    // On 65C02 (abs,X) takes one less clock cycle (but still add back 1 if page boundary crossed)
                    if (_currentOP.OpCode == 0x7e && _cpuType == e6502Type.CMOS)
                        _extraCycles--;

                    // perserve existing cf value
                    old_cf = CF;

                    // shift bit 0 into carry flag
                    CF = (oper & 0x01) == 0x01;

                    // shift operand
                    result = oper >> 1;

                    // old carry flag goes to bit 7
                    if (old_cf) result = result | 0x80;

                    ZF = ((result & 0xff) == 0x00);
                    NF = ((result & 0x80) == 0x80);
                    SaveOperand(_currentOP.AddressMode, result);

                    PC += _currentOP.Bytes;
                    break;

                // RTI - return from interrupt
                case 0x40:
                    // pull SR
                    sr = PopByte();

                    NF = (sr & 0x80) == 0x80;
                    VF = (sr & 0x40) == 0x40;
                    DF = (sr & 0x08) == 0x08;
                    IF = (sr & 0x04) == 0x04;
                    ZF = (sr & 0x02) == 0x02;
                    CF = (sr & 0x01) == 0x01;

                    // pull PC
                    PC = PopWord();

                    break;

                // RTS - return from subroutine
                case 0x60:
                    PC = (ushort)(PopWord() + 1);
                    break;

                // SBC - subtract memory from accumulator with borrow (NZCV)
                // A-M-C -> A (NZCV)
                case 0xe1:
                case 0xe5:
                case 0xe9:
                case 0xed:
                case 0xf1:
                case 0xf2:
                case 0xf5:
                case 0xf9:
                case 0xfd:

                    if (DF)
                    {
                        result = HexToBCD(A) - HexToBCD((byte)oper);
                        if (!CF) result--;

                        CF = (result >= 0);

                        // BCD numbers wrap around when subtraction is negative
                        if (result < 0)
                            result += 100;
                        ZF = (result == 0);

                        A = BCDToHex(result);

                        // Unlike ZF and CF, the NF flag represents the MSB after conversion
                        // to BCD.
                        NF = (A > 0x7f);

                        // extra clock cycle on CMOS in decimal mode
                        if (_cpuType == e6502Type.CMOS)
                            _extraCycles++;
                    }
                    else
                    {
                        ADC((byte)~oper);
                    }
                    PC += _currentOP.Bytes;

                    break;

                // SEC - set carry flag
                case 0x38:
                    CF = true;
                    PC += _currentOP.Bytes;
                    break;

                // SED - set decimal mode
                case 0xf8:
                    DF = true;
                    PC += _currentOP.Bytes;
                    break;

                // SEI - set interrupt disable bit
                case 0x78:
                    IF = true;
                    PC += _currentOP.Bytes;
                    break;

                // STA - store accumulator in memory
                case 0x81:
                case 0x85:
                case 0x8d:
                case 0x91:
                case 0x92:
                case 0x95:
                case 0x99:
                case 0x9d:
                    SaveOperand(_currentOP.AddressMode, A);
                    PC += _currentOP.Bytes;
                    break;

                // STX - store X in memory
                case 0x86:
                case 0x8e:
                case 0x96:
                    SaveOperand(_currentOP.AddressMode, X);
                    PC += _currentOP.Bytes;
                    break;

                // STY - store Y in memory
                case 0x84:
                case 0x8c:
                case 0x94:
                    SaveOperand(_currentOP.AddressMode, Y);
                    PC += _currentOP.Bytes;
                    break;

                // STZ - Store zero
                case 0x64:
                case 0x74:
                case 0x9c:
                case 0x9e:
                    SaveOperand(_currentOP.AddressMode, 0);
                    PC += _currentOP.Bytes;
                    break;

                // TAX - transfer accumulator to X (NZ)
                case 0xaa:
                    X = A;
                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TAY - transfer accumulator to Y (NZ)
                case 0xa8:
                    Y = A;
                    ZF = ((Y & 0xff) == 0x00);
                    NF = ((Y & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TRB - test and reset bits (Z)
                // Perform bitwise AND between accumulator and contents of memory
                case 0x14:
                case 0x1c:
                    SaveOperand(_currentOP.AddressMode, ~A & oper);
                    ZF = (A & oper) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // TSB - test and set bits (Z)
                // Perform bitwise AND between accumulator and contents of memory
                case 0x04:
                case 0x0c:
                    SaveOperand(_currentOP.AddressMode, A | oper);
                    ZF = (A & oper) == 0x00;
                    PC += _currentOP.Bytes;
                    break;

                // TSX - transfer SP to X (NZ)
                case 0xba:
                    X = SP;
                    ZF = ((X & 0xff) == 0x00);
                    NF = ((X & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TXA - transfer X to A (NZ)
                case 0x8a:
                    A = X;
                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // TXS - transfer X to SP (no flags -- some online docs are incorrect)
                case 0x9a:
                    SP = X;
                    PC += _currentOP.Bytes;
                    break;

                // TYA - transfer Y to A (NZ)
                case 0x98:
                    A = Y;
                    ZF = ((A & 0xff) == 0x00);
                    NF = ((A & 0x80) == 0x80);
                    PC += _currentOP.Bytes;
                    break;

                // The original 6502 has undocumented and erratic behavior if
                // undocumented op codes are invoked.  The 65C02 on the other hand
                // are guaranteed to be NOPs although they vary in number of bytes
                // and cycle counts.  These NOPs are listed in the OpcodeList.txt file
                // so the proper number of clock cycles are used.
                //
                // Instructions STP (0xdb) and WAI (0xcb) will reach this case.
                // For now these are treated as a NOP.
                default:
                    PC += _currentOP.Bytes;
                    break;
            }
        }

        private int GetOperand(AddressModes mode)
        {
            int oper = 0;
            switch (mode)
            {
                // Accumulator mode uses the value in the accumulator
                case AddressModes.Accumulator:
                    oper = A;
                    break;

                // Retrieves the byte at the specified memory location
                case AddressModes.Absolute:             
                    oper = memory[ GetImmWord() ];
                    break;

                // Indexed absolute retrieves the byte at the specified memory location
                case AddressModes.AbsoluteX:

                    ushort imm = GetImmWord();
                    ushort result = (ushort)(imm + X);

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1;
                    }
                    oper = memory[ result ];
                    break;
                case AddressModes.AbsoluteY:
                    imm = GetImmWord();
                    result = (ushort)(imm + Y);

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((imm & 0xff00) != (result & 0xff00)) _extraCycles += 1;
                    }
                    oper = memory[result]; break;

                // Immediate mode uses the next byte in the instruction directly.
                case AddressModes.Immediate:
                    oper = GetImmByte();
                    break;

                // Implied or Implicit are single byte instructions that do not use
                // the next bytes for the operand.
                case AddressModes.Implied:
                    break;

                // Indirect mode uses the absolute address to get another address.
                // The immediate word is a memory location from which to retrieve
                // the 16 bit operand.
                case AddressModes.Indirect:
                    oper = GetWordFromMemory(GetImmWord());
                    break;

                // The indexed indirect modes uses the immediate byte rather than the
                // immediate word to get the memory location from which to retrieve
                // the 16 bit operand.  This is a combination of ZeroPage indexed and Indirect.
                case AddressModes.XIndirect:

                    /*
                     * 1) fetch immediate byte
                     * 2) add X to the byte
                     * 3) obtain word from this zero page address
                     * 4) return the byte located at the address specified by the word
                     */

                    oper = memory[GetWordFromMemory( (byte)(GetImmByte() + X))];
                    break;

                // The Indirect Indexed works a bit differently than above.
                // The Y register is added *after* the deferencing instead of before.
                case AddressModes.IndirectY:

                    /*
                        1) Fetch the address (word) at the immediate zero page location
                        2) Add Y to obtain the final target address
                        3)Load the byte at this address
                    */

                    ushort addr = GetWordFromMemory(GetImmByte());
                    oper = memory[addr + Y];

                    if (_currentOP.CheckPageBoundary)
                    {
                        if ((oper & 0xff00) != (addr & 0xff00)) _extraCycles++;
                    }
                    break;


                // Relative is used for branching, the immediate value is a
                // signed 8 bit value and used to offset the current PC.
                case AddressModes.Relative:
                    oper = SignExtend(GetImmByte());
                    break;

                // Zero Page mode is a fast way of accessing the first 256 bytes of memory.
                // Best programming practice is to place your variables in 0x00-0xff.
                // Retrieve the byte at the indicated memory location.
                case AddressModes.ZeroPage:
                    oper = memory[GetImmByte()];
                    break;
                case AddressModes.ZeroPageX:
                    oper = memory[(GetImmByte() + X) & 0xff];
                    break;
                case AddressModes.ZeroPageY:
                    oper = memory[(GetImmByte() + Y) & 0xff];
                    break;

                // this mode is from the 65C02 extended set
                // works like ZeroPageY when Y=0
                case AddressModes.ZeroPage0:
                    oper = memory[GetWordFromMemory((GetImmByte()) & 0xff)];
                    break;

                // for this mode do the same thing as ZeroPage
                case AddressModes.BranchExt:
                    oper = memory[GetImmByte()];
                    break;
                default:
                    break;
            }
            return oper;
        }

        private void SaveOperand(AddressModes mode, int data)
        {
            switch (mode)
            {
                // Accumulator mode uses the value in the accumulator
                case AddressModes.Accumulator:
                    A = (byte)data;
                    break;

                // Absolute mode retrieves the byte at the indicated memory location
                case AddressModes.Absolute:
                    memory[GetImmWord()] = (byte)data;
                    break;
                case AddressModes.AbsoluteX:
                    memory[GetImmWord() + X] = (byte)data;
                    break;
                case AddressModes.AbsoluteY:
                    memory[GetImmWord() + Y] = (byte)data;
                    break;

                // Immediate mode uses the next byte in the instruction directly.
                case AddressModes.Immediate:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Implied or Implicit are single byte instructions that do not use
                // the next bytes for the operand.
                case AddressModes.Implied:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Indirect mode uses the absolute address to get another address.
                // The immediate word is a memory location from which to retrieve
                // the 16 bit operand.
                case AddressModes.Indirect:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // The indexed indirect modes uses the immediate byte rather than the
                // immediate word to get the memory location from which to retrieve
                // the 16 bit operand.  This is a combination of ZeroPage indexed and Indirect.
                case AddressModes.XIndirect:
                    memory[GetWordFromMemory((byte)(GetImmByte() + X))] = (byte)data;
                    break;

                // The Indirect Indexed works a bit differently than above.
                // The Y register is added *after* the deferencing instead of before.
                case AddressModes.IndirectY:
                    memory[GetWordFromMemory(GetImmByte()) + Y] = (byte)data;
                    break;

                // Relative is used for branching, the immediate value is a
                // signed 8 bit value and used to offset the current PC.
                case AddressModes.Relative:
                    throw new InvalidOperationException("Address mode " + mode.ToString() + " is not valid for this operation");

                // Zero Page mode is a fast way of accessing the first 256 bytes of memory.
                // Best programming practice is to place your variables in 0x00-0xff.
                // Retrieve the byte at the indicated memory location.
                case AddressModes.ZeroPage:
                    memory[GetImmByte()] = (byte)data;
                    break;
                case AddressModes.ZeroPageX:
                    memory[(GetImmByte() + X) & 0xff] = (byte)data;
                    break;
                case AddressModes.ZeroPageY:
                    memory[(GetImmByte() + Y) & 0xff] = (byte)data;
                    break;
                case AddressModes.ZeroPage0:
                    memory[GetWordFromMemory((GetImmByte()) & 0xff)] = (byte)data;
                    break;

                // for this mode do the same thing as ZeroPage
                case AddressModes.BranchExt:
                    memory[GetImmByte()] = (byte)data;
                    break;

                default:
                    break;
            }
        }

        private ushort GetWordFromMemory(int address)
        {
            return (ushort)((memory[address + 1] << 8 | memory[address]) & 0xffff);
        }

        private ushort GetImmWord()
        {
            return (ushort)((memory[PC + 2] << 8 | memory[PC + 1]) & 0xffff);
        }

        private byte GetImmByte()
        {
            return memory[PC + 1];
        }

        private int SignExtend(int num)
        {
            if (num < 0x80)
                return num;
            else
                return (0xff << 8 | num) & 0xffff;
        }

        private void Push(byte data)
        {
            memory[(0x0100 | SP)] = data;
            SP--;
        }

        private void Push(ushort data)
        {
            // HI byte is in a higher address, LO byte is in the lower address
            memory[(0x0100 | SP)] = (byte)(data >> 8);
            memory[(0x0100 | (SP-1))] = (byte)(data & 0xff);
            SP -= 2;
        }

        private byte PopByte()
        {
            SP++;
            return memory[(0x0100 | SP)];
        }

        private ushort PopWord()
        {
            // HI byte is in a higher address, LO byte is in the lower address
            SP += 2;
            ushort idx = (ushort)(0x0100 | SP);
            return (ushort)((memory[idx] << 8 | memory[idx-1]) & 0xffff);
        }

        private void ADC(byte oper)
        {
            ushort answer = (ushort)(A + oper);
            if (CF) answer++;

            CF = (answer > 0xff);
            ZF = ((answer & 0xff) == 0x00);
            NF = (answer & 0x80) == 0x80;

            //ushort temp = (ushort)(~(A ^ oper) & (A ^ answer) & 0x80);
            VF = (~(A ^ oper) & (A ^ answer) & 0x80) != 0x00;

            A = (byte)answer;
        }

        private int HexToBCD(byte oper)
        {
            // validate input is valid packed BCD 
            if (oper > 0x99)
                throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2"));
            if ((oper & 0x0f) > 0x09)
                throw new InvalidOperationException("Invalid BCD number: " + oper.ToString("X2"));

            return ((oper >> 4) * 10) + (oper & 0x0f);
        }

        private byte BCDToHex(int result)
        {
            if (result > 0xff)
                throw new InvalidOperationException("Invalid BCD to hex number: " + result.ToString());

            if (result <= 9)
                return (byte)result;
            else
                return (byte)(((result / 10) << 4) + (result % 10));

        }

        private void DoIRQ(ushort vector)
        {
            DoIRQ(vector, false);
        }

        private void DoIRQ(ushort vector, bool isBRK)
        {
            // Push the MSB of the PC
            Push((byte)(PC >> 8));

            // Push the LSB of the PC
            Push((byte)(PC & 0xff));

            // Push the status register
            int sr = 0x00;
            if (NF) sr = sr | 0x80;
            if (VF) sr = sr | 0x40;

            sr = sr | 0x20;             // bit 5 is unused and always 1

            if(isBRK)
                sr = sr | 0x10;         // software interrupt (BRK) pushes B flag as 1
                                        // hardware interrupt pushes B flag as 0
            if (DF) sr = sr | 0x08;
            if (IF) sr = sr | 0x04;
            if (ZF) sr = sr | 0x02;
            if (CF) sr = sr | 0x01;

            Push((byte)sr);

            // set interrupt disable flag
            IF = true;

            // On 65C02, IRQ, NMI, and RESET also clear the D flag (but not on BRK) after pushing the status register.
            if (_cpuType == e6502Type.CMOS && !isBRK)
                DF = false;

            // load program counter with the interrupt vector
            PC = GetWordFromMemory(vector);
        }

        private void CheckBranch(bool flag, int oper)
        {
            if (flag)
            {
                // extra cycle on branch taken
                _extraCycles++;

                // extra cycle if branch destination is a different page than
                // the next instruction
                if ((PC & 0xff00) != ((PC + oper) & 0xff00))
                    _extraCycles++;

                PC += (ushort)oper;
            }

        }
    }
}

Nessuno ti ha dato il benvenuto a PPCG, credo che ne approfitterò. Questa è un'ottima prima risposta e spero di vederti in giro più spesso. Divertiti!
Stan Strum,

Grazie @StanStrum! Era un post di SE anni fa su un emulatore 8086 che mi ha interessato all'emulazione e all'apprendimento di come funzionavano effettivamente questi dispositivi. È stato molto divertente. Oltre a quanto sopra, ho un emulatore 8080 completo e uno 8086 che è fatto per circa il 90%.
Adam Mensch,

È fantastico, sono stato interessato a creare un emulatore e / o un linguaggio di programmazione di livello medio, ma non ho il tempo, la pazienza o l'intelletto per farlo
Stan Strum,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.