Collezionista d'oro KoTH


48

Nota: il sondaggio per i preferiti della community verrà rilasciato presto

In questo KoTH, l'obiettivo è quello di essere l'ultimo bot in vita. Le monete verranno posizionate in aree casuali e il tuo bot dovrà prima ottenere le monete. Se un bot si imbatte in un altro bot, il bot con più monete vince e l'altro bot muore. Maggiori dettagli di seguito.

Tipi di monete

Ci saranno 2 tipi di monete: oro e argento. L'oro aggiunge 5 monete alla forza del robot e l'argento aggiunge 2. Una volta che una moneta viene raccolta, un'altra moneta viene posizionata in un altro punto del tabellone. In qualsiasi momento, ci sono una moneta d'oro e quattro monete d'argento nell'arena.

Collisioni bot

Nel caso in cui due robot tentassero di occupare lo stesso spazio, quello con più monete rimarrà e quello con meno ... no. Il bot vincente otterrà l' 85% delle monete degli avversari (arrotondato per eccesso). Se sono legati, entrambi muoiono. Se tre o più tentano di occupare lo stesso spazio, il più potente vince e ottiene l'85% di tutte le monete dell'altro robot. Nel caso in cui il bot più potente sia un pareggio, muoiono tutti i robot che hanno cercato di entrare nello spazio.

Arena

La lunghezza laterale dell'arena viene calcolata con 4 + botCount. Quando si posizionano i robot all'inizio del gioco, vengono scelti posti casuali. Il sistema garantisce che nessun robot si avvii nello stesso spazio o uno accanto all'altro. Le monete si generano casualmente, escludendo un quadrato di 3 per 3 centrato su ciascun bot. Se un bot viene trovato fuori dall'arena, muore all'istante. L'arena inizia da (0,0), o nord-ovest, nell'angolo in alto a sinistra e la posizione di un bot è sempre un numero intero.

Il tuo bot

Il tuo bot dovrebbe essere una funzione, in qualsiasi linguaggio orientato agli oggetti che ha array, numeri interi, stringhe e funzioni. Nota che tutti gli invii verranno convertiti in Javascript, per semplificare le cose. Per memorizzare informazioni tra mosse, usare botNotes.storeData(key, value)e botNotes.getData(key, value). Non è possibile archiviare o accedere ai dati in alcun modo, diverso da quello fornito attraverso i parametri e botNotes. È necessario creare una funzione che, quando viene chiamato, restituisce una stringa north, east, south, west, o none. Ci saranno 3 argomenti per la funzione:

  • Un oggetto con quattro numeri interi ( locationX, locationY, coins, arenaLength), la posizione corrente, le monete, e la lunghezza dell'arena

  • Un array multidimensionale con le coordinate X e Y di altri robot e il loro conteggio delle monete, ex-[[0,5,4],[4,7,1],[7,4,12]]

  • Un array con le posizioni delle monete elencate (l'oro è sempre il primo)

Questa è una sfida da re della collina, proibite le feritoie standard . La tua funzione verrà eseguita diverse migliaia di volte, ogni volta è consentito uno "Sposta". Nota che se il gioco supera le 20.000 mosse , vince il bot con il maggior numero di monete. Questo verrà fatto 8.000 volte, per rimuovere la casualità.

Chatroom: https://chat.stackexchange.com/rooms/81347/gold-collectors-koth

premi:

Primo posto:
Community Bounty da 100 punti Preferito: risposta accettata da 15 punti

Vincitori:

Primo posto: TBTPTGCBCBA
Secondo posto: Big King Little Hill
Terzo posto: Potenzialmente vittorioso
Quarto posto: Gentile avvistato ubriaco Bot
Quinto posto: Moneta di sicurezza


6
"Nota che tutti gli invii verranno convertiti in Javascript, per semplificare le cose." Come dovrebbe funzionare? Fai la conversione?
Laikoni,

21
Non c'è niente di sbagliato in un koth che consente solo una singola lingua, in particolare una ampiamente diffusa come JavaScript. Piuttosto che "convertire" ambiguamente le risposte in JavaScript (presumibilmente te stesso e manualmente) dovresti semplicemente limitare la sfida a JS. Dopotutto abbiamo avuto un sacco di koth solo Java e solo Python in passato.
Skidsdev,

2
Una versione di questo in cui controlli l'accelerazione anziché la posizione sarebbe piuttosto interessante.
akozi,

12
Per tutti: ci sono già troppi commenti. Non lasciare commenti inutili come "+1, bel bot" , e si prega di eliminare i commenti se è ridondante . Non siamo un tipico sito di domande e risposte, ma a nessuno piace leggere centinaia di comandi.
user202729

5
(Alla mia domanda): Secondo NP in chat, è quest'ultimo: tutti i robot si muovono, quindi tutti i conflitti vengono risolti, quindi si verificano tutti i prelievi di monete, quindi vengono posizionate tutte le nuove monete.
BradC,

Risposte:


26

BaitBot - JavaScript Node.JS

Perché preoccuparsi di inseguire o correre se non riesci mai a catturare? Invece, BaitBot trova la moneta più vicina e aspetta che anche un bot più debole si avvicini. Quando sono entrambi adiacenti, baitBot va per la moneta ipotizzando che lo faccia anche il bot più debole. Se baitBot è in attesa e si avvicina un robot più forte, afferra semplicemente la moneta e salta. Prova mi!

function baitBot(me, others, coins) {
  let directions = ['none','east','south','west','north']
  function distanceTo(a) {
    return (Math.abs(a[0] - me.locationX) + Math.abs(a[1] - me.locationY))
  }
  function distanceBetween(a, b){
    return (Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]))
  }
  function adjacentDir(a) {
    //0 = no, 1,2,3,4 = ESWN
    if(distanceTo(a) == 1) {
      if(a[0] > me.locationX){ return 1}
      else if(a[0] < me.locationX) {return 3}
      else if(a[1] > me.locationY) {return 2}
      else{ return 4}
    }
    else {return 0}
  }
  function edibility(a) {
    return me.coins - a[2]
  }

  //Find nearest coin and get next to it
  let closestCoin = coins.sort((a,b) => distanceTo(a) - distanceTo(b))[0]
  if(distanceTo(closestCoin) > 1) {
    if(closestCoin[0] > me.locationX){ return 'east'}
    else if(closestCoin[0] < me.locationX){ return 'west'}
    else if(closestCoin[1] < me.locationY){ return 'north'}
    else if(closestCoin[1] > me.locationY){ return 'south'}
  }

  //If we're next to a coin and there's a threat close, just grab it
  let nearestThreat = others.filter(a => edibility(a) < 0).sort((a,b) => distanceBetween(a, closestCoin) - distanceBetween(b, closestCoin))[0]
  if(nearestThreat && distanceBetween(nearestThreat, closestCoin) <= 2) {
    return directions[adjacentDir(closestCoin)]
  }



  //Otherwise, wait until there's a target also next to the coin. If none are close, just take it
  let targets = others.filter(a => edibility(a) > 0 && distanceBetween(closestCoin, a) <= 3)
  targets.sort((a,b) => distanceBetween(a, closestCoin) - distanceBetween(b, closestCoin))
  if(targets.length > 0 && distanceBetween(targets[0], closestCoin) > 1){
    return directions[0]
  }
  return directions[adjacentDir(closestCoin)]

}

1
Ah, è un'idea chiara, mi piace.
Sundar - Ripristina Monica l'

Questo approccio è piuttosto bello ... no, molto bello
Programmi Redwolf

1
BaitBot ha bisogno nearestThreat && distanceTo(nearestThreat)piuttosto che solo distanceTo(nearestThreat). Fallisce quando non vi è alcuna minaccia.
Programmi Redwolf

1
Sì, nearestThreatè undefinedse tutti gli altri robot hanno più punti dei tuoi.
Night2

1
Bene, ricevo avvisi come [10] Bot Bait Bot tired of this world, and jumped off its edgenel mio registro eventi
Programmi Redwolf,

17

Algoritmo di apprendimento di prima generazione | JavaScript (Node.js)

function run() {
	return ['north','east','south','west'][(Math.random()*4)|0];
}

Provalo online!

Hai mai visto quei tempi degli algoritmi di apprendimento che imparano a giocare? Si muovono spesso in modo quasi casuale nelle prime generazioni ...


LOL ... Potrebbe ