Genera un elenco congruente con la somma più piccola


24

Due liste Ae Bsono congruenti se hanno la stessa lunghezza, e gli elementi che confrontano uguale in Aconfronto uguale in B.

In altre parole, dati due indici validi xe y:

  • Se A[x] = A[y]allora B[x] = B[y].
  • Se A[x] != A[y]allora B[x] != B[y].

Ad esempio, le liste [1, 2, 1, 4, 5]e [0, 1, 0, 2, 3]sono congruenti.

L'obiettivo

Dato un elenco non vuoto di numeri interi non negativi A, restituisce un nuovo elenco di numeri interi non negativi a Bcui è congruente A, riducendo al minimo la somma dei numeri interi in B.

Vi sono potenzialmente molti possibili output validi. Ad esempio, nell'elenco [12, 700, 3], qualsiasi permutazione di [0, 1, 2]sarebbe considerata output valido.

Casi test

Format:
input ->
one possible valid output

[1 2 1 4 5] ->
[0 1 0 2 3] (this is the example given above)

[3 2 2 1 5 7 2] ->
[1 0 0 2 3 4 0]

[8 8 8 8 8] ->
[0 0 0 0 0]

[2] ->
[0]

[8 6 8 4 6 8 2 4 6 8 0 2 4 6 8] ->
[0 1 0 2 1 0 3 2 1 0 4 3 2 1 0]

[14 1] ->
[1 0]

[19 6 4 9 14 17 10 9 6 14 8 14 6 15] ->
[8 0 3 2 1 7 5 2 0 1 4 1 0 6]

[15] ->
[0]

[1 18 4 8 6 19 12 17 6 13 7 6 8 1 6] ->
[1 8 3 2 0 9 5 7 0 6 4 0 2 1 0]

[9 10 11 9 7 11 16 17 11 8 7] ->
[2 4 0 2 1 0 5 6 0 3 1]

[1 3 16 19 14] ->
[0 1 3 4 2]

[18 8] ->
[1 0]

[13 4 9 6] ->
[3 0 2 1]

[16 16 18 6 12 10 4 6] ->
[1 1 5 0 4 3 2 0]

[11 18] ->
[0 1]

[14 18 18 11 9 8 13 3 3 4] ->
[7 1 1 5 4 3 6 0 0 2]

[20 19 1 1 13] ->
[3 2 0 0 1]

[12] ->
[0]

[1 14 20 4 18 15 19] ->
[0 2 6 1 4 3 5]

[13 18 20] ->
[0 1 2]

[9 1 12 2] ->
[2 0 3 1]

[15 11 2 9 10 19 17 10 19 11 16 5 13 2] ->
[7 2 0 5 1 3 9 1 3 2 8 4 6 0]

[5 4 2 2 19 14 18 11 3 12 20 14 2 19 7] ->
[5 4 0 0 2 1 9 7 3 8 10 1 0 2 6]

[9 11 13 13 13 12 17 8 4] ->
[3 4 0 0 0 5 6 2 1]

[10 14 16 17 7 4 3] ->
[3 4 5 6 2 1 0]

[2 4 8 7 8 19 16 11 10 19 4 7 8] ->
[4 1 0 2 0 3 7 6 5 3 1 2 0]

[15 17 20 18 20 13 6 10 4 19 9 15 18 17 5] ->
[0 1 3 2 3 9 6 8 4 10 7 0 2 1 5]

[15 14 4 5 5 5 3 3 19 12 4] ->
[5 4 2 0 0 0 1 1 6 3 2]

[7 12] ->
[0 1]

[18 5 18 2 5 20 8 8] ->
[2 0 2 3 0 4 1 1]

[4 6 10 7 3 1] ->
[2 3 5 4 1 0]

[5] ->
[0]

[6 12 14 18] ->
[0 1 2 3]

[7 15 13 3 4 7 20] ->
[0 4 3 1 2 0 5]

[10 15 19 14] ->
[0 2 3 1]

[14] ->
[0]

[19 10 20 12 17 3 6 16] ->
[6 2 7 3 5 0 1 4]

[9 4 7 18 18 15 3] ->
[4 2 3 0 0 5 1]

[7 4 13 7] ->
[0 1 2 0]

[19 1 10 3 1] ->
[3 0 2 1 0]

[8 14 20 4] ->
[1 2 3 0]

[17 20 18 11 1 15 7 2] ->
[5 7 6 3 0 4 2 1]

[11 4 3 17] ->
[2 1 0 3]

[1 9 15 1 20 8 6] ->
[0 3 4 0 5 2 1]

[16 13 10] ->
[2 1 0]

[17 20 20 12 19 10 19 7 8 5 12 19] ->
[7 2 2 1 0 6 0 4 5 3 1 0]

[18 11] ->
[1 0]

[2 16 7 12 10 18 4 14 14 7 15 4 8 3 14] ->
[3 9 2 7 6 10 1 0 0 2 8 1 5 4 0]

[5 7 2 2 16 14 7 7 18 19 16] ->
[3 0 1 1 2 4 0 0 5 6 2]

[8 6 17 5 10 2 14] ->
[3 2 6 1 4 0 5]

Questo è , quindi vince l'invio valido più breve (conteggiato in byte).


Risposte:


5

Python 2 , 62 54 byte

lambda L:map(sorted(set(L),key=L.count)[::-1].index,L)

Provalo online!

Modifica: salvato 8 byte tramite mappa grazie a Maltysen


meno byte:lambda L:map(sorted(set(L),key=L.count)[::-1].index,L)
Maltysen

4

Pyth - 12 11 10 byte

XQ_o/QN{QU

Test Suite .


1
Accidenti, è stato veloce! Ero appena riuscito a capire cosa ci veniva chiesto!
Shaggy,

È possibile salvare un byte con mx_o/QN{Q.

4

Japt , 11 byte

£â ñ@è¦XÃbX

Provalo online!

Spiegazione

 £   â ñ@  è¦ Xà bX
UmX{Uâ ñX{Uè!=X} bX}   Ungolfed
                       Implicit: U = input array
UmX{               }   Map each item X in the input to:
    Uâ                   Take the unique items of U.
       ñX{     }         Sort each item X in this by
          Uè!=X            how many items in U are not equal to X.
                         This sorts the items that occur most to the front of the list.
                 bX      Return the index of X in this list.
                       Implicit: output result of last expression

2

J , 11 byte

i.~~.\:#/.~

Provalo online!

Spiegazione

i.~~.\:#/.~  Input: array A
       #/.~  Frequency of each unique character, sorted by first appearance
   ~.        Unique, sorted by first appearance
     \:      Sort down the uniques using their frequencies
i.~          First index in that for each element of A


2

Haskell , 93 91 85 byte

import Data.List
f a=[i|x<-a,(i,y:_)<-zip[0..]$sortOn((0-).length)$group$sort a,x==y]

Provalo online!

EDIT: Grazie a @Laikoni per il decollo di 6 byte!

Non molto breve ma non riesco a pensare ad altro. L'idea è di scorrere sull'array ( x<-a) ed eseguire una ricerca in un elenco di tuple ( (i,y:_)<-... ,x==y) che assegna un numero intero non negativo a ciascun elemento univoco nell'input in base a quanto è comune. Tale elenco di tuple viene generato prima inserendo sortl'input, groupinserendolo in elenchi secondari di elementi uguali, ordinando tale elenco in base alla lunghezza degli elenchi secondari ( sortOn((0-).length); la lunghezza viene negata per ordinare in ordine "decrescente"), quindi infine zippandolo con un elenco infinito incrementando da 0. Usiamo la corrispondenza del modello per estrarre l'elemento reale dalla lista secondaria in y.


1
È possibile abbinare il motivo, (i,y:_)rilasciare la head<$>parte e sostituire la parentesi con $.
Laikoni,

1

Mathematica, 94 byte

(s=First/@Reverse@SortBy[Tally[j=#],Last];For[i=1,i<=Length@s,j=j//.s[[i]]->i+5!;i++];j-5!-1)&


Provalo online!


1

CJam, 17 14 byte

-3 byte grazie a Peter Taylor

Questa è una versione golfizzata del programma che ho usato per generare i test.

{_$e`$W%1f=f#}

Questo è un blocco anonimo che prevede l'input come un array in cima allo stack e genera un array in cima allo stack.

Spiegazione:

{_$e`$W%1f=f#} Stack:                  [1 2 1 4 5]
 _             Duplicate:              [1 2 1 4 5] [1 2 1 4 5]
  $            Sort:                   [1 2 1 4 5] [1 1 2 4 5]
   e`          Run-length encode:      [1 2 1 4 5] [[2 1] [1 2] [1 4] [1 5]]
     $         Sort lexicographically: [1 2 1 4 5] [[1 2] [1 4] [1 5] [2 1]]
      W%       Reverse:                [1 2 1 4 5] [[2 1] [1 5] [1 4] [1 2]]
        1f=    Second element of each: [1 2 1 4 5] [1 5 4 2]
           f#  Vectorized indexing:    [0 3 0 2 1]

È possibile ordinare in ordine inverso per soli tre byte suddividendo in su: $W%.
Peter Taylor,

@PeterTaylor Ah, continuo a dimenticare il confronto lessicografico per le matrici è una cosa. Grazie.
Esolanging Fruit

1

TI-BASIC, 66 byte

Ans+max(Ans+1)seq(sum(Ans=Ans(I)),I,1,dim(Ans→A
cumSum(Ans→B
SortD(∟A,∟B
cumSum(0≠ΔList(augment({0},∟A→A
SortA(∟B,∟A
∟A-1

Spiegazione

seq(sum(Ans=Ans(I)),I,1,dim(Ans    Calculates the frequency of each element of Ans.
                                   Comparing a value to a list returns a list of booleans,
                                   so taking the sum will produce the number of matches.

Ans+max(Ans+1)                     Multiplies each frequency by one more than the max element,
                                   then adds each original value.
                                   This ensures that identical values with the same frequency
                                   will be grouped together when sorting.
                                   Additionally, all resulting values will be positive.

→A                                 Stores to ∟A.

cumSum(Ans→B                       Stores the prefix sum of the result into ∟B.
                                   Since ∟A has only positive values, ∟B is guaranteed
                                   to be strictly increasing.

SortD(∟A,∟B                        Sort ∟A in descending order (by frequency), grouping
                                   identical values together. Also, dependently sort ∟B
                                   so the original ordering can be restored.

       0≠ΔList(augment({0},∟A      Prepends a 0 to ∟A and compares each consecutive difference
                                   to 0. This places a 1 at each element that is different
                                   from the previous element, and 0 everywhere else.
                                   The first element is never 0, so it is considered different.

cumSum(                      →A    Takes the prefix sum of this list and stores to ∟A.
                                   Since there is a 1 at each element with a new value,
                                   the running sum will increase by 1 at each value change.
                                   As a result, we've created a unique mapping.

SortA(∟B,∟A                        Sorts ∟B in ascending order with ∟A as a dependent,
                                   restoring the original element ordering.

∟A-1                               Since we started counting up at 1 instead of 0,
                                   subtract 1 from each element in ∟A and return it.


1

JavaScript (ES6), 91 byte

Utilizzando un elenco di valori univoci, ordinati per frequenza.

x=>x.map(x=>Object.keys(C).sort((a,b)=>C[b]-C[a]).indexOf(x+''),C={},x.map(v=>C[v]=-~C[v]))

Test

var F=
x=>x.map(x=>Object.keys(C).sort((a,b)=>C[b]-C[a]).indexOf(x+''),C={},x.map(v=>C[v]=-~C[v]))

Test=`[1 2 1 4 5] -> [0 1 0 2 3]
[3 2 2 1 5 7 2] -> [1 0 0 2 3 4 0]
[8 8 8 8 8] -> [0 0 0 0 0]
[2] -> [0]
[8 6 8 4 6 8 2 4 6 8 0 2 4 6 8] -> [0 1 0 2 1 0 3 2 1 0 4 3 2 1 0]
[14 1] -> [1 0]
[19 6 4 9 14 17 10 9 6 14 8 14 6 15] -> [8 0 3 2 1 7 5 2 0 1 4 1 0 6]
[15] -> [0]
[1 18 4 8 6 19 12 17 6 13 7 6 8 1 6] -> [1 8 3 2 0 9 5 7 0 6 4 0 2 1 0]
[9 10 11 9 7 11 16 17 11 8 7] -> [2 4 0 2 1 0 5 6 0 3 1]
[1 3 16 19 14] -> [0 1 3 4 2]
[18 8] -> [1 0]
[13 4 9 6] -> [3 0 2 1]
[16 16 18 6 12 10 4 6] -> [1 1 5 0 4 3 2 0]
[11 18] -> [0 1]
[14 18 18 11 9 8 13 3 3 4] -> [7 1 1 5 4 3 6 0 0 2]
[20 19 1 1 13] -> [3 2 0 0 1]
[12] -> [0]
[1 14 20 4 18 15 19] -> [0 2 6 1 4 3 5]
[13 18 20] -> [0 1 2]
[9 1 12 2] -> [2 0 3 1]
[15 11 2 9 10 19 17 10 19 11 16 5 13 2] -> [7 2 0 5 1 3 9 1 3 2 8 4 6 0]
[5 4 2 2 19 14 18 11 3 12 20 14 2 19 7] -> [5 4 0 0 2 1 9 7 3 8 10 1 0 2 6]
[9 11 13 13 13 12 17 8 4] -> [3 4 0 0 0 5 6 2 1]
[10 14 16 17 7 4 3] -> [3 4 5 6 2 1 0]
[2 4 8 7 8 19 16 11 10 19 4 7 8] -> [4 1 0 2 0 3 7 6 5 3 1 2 0]
[15 17 20 18 20 13 6 10 4 19 9 15 18 17 5] -> [0 1 3 2 3 9 6 8 4 10 7 0 2 1 5]
[15 14 4 5 5 5 3 3 19 12 4] -> [5 4 2 0 0 0 1 1 6 3 2]
[7 12] -> [0 1]
[18 5 18 2 5 20 8 8] -> [2 0 2 3 0 4 1 1]
[4 6 10 7 3 1] -> [2 3 5 4 1 0]
[5] -> [0]
[6 12 14 18] -> [0 1 2 3]
[7 15 13 3 4 7 20] -> [0 4 3 1 2 0 5]
[10 15 19 14] -> [0 2 3 1]
[14] -> [0]
[19 10 20 12 17 3 6 16] -> [6 2 7 3 5 0 1 4]
[9 4 7 18 18 15 3] -> [4 2 3 0 0 5 1]
[7 4 13 7] -> [0 1 2 0]
[19 1 10 3 1] -> [3 0 2 1 0]
[8 14 20 4] -> [1 2 3 0]
[17 20 18 11 1 15 7 2] -> [5 7 6 3 0 4 2 1]
[11 4 3 17] -> [2 1 0 3]
[1 9 15 1 20 8 6] -> [0 3 4 0 5 2 1]
[16 13 10] -> [2 1 0]
[17 20 20 12 19 10 19 7 8 5 12 19] -> [7 2 2 1 0 6 0 4 5 3 1 0]
[18 11] -> [1 0]
[2 16 7 12 10 18 4 14 14 7 15 4 8 3 14] -> [3 9 2 7 6 10 1 0 0 2 8 1 5 4 0]
[5 7 2 2 16 14 7 7 18 19 16] -> [3 0 1 1 2 4 0 0 5 6 2]
[8 6 17 5 10 2 14] -> [3 2 6 1 4 0 5]`

Test.split(`\n`).forEach(row => {
  row=row.match(/\d+/g)
  var nv = row.length/2
  var tc = row.slice(0,nv)
  var exp = row.slice(nv)
  var xsum = eval(exp.join`+`)
  var result = F(tc)
  var rsum = eval(result.join`+`)
  var ok = xsum == rsum
  console.log('Test ' + (ok ? 'OK':'KO')
  + '\nInput [' + tc 
  + ']\nExpected (sum ' + xsum + ') ['+ exp 
  + ']\nResult (sum ' + rsum + ') [' + result + ']')
  
})



0

R , 58 byte

x=scan();cat(match(x,names(z<-table(x))[rev(order(z))])-1)

Provalo online!

La risposta di Python di Port of Chas Brown .

tablecalcola i conteggi di ciascun elemento in x(memorizzando i valori come namesattributo), orderrestituisce una permutazione degli indici in ze matchrestituisce l'indice della prima corrispondenza di xin names(z). Quindi sottrae 1perché gli indici R sono basati su 1.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.