trova il modello in questa sequenza numerica di 1 e 0


10

Scrivi il programma o la funzione più breve che genera questi 1000 numeri o una sequenza (indicizzata 0 o 1) che inizia con loro.

[0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 
 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 
 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 
 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 
 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0]

questa è la mia prima volta a pubblicare un puzzle di codice. se hai qualche miglioramento di stile. fammi sapere.
john mangual,

7
Ciao John, e benvenuto su PPCG! Le sfide qui devono avere una condizione oggettiva di vincita (di solito code-golf). Ti consigliamo inoltre di eseguire tutte le sfide nella sandbox prima di pubblicare.

3
Poiché l'obiettivo di questo problema sembra trovare la sequenza, ti consiglio di chiedere il codice più breve che genererà correttamente questi primi 1000 elementi.

@Mnemonico che suona bene. Il mio codice è già piuttosto breve e chiedo se esiste un codice ancora più breve. Sentiti libero di modificare :-) o posso semplicemente passare a sandbox
john mangual,

Dimentico chi ha fatto questa sfida prima. Ma è stato molto ben accolto per "trovare lo schema". Ricordo vagamente qualcuno che l'ha rotto in 50 minuti; ma la gente ha continuato a rispondere anche dopo.
Magic Octopus Urn il

Risposte:


17

Gelatina , 11 10 byte

Salvato 1 byte grazie a @Dennis

ȷḶ×⁽q£:ȷ5Ḃ

Provalo online!

Come?

Ho notato per la prima volta che il motivo si alterna tra le corse di lunghezza 4 e lunghezza 3, saltando il passo di lunghezza 4 ogni poche corse. Questo mi ha portato a cercare un numero che potesse essere diviso nell'indice corrente, quindi preso mod 2 e pavimentato - cioè recuperando il bit meno significativo - per dare il bit a quell'indice nella serie. Dopo molte prove ed errori, ho scoperto che 3.41845fa esattamente questo, ma moltiplicare per il suo reciproco approssimativo ( .29253) è un byte più breve.

ȷḶ×⁽q£:ȷ5Ḃ    Main link. Arguments: none
ȷ             Yield 1e3, i.e. 1000.
 Ḷ            Lowered range; yield [0, 1, 2, ..., 999].
  ×⁽q£        Multiply each item by 29253.
      :ȷ5     Floor-divide each item by 1e5, i.e. 100000.
         Ḃ    Take each item mod 2.

ah l'hai trovato
Jonathan Allan,

[0 ... 999] volte ciascuno di 0,2925, mod 2 e piano (andrei piano poi mod 2 ma equivalente)
Jonathan Allan,

6
Beh, questo è abbastanza anticlimatico, mi aspettavo qualcosa di più intricato.
Nit

@JonathanAllan Inizialmente ho provato solo ma a quanto pare è solo la mod 2 anziché il bit più basso, quindi ho aggiunto il per risolverlo. Sostituito ora
ETHproductions

1
ȷḶ×⁽q£:ȷ5Ḃfunziona, per 10 byte.
Dennis,

3

Dyalog APL , 99 83 82 byte

a←{⍵/0 1}¨(↓3 24 3 3)
{a⊢←↓⍉↑a{⍺∘{⍵/⊂⍺}¨⍵}¨↓3 3⍴⍵}¨(9/5)∘⊤¨1386531 496098
1000⍴∊a

Provalo online!

Sicuramente non è la soluzione prevista in quanto contiene ancora molti dati hardcoded, ma è un inizio.


3

Rubino , 34 29 26 22 byte

$.+=184while p$./629%2

Provalo online!

Spiegazione rapida: questo funziona a causa del numero magico 629. Ho notato che la sequenza inizia a ripetersi dopo il 629 ° elemento e ho provato a "migliorare" una risposta esistente, usando solo la matematica intera. Ho scoperto che l'altro "numero magico" (0,29253) è in realtà 184/629.


2

Gelatina , 31 byte

Dato il modello, c'è probabilmente un modo ancora più breve ...

ĖŒṙḂ
“ṁ⁽⁺ḄæI’BḤ+3żḂ$ẎÇo2Ç+3Çḣȷ¬

Provalo online!

