Coperture rettangolari
Supponiamo di avere una matrice di bit, ad esempio quanto segue.
1 1 0 0 0 1 1 0
1 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1
1 1 0 1 1 1 1 0
1 1 0 1 1 1 0 1
Vorremmo trovare una copertura rettangolare per questa matrice. È un insieme di sottoinsiemi rettangolari della matrice che non contengono 0, ma insieme contengono tutti gli 1. Non è necessario che i sottoinsiemi siano disgiunti. Ecco un esempio di copertura rettangolare per la matrice sopra.
+----+ +----+
|1 1| 0 0 0 |1 1| 0
| | | |
| +-|-----+ | |+-+
|1 |1| 1 1| 0 |1 1||1|
+----+ | | || |
| | | || |
0 |1 1 1| 0 |1 1||1|
+-------+ | |+-+
+----+ +-----|-+ |
|1 1| 0 |1 1 |1| 1| 0
| | | +----+
| | | | +-+
|1 1| 0 |1 1 1| 0 |1|
+----+ +-------+ +-+
Il numero di rettangoli in questa copertina è 7.
L'obiettivo
Il tuo input è una matrice rettangolare di bit, presa in qualsiasi formato ragionevole. Si può presumere che ne contenga almeno uno 1. L'output è il numero minimo di rettangoli in una copertura rettangolare della matrice.
Vince il conteggio dei byte più basso. Si applicano le regole standard del code-golf .
Casi test
[[1]] -> 1
[[1,1]] -> 1
[[1],[1]] -> 1
[[1,0,1]] -> 2
[[1,0],[0,0]] -> 1
[[1,0],[0,1]] -> 2
[[1,0],[1,1]] -> 2
[[1,1,1],[1,0,1]] -> 3
[[0,1,0],[1,1,1],[0,1,0]] -> 2
[[1,1,1],[1,0,1],[1,1,1]] -> 4
[[1,1,0],[1,1,1],[0,1,1]] -> 2
[[1,0,1,0],[1,1,1,1],[1,0,1,0]] -> 3
[[1,1,1,0],[1,0,1,0],[1,1,1,1],[0,0,1,0]] -> 4
[[1,1,1,0],[1,0,1,0],[1,1,1,1],[0,0,1,1]] -> 5
[[1,1,1,0],[1,0,1,0],[1,1,1,1],[0,1,1,1]] -> 4
[[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]] -> 3
[[0,1,0,0],[0,1,1,1],[1,1,1,0],[0,0,1,0]] -> 4
[[0,0,1,0,0],[0,1,1,1,0],[1,1,1,1,1],[0,1,1,1,0],[0,0,1,0,0]] -> 3
[[0,1,0,0],[0,1,1,1],[1,1,1,0],[0,0,1,0]]