Lascia che una scacchiera 8x8 sia rappresentata da due valori distinti, con un valore che è un quadrato vuoto e l'altro che è una regina. Negli esempi seguenti, utilizzo 0 come quadrati vuoti e 1 come regine. Per esempio:
è dato da
1 0 1 1 1 0 0 0
1 0 1 0 1 0 1 1
1 0 1 0 1 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 0 1 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 1 1
0 1 1 1 0 1 0 1
Considera il numero di coppie di regine che stanno attaccando ognuna ad almeno un quadrato di distanza (come promemoria, le regine attaccano ortogonalmente e diagonalmente). Nell'esempio sopra, il seguente diagramma brutto incredibile mostra tutte queste coppie come frecce.
Ci sono 43 coppie trovate sopra dando il seguente caso di test:
Input:
1 0 1 1 1 0 0 0
1 0 1 0 1 0 1 1
1 0 1 0 1 1 0 1
0 1 0 1 0 1 0 0
0 1 1 0 0 1 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 1 1
0 1 1 1 0 1 0 1
Output: 43
Sfida
Scrivi un programma che, dato uno stato della scheda rappresentato da due valori distinti, genera il numero di coppie di regine che si attaccano a vicenda con almeno un quadrato tra loro.
- È possibile immettere in qualsiasi formato sia più conveniente che utilizza due valori per rappresentare i quadrati e le regine vuoti, ad esempio una stringa di 64 "." S per i quadrati vuoti e "Q" per le regine da righe dal basso verso l'alto, un 8x8 matrice di booleani, un elenco di un elenco di numeri interi 0 e 1 ecc., purché sia spiegato nella soluzione
- L'output è un numero intero
- Si applicano i metodi I / O standard e sono vietate le scappatoie standard
- Questo è il codice golf, quindi vince la risposta più breve in byte
Casi test:
Utilizzando il formato 0 e 1, con 0 vuoti quadrati e 1 regine:
Input:
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Output: 0
Input:
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Output: 0
Input:
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Output: 1
Input:
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0
Output: 10
Input:
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Output: 4
Input:
1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
Output: 11