Ecco come viene definita la sequenza di Kolakoski (OEIS A000002 ):
La sequenza di Kolakoski è una sequenza che contiene
1e2, e ilnth elemento della sequenza è la lunghezza delnth gruppo di elementi uguali (corsa) nella sequenza stessa. I primi 20 termini della sequenza e le rispettive lunghezze sono:1 2 2 1 1 2 1 2 2 1 2 2 1 1 2 1 1 2 2 1 - --- --- - - --- - --- --- - --- --- - 1 2 2 1 1 2 1 2 2 1 2 2 1In sostanza, la lunghezza dei gruppi di elementi uguali della sequenza di Kolakoski è la stessa sequenza di Kolakoski.
Fin qui tutto bene, ma questo perché dovremmo limitarci a 1e 2? Non lo faremo! Dati due input, una matrice di numeri interi positivi Ae un numero intero N, restituiscono i primi Ntermini della sequenza simile a Kolakoski definita scorrendo ciclicamente A. Per comprenderlo meglio, ecco un esempio funzionante con le lunghezze dei gruppi appena aggiunti tra parentesi:
A = [2, 3, 1]
N = 25
2: [[2], 2 ]
3: [ 2 ,[2], 3 , 3 ]
1: [ 2 , 2 ,[3], 3 , 1 , 1 , 1 ]
2: [ 2 , 2 , 3 ,[3], 1 , 1 , 1 , 2 , 2 , 2 ]
3: [ 2 , 2 , 3 , 3 ,[1], 1 , 1 , 2 , 2 , 2 , 3 ]
1: [ 2 , 2 , 3 , 3 , 1 ,[1], 1 , 2 , 2 , 2 , 3 , 1 ]
2: [ 2 , 2 , 3 , 3 , 1 , 1 ,[1], 2 , 2 , 2 , 3 , 1 , 2 ]
3: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 ,[2], 2 , 2 , 3 , 1 , 2 , 3 , 3 ]
1: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 ,[2], 2 , 3 , 1 , 2 , 3 , 3 , 1 , 1 ]
2: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 , 2 ,[2], 3 , 1 , 2 , 3 , 3 , 1 , 1 , 2 , 2 ]
3: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 , 2 , 2 ,[3], 1 , 2 , 3 , 3 , 1 , 1 , 2 , 2 , 3 , 3 , 3 ]
1: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 , 2 , 2 , 3 ,[1], 2 , 3 , 3 , 1 , 1 , 2 , 2 , 3 , 3 , 3 , 1 ]
2: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 1 ,[2], 3 , 3 , 1 , 1 , 2 , 2 , 3 , 3 , 3 , 1 , 2 , 2 ]
C: [ 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 , 2 , 2 , 3 , 1 , 2 , 3 , 3 , 1 , 1 , 2 , 2 , 3 , 3 , 3 , 1 , 2 , 2 ]
Ecco un altro esempio lavorato con un leader 1:
A = [1, 2, 3]
N = 10
1: [[1]]
2: [ 1 ,[2], 2 ]
3: [ 1 , 2 ,[2], 3 , 3 ]
1: [ 1 , 2 , 2 ,[3], 3 , 1 , 1 , 1 ]
2: [ 1 , 2 , 2 , 3 ,[3], 1 , 1 , 1 , 2 , 2 , 2 ]
C: [ 1 , 2 , 2 , 3 , 3 , 1 , 1 , 1 , 2 , 2 ]
Come puoi vedere sopra, il risultato finale è stato tagliato in N = 10elementi. L' nelemento th dovrebbe essere quanto è lungo il ngruppo degli elementi uguali, anche se l'elemento stesso appartiene al gruppo a cui si riferisce. Come nel caso precedente, il primo si 1riferisce al primo di questi gruppi che è proprio quello 1, e il primo si 2riferisce al secondo di questi gruppi, che inizia con esso.
Regole
- Si può presumere che
Anon avranno mai due o più elementi uguali consecutivi.Apuò contenere un numero intero più di una volta, ma il primo e l'ultimo elemento non saranno uguali eAconterranno almeno 2 elementi (ad esempio[1, 2, 2, 3],[2, 4, 3, 1, 2]e[3]non verranno forniti). Questo perché se ci fossero elementi uguali consecutivi, il risultato finale sarebbe stato un prefisso non valido per tale sequenza. - Si può presumere
Ache contenga solo numeri interi positivi (poiché una sequenza del genere non sarebbe altrimenti definita). - Si può presumere che
Nsia un numero intero non negativo (N >= 0). - Non puoi restituire più termini di quelli richiesti.
- L'uso di una qualsiasi delle lacune standard è severamente vietato.
- È possibile utilizzare qualsiasi metodo I / O ragionevole .
- La tua risposta non deve funzionare oltre i limiti del linguaggio naturale, ma in teoria il tuo algoritmo dovrebbe funzionare per input e interi arbitrariamente grandi .
- Questo è code-golf , quindi vince la risposta più breve.
Casi test
[5, 1, 2], 0 -> []
[2, 3, 1], 25 -> [2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 1, 2, 2, 3, 3, 3, 1, 2, 2]
[1, 2, 3], 10 -> [1, 2, 2, 3, 3, 1, 1, 1, 2, 2]
[1, 2], 20 -> [1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1]
[1, 3], 20 -> [1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3]
[2, 3], 50 -> [2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3]
[7, 4], 99 -> [7, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 4]
[1, 2, 3], 5 -> [1, 2, 2, 3, 3]
[2, 1, 3, 1], 2 -> [2, 2]
[1, 3, 5], 2 -> [1, 3]
[2, 3, 2, 4], 10 -> [2, 2, 3, 3, 2, 2, 2, 4, 4, 4]