Come?

Sfrutta la struttura della lunghezza della corsa ripetuta che risulta evidente a una profondità di tre.

ĖŒṙḂ - Link 1, make runs of bits: list of lengths    e.g. [5,3,5,3,3]
Ė    - enumerate                      [[1,5],[2,3],[3,5],[4,3],[5,3]]
 Œṙ  - run-length decode      [1,1,1,1,1,2,2,2,3,3,3,3,3,4,4,4,5,5,5]
   Ḃ - bit (modulo by 2)      [1,1,1,1,1,0,0,0,1,1,1,1,1,0,0,0,1,1,1]

“ṁ⁽⁺ḄæI’BḤ+3żḂ$ẎÇo2Ç+3Çḣȷ¬ - Main link: no arguments
“ṁ⁽⁺ḄæI’                   - literal 234931870193324
        B                  - to binary = [1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,0,0]
         Ḥ                 - double    = [2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,2,0,2,0,2,2,0,0]
          +3               - add three = [5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,5,3,5,3,5,5,3,3]
              $            - last two links as a monad:
             Ḃ             -   bit     = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
            ż              -   zip     = [[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[5,1],[3,1],[5,1],[3,1],[5,1],[5,1],[3,1],[3,1]]
               Ẏ           - tighten   = [5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,5,1,3,1,5,1,3,1,5,1,5,1,3,1,3,1]
                Ç          - call the last Link (1) as a monad
                           -           = [1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,0]
                 o2        - OR 2      = [1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,2,1,1,1,2]
                   Ç       - Link 1... = [1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,0]
                    +3     - add three = [4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,4,3,3,4,3,4,3,3,4,3,4,3,3]
                      Ç    - Link 1... = [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0]
                        ȷ  - literal 1000
                       ḣ   - head      = [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1]
                         ¬ - NOT       = [0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1,0]          

Non ho mai visto Jelly prima d'ora!
john mangual,

Benvenuto in PPCG :): è un linguaggio per il golf scritto da uno dei nostri moderatori, Dennis. Fai clic sull'intestazione per la sua pagina git-hub in cui è presente una wiki.
Jonathan Allan,

prometto di migliorare nel porre domande. vedo che c'è un sandbox e una formattazione standard.
john mangual,

Questo è stato praticamente il mio approccio quando ho iniziato.
Esolanging Fruit,

@EsolangingFruit Ho pensato, mentre lo facevo, che potrebbe essere una frazione fare la ripetizione ... 117/400 sembra!
Jonathan Allan,

2

Java 8, 75 64 62 byte

v->{for(int i=0;i<1e3;)System.out.print((int)(i++*.29253)%2);}

Stampa l'intera sequenza senza delimitatore per salvare i byte, perché saranno solo 0e 1comunque.

Le porte della risposta Jelly di @ETHproductions , perché dubito di trovare qualcosa di più corto ..

Provalo online.

Spiegazione:

v->{                     // Method with empty unused parameter and no return-type
  for(int i=0;i<1e3;)    //  Loop `i` in range [0,1000)
    System.out.print(    //   Print:
      (int)(i++*.29253)  //    `i` multiplied with 0.29253,
                         //    and then truncated of their decimal values by casting to int
      %2);}              //    Modulo-2 to result in either 0 or 1

Vecchia risposta che restituisce l'array risultante ( 75 byte ):

v->{int i=1000,r[]=new int[i];for(;i-->0;)r[i]=(int)(i*.29253)%2;return r;}

Provalo online.

Spiegazione:

v->{                   // Method with empty unused parameter and integer-array return-type
  int i=1000,          //  Index `i`, starting at 1000
      r[]=new int[i];  //  Result-array of size 1000
  for(;i-->0;)         //  Loop `i` in range (1000,0]
    r[i]=              //   Set the item in the array at index `i` to:
      (int)(i*.29253)  //    `i` multiplied with 0.29253,
                       //    and then truncated of their decimal values by casting to int
      %2;              //    Modulo-2 to result in either 0 or 1
  return r;}           //  Return the resulting integer-array



1

Wolfram Language (Mathematica) , 96 byte

Ho cercato un automa cellulare che guardi i 4 vicini a sinistra e producesse il modello di camminata a sinistra visto nei dati quando dividi i dati in lunghezza 7 e mantieni ogni terza fila.

Questo automa cellulare funzionerà per 29 generazioni, ciascuna delle quali è triplicata, abbinando perfettamente la sequenza per i caratteri da 1 a 629. Tuttavia, la sequenza inizia a ripetersi al 630 ° carattere piuttosto che continuare il modello osservato, quindi è necessario un codice aggiuntivo per gestire la ripetizione di il modello troncato. Genero il modello principale due volte per arrivare a 1258 caratteri.

Most@Flatten[{#,#,#}&/@CellularAutomaton[{271,2,-{{4},{3},{2},{1}}},{0,0,0,0,1,1,1},29]]~Table~2

Senza quel problema tecnico potremmo farlo in meno 74 byte. Il 47 è il numero di generazioni necessarie per arrivare a 1000 caratteri (questo in realtà va a 1008 = 48 * 7 * 3)

{#,#,#}&/@CellularAutomaton[{271,2,-{{4},{3},{2},{1}}},{0,0,0,0,1,1,1},47]

Provalo online!


1

Z80Golf , 27 byte

00000000: 018d 2b7b 1f1f e601 f630 ff09 3001 1313  ..+{.....0..0...
00000010: 7bfe 9220 ee7a fe04 20e9 76              {.. .z.. .v

Provalo online!

Tradotto da questo codice C:

for (n = 0; n >> 16 != 1170; n += 11149 + 65536)
    putchar('0'|n>>18&1);

Smontaggio:

  ld bc, 11149
loop:
  ld a, e
  rra
  rra
  and 1
  or '0'
  rst $38           ; putchar
  add hl, bc        ; Add 11149 to n = DEHL.
  jr nc, just_one   ; Add 65536 to n, possibly with carry from low 16 bits.
  inc de
just_one:
  inc de
  ld a, e
  cp 1170 & 255
  jr nz, loop
  ld a, d
  cp 1170 >> 8
  jr nz, loop
  halt

Questo è essenzialmente un approccio aritmetico in virgola fissa: (11149 + 65536) / 2 18 ≈ 0,29253, la costante utilizzata da altre risposte.




0

Carbone , 13 byte

Eφ§01×·²⁹²⁵³ι

Provalo online! Il collegamento è alla versione dettagliata del codice. Spiegazione:

 φ              Predefined variable 1000
E               Map over implicit range
            ι   Current value
      ·²⁹²⁵³    Literal constant `0.29253`
     ×          Multiply
   01           Literal string `01`
  §             Cyclically index
                Implicitly print each result on its own line

Grazie a @ ASCII-only per consentire all'indicizzazione di accettare float che sono espressi in numeri interi (e quindi automaticamente ridotto modulo 2 in questo caso).


0

C, 55 53 52 byte

f(i,j){for(i=0;j=.29253*i,i++-1e3;)putchar(j%2+48);}

La risposta Java di Port of Kevin Cruijssen . Provalo online qui .

Grazie a Vazt per giocare a golf 2 byte e a Jonathan Frech per giocare a golf ancora.

Versione non golfata:

f(i, j) { // function taking two dummy arguments (implicitly int) and implicitly returning an unused int
    for(i = 0; j = .29253*i, i++ - 1e3; ) //  loop 1000 times, multiply i with 0.29253, truncating to an integer
        putchar(j % 2 + 48);  // modulo the truncated integer by 2, yielding 0 or 1, then convert to ASCII (48 is ASCII code for '0') and print
}

iè inizializzato su 0 poiché è globale, quindi è possibile rimuovere l' i=0inizializzatore for-loop per salvare 3 byte. Inoltre, se si introduce una seconda variabile (come parametro per f()) e si assegna i++*.29253ad essa, è possibile evitare il cast e salvare altri 2 byte: i;f(j){for(;i<1e3;)printf("%d",(j=i++*.29253)%2);} Provalo online!
vazt

@vazt Sì, iè inizializzato su 0 all'inizio, ma se vogliamo chiamare questa funzione più di una volta, non è abbastanza buono. Usare jper evitare il cast è un grande golf, grazie.
OOBalance,


Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.