Questo è il PPCG Prime
Lunghezza di 624 cifre
777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777111111111111111111111111111111111111111111111111111111111111111111111111111111188888888118888888811188888811188888811188111118818811111881881111881881111881188111118818811111881881111111881111111188888888118888888811881111111881118888188111111118811111111881111111881111881188111111118811111111881111881881111881188111111118811111111188888811188888811111111111111111111111111111111111111111111111111111111111111111111111111111111333333333333333333333333333333333333333
Se dividiamo ogni 39 cifre otteniamo
777777777777777777777777777777777777777
777777777777777777777777777777777777777
777777777777777777777777777777777777777
777777777777777777777777777777777777777
111111111111111111111111111111111111111
111111111111111111111111111111111111111
188888888118888888811188888811188888811
188111118818811111881881111881881111881
188111118818811111881881111111881111111
188888888118888888811881111111881118888
188111111118811111111881111111881111881
188111111118811111111881111881881111881
188111111118811111111188888811188888811
111111111111111111111111111111111111111
111111111111111111111111111111111111111
333333333333333333333333333333333333333
Il tuo compito è produrre PPCG-Prime
Questo è codegolf. Vince il codice più breve in byte.
Se si inserisce PPCG-Prime nella funzione Mathematica di seguito, si ottiene questo risultato
ArrayPlot@Partition[IntegerDigits@#,39]&
n
sia primo è proporzionale 1/log(n)
, che comunque non è molto piccola. Basta controllare molti numeri fino a quando non è primo.
log(n)
è circa 1436.6
in questo caso.
x/logx
di Gauss