Ero sull'autobus oggi e ho notato questo segno:
seated standing wheelchairs
max1 37 30 00
max2 36 26 01
max3 34 32 00
Il numero di passeggeri seduti, i sedili e le sedie a rotelle non devono essere più grandi di una fila nel tavolo. (Vedi chat per i dettagli.)
Ai fini di questa sfida generalizzeremo questa idea: dato un elenco intero non negativo di una lunghezza N (numero di tipi di passeggeri) strettamente positiva e una matrice intera non negativa di dimensioni strettamente positive (colonne N e una riga per configurazione , o la trasposizione di questo), restituisce un elenco di indici / verità-falsità / due valori univoci che indica quali limiti di configurazione sono rispettati.
Ad esempio con la matrice sopra:
30,25,1
→ [1]
(0-indicizzato) [2]
(1-indicizzato) o [false,true,false]
(Booleano) o ["Abe","Bob","Abe"]
(due valori univoci) ecc.
I seguenti casi di test utilizzano la matrice sopra e lo 0/1 per false / true:
[30,30,0]
→ [1,0,1]
[30,31,0]
→ [0,0,1]
[35,30,0]
→ [1,0,0]
[0,0,1]
→ [0,1,0]
[0,0,0]
→ [1,1,1]
[1,2,3]
→[0,0,0]
I seguenti casi di test utilizzano la seguente matrice:
1 2 0 4
2 3 0 2
[1,2,1,2]
→ [0,0]
[1,3,0,1]
→ [0,1]
[1,2,0,3]
→ [1,0]
[1,2,0,1]
→[1,1]
0
e falsi al posto di 1
?)
[x,31,z]
esclude max1
e max2
perché non consentono 31 standees.
[30,31,0]
essere[1, 1, 1]
perché è coperta damax3
?