Mathematica 116 114 byte
Con diversi byte salvati grazie a Misha Lavrov.
Last@FindPath[Graph[Rule@@@Cases[Tuples[Tuples[{0,1},{l=Length@#}],{2}],x_/;Count[Plus@@x,1]==1]],##,{1,2^l},Alll]&
Ingresso (8 dimensioni)
[{1,0,0,1,0,0,0,1},{1,1,0,0,0,0,1,1}]//AbsoluteTiming
Uscita (lunghezza = 254, dopo 1,82 secondi)
{1.82393, {{1, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 1, 0}, {0, 0,0, 0, 0, 0, 1, 1}, {0, 0, 0, 0, 0, 1, 1, 1}, {0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 0, 1, 1, 0}, {0, 0, 0, 0,1, 1, 1,0}, {0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 1}, {0, 0, 0, 0, 1, 0, 1, 1}, {0, 0, 0, 0,1, 1, 1, 1}, {0, 0, 0, 0, 1, 1, 0, 1}, {0, 0, 0, 0, 1, 1, 0, 0}, {0, 0, 0, 1, 1, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1,0, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 1, 0}, {0, 0, 0, 1, 0, 0, 1, 1}, {0, 0, 0, 1, 0, 1, 1, 1}, {0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 1, 1, 1, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0, 0, 0}, {0, 0, 0, 1, 1, 0, 1, 0}, {0, 0, 0, 1, 1, 0, 1, 1}, {0, 0, 0, 1,1, 1, 1, 1}, {0, 0, 0, 1, 1, 1, 1, 0}, {0, 0, 0, 1, 0, 1, 1, 0}, {0, 0, 1, 1, 0, 1, 1, 0}, {0, 0, 1, 0, 0, 1, 1, 0}, {0, 0, 1, 0,0, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 1, 0, 0, 0, 1, 1}, {0, 0, 1, 0, 0, 1, 1, 1}, {0, 0, 1, 0,0, 1, 0, 1}, {0, 0, 1, 0, 0, 1, 0, 0}, {0, 0, 1, 0, 1, 1, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 1}, {0, 0, 1, 0,1, 0, 1, 1}, {0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 0}, {0, 0, 1, 0, 1, 1, 1, 1}, {0, 0, 1, 0, 1, 1, 0, 1}, {0, 0, 1, 1,1, 1, 0, 1}, {0, 0, 1, 1, 0, 1, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 1}, {0, 0, 1, 1, 0, 0, 0, 0}, {0, 0, 1, 1, 0, 0, 1, 0}, {0, 0, 1, 1,0, 0, 1, 1}, {0, 0, 1, 1, 0, 1, 1,1}, {0, 0, 1, 1, 1, 1, 1, 1}, {0, 0, 1, 1, 1, 0, 1, 1}, {0, 0, 1, 1, 1, 0, 0, 1}, {0, 0, 1, 1,1, 0, 0, 0}, {0, 0, 1, 1, 1, 0, 1, 0}, {0, 0, 1, 1, 1, 1, 1, 0}, {0, 0, 1, 1, 1, 1, 0, 0}, {0, 0, 1, 1, 0, 1, 0, 0}, {0, 1, 1, 1,0, 1, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 0, 0, 1}, {0, 1, 0, 0,0, 0, 1, 1}, {0, 1, 0, 0, 0, 0, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 0}, {0, 1, 0, 0, 0, 1, 1, 1}, {0, 1, 0, 0, 0, 1, 0, 1}, {0, 1, 0, 0,1, 1, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 1}, {0, 1, 0, 0, 1, 0, 0, 0}, {0, 1, 0, 0, 1, 0, 1, 0}, {0, 1, 0, 0, 1, 0, 1, 1}, {0, 1, 0, 0,1, 1, 1, 1}, {0, 1, 0, 0, 1, 1, 1, 0}, {0, 1, 0, 0, 1, 1, 0,0}, {0, 1, 0, 1, 1, 1, 0, 0}, {0, 1, 0, 1, 1, 0, 0, 0}, {0, 1, 0, 1,0, 0, 0, 0}, {0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 1, 0, 0, 1, 1}, {0, 1, 0, 1, 0, 0, 1, 0}, {0, 1, 0, 1, 0, 1, 1, 0}, {0, 1, 0, 1,0, 1, 1, 1}, {0, 1, 0, 1, 0, 1, 0, 1}, {0, 1, 0, 1, 1, 1, 0, 1}, {0, 1, 0, 1, 1, 0, 0, 1}, {0, 1, 0, 1, 1, 0, 1, 1}, {0, 1, 0, 1,1, 0, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 0}, {0, 1, 0, 1, 1, 1, 1, 1}, {0, 1, 1, 1, 1, 1, 1, 1}, {0, 1, 1, 0, 1, 1, 1, 1}, {0, 1, 1, 0,0, 1, 1, 1}, {0, 1, 1, 0, 0, 0, 1, 1}, {0, 1, 1, 0, 0, 0, 0, 1}, {0, 1, 1, 0, 0, 0, 0, 0}, {0, 1, 1, 0, 0, 0, 1, 0}, {0, 1, 1, 0,0, 1, 1, 0}, {0, 1, 1, 0, 0, 1, 0, 0}, {0, 1, 1, 0, 0, 1, 0, 1}, {0, 1, 1, 0, 1, 1, 0, 1}, {0, 1, 1, 0, 1, 0, 0, 1}, {0, 1, 1, 0,1, 0, 0, 0}, {0, 1, 1, 0, 1, 0, 1, 0}, {0, 1, 1, 0, 1, 0, 1, 1}, {0, 1, 1, 1, 1, 0, 1, 1}, {0, 1, 1, 1, 0, 0, 1, 1}, {0, 1, 1, 1,0, 0, 0, 1}, {0, 1, 1, 1, 0, 0, 0, 0}, {0, 1, 1, 1, 0, 0, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 0}, {0, 1, 1, 1, 0, 1, 1, 1}, {0, 1, 1, 1,0, 1, 0, 1}, {0, 1, 1, 1, 1, 1, 0, 1}, {0, 1, 1, 1, 1, 0, 0, 1}, {0, 1, 1, 1, 1, 0, 0, 0}, {0, 1, 1, 1, 1, 0, 1, 0}, {0, 1, 1, 1,1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 1, 0}, {0, 1, 1, 0, 1, 1, 0, 0}, {0, 1, 1, 1, 1, 1, 0, 0}, {1, 1, 1, 1, 1, 1, 0, 0}, {1, 0, 1, 1,1, 1, 0, 0}, {1, 0, 0, 1, 1, 1, 0, 0}, {1, 0, 0, 0, 1, 1, 0, 0}, {1, 0, 0, 0, 0, 1, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0,0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 0}, {1, 0, 0, 0, 0, 1, 1, 1}, {1, 0, 0, 0,0, 1, 0, 1}, {1, 0, 0, 0, 1, 1, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 0, 0}, {1, 0, 0, 0, 1, 0, 1, 0}, {1, 0, 0, 0,1, 0, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 1}, {1, 0, 0, 0, 1, 1, 1, 0}, {1, 0, 0, 1, 1, 1, 1, 0}, {1, 0, 0, 1, 0, 1, 1, 0}, {1, 0, 0, 1,0, 0, 1, 0}, {1, 0, 0, 1, 0, 0, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 0}, {1, 0, 0, 1, 0, 1, 0, 1}, {1, 0, 0, 1, 0, 1, 1, 1}, {1, 0, 0, 1,0, 0, 1, 1}, {1, 0, 0, 1, 1, 0, 1, 1}, {1, 0, 0, 1, 1, 0, 0, 1}, {1, 0, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 1, 0, 1, 0}, {1, 0, 1, 1,1, 0, 1, 0}, {1, 0, 1, 0, 1, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 1, 0}, {1, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 0, 1}, {1, 0, 1, 0,0, 0, 1, 1}, {1, 0, 1, 0, 0, 1, 1, 1}, {1, 0, 1, 0, 0, 1, 0, 1}, {1, 0, 1, 0, 0, 1, 0, 0}, {1, 0, 1, 0, 0, 1, 1, 0}, {1, 0, 1, 0,1, 1, 1, 0}, {1, 0, 1, 0, 1, 1, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 1}, {1, 0, 1, 0, 1, 0, 1, 1}, {1, 0, 1, 0,1, 1, 1, 1}, {1, 0, 1, 0, 1, 1, 0, 1}, {1, 0, 1, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 0, 1}, {1, 0, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 1,1, 1, 1, 1}, {1, 0, 1, 1, 0, 1, 1, 1}, {1, 0, 1, 1, 0, 0, 1, 1}, {1, 0, 1, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 0, 0, 0, 0}, {1, 0, 1, 1,0, 0, 1, 0}, {1, 0, 1, 1, 0, 1, 1, 0}, {1, 0, 1, 1, 0, 1, 0, 0}, {1, 0, 1, 1, 0, 1, 0, 1}, {1, 1, 1, 1, 0, 1, 0, 1}, {1, 1, 0, 1,0, 1, 0, 1}, {1, 1, 0, 0, 0, 1, 0,1}, {1, 1, 0, 0, 0, 0, 0, 1}, {1, 1, 0, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0, 1, 0}, {1, 1, 0, 0,0, 1, 1, 0}, {1, 1, 0, 0, 0, 1, 0, 0}, {1, 1, 0, 0, 1, 1, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 0}, {1, 1, 0, 0, 1, 0, 0, 1}, {1, 1, 0, 0,1, 0, 1, 1}, {1, 1, 0, 0, 1, 0, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 0}, {1, 1, 0, 0, 1, 1, 1, 1}, {1, 1, 0, 0, 0, 1, 1, 1}, {1, 1, 0, 1,0, 1, 1, 1}, {1, 1, 0, 1, 0, 0, 1, 1}, {1, 1, 0, 1, 0, 0, 0, 1}, {1, 1, 0, 1, 0, 0, 0, 0}, {1, 1, 0, 1, 0, 0, 1, 0}, {1, 1, 0, 1,0, 1, 1, 0}, {1, 1, 0, 1, 0, 1, 0, 0}, {1, 1, 0, 1, 1, 1, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 0}, {1, 1, 0, 1, 1, 0, 0, 1}, {1, 1, 0, 1,1, 0, 1, 1}, {1, 1, 0, 1, 1, 0, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 0}, {1, 1, 0, 1, 1, 1, 1, 1}, {1, 1, 0, 1, 1, 1, 0, 1}, {1, 1, 0, 0,1, 1, 0, 1}, {1, 1, 1, 0, 1, 1, 0, 1}, {1, 1, 1, 0, 0, 1, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 1}, {1, 1, 1, 0, 0, 0, 0, 0}, {1, 1, 1, 0,0, 0, 1, 0}, {1, 1, 1, 0, 0, 1, 1, 0}, {1, 1, 1, 0, 0, 1, 0, 0}, {1, 1, 1, 0, 1, 1, 0, 0}, {1, 1, 1, 0, 1, 0, 0, 0}, {1, 1, 1, 0,1, 0, 0, 1}, {1, 1, 1, 0, 1, 0, 1, 1}, {1, 1, 1, 0, 1, 0, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 0}, {1, 1, 1, 0, 1, 1, 1, 1}, {1, 1, 1, 0,0, 1, 1, 1}, {1, 1, 1, 1, 0, 1, 1, 1}, {1, 1, 1, 1, 0, 1, 1, 0}, {1, 1, 1, 1, 0, 0, 1, 0}, {1, 1, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 1,0, 0, 0, 1}, {1, 1, 1, 1, 1, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 0}, {1, 1, 1, 1,1, 0, 1, 0}, {1, 1, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 0}, {1, 0, 1, 1, 1, 0, 0, 1}, {1, 0, 1, 1, 1, 0, 1, 1}, {1, 1, 1, 1,1, 0, 1, 1}, {1, 1, 1, 1, 0, 0, 1, 1}, {1, 1, 1, 0, 0, 0, 1, 1}, {1, 1, 0, 0, 0, 0, 1, 1}}}
Tuples[{0,1},{l=Length@#}],{2}]
e genera i numeri 0 ... 8 come elenchi binari.
L'esterno Tuples...{2}
produce tutte le coppie ordinate di quei numeri binari.
Plus@@x
somma ciascuna delle coppie, generando triplette di 0, 1.
Cases....Count[Plus@@x, 1]==1
restituisce tutte le somme che contengono un singolo 1. Si presentano quando i due numeri binari originali sono collegati da un bordo.
Rules
collega i vertici del grafico, ogni vertice è un numero binario.
Graph
crea un grafico corrispondente a detti vertici e spigoli.
FindPath
trova fino a 2 ^ n percorsi che collegano il vertice a al vertice b, i numeri indicati.
Last
prende il più lungo di questi percorsi.
Per tre dimensioni, il grafico può essere rappresentato in un piano come mostrato qui:
Per l'input, {0,0,0}, {1,1,1}
viene emesso quanto segue:
{{{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {0, 1, 0}, {1, 1, 0}, {1, 0,
0}, {1, 0, 1}, {1, 1, 1}}}
Questo percorso può essere trovato nel grafico sopra.
Può anche essere concepito come il seguente percorso nello spazio 3, dove ogni vertice corrisponde a un punto {x,y,z}
. {0,0,0} rappresenta l'origine e {1,1,1} rappresenta il punto "opposto" in un cubo unità.
Quindi il percorso della soluzione corrisponde a un attraversamento dei bordi lungo il cubo dell'unità. In questo caso, il percorso è hamiltoniano: visita ogni vertice una volta (cioè senza incroci e senza vertici omessi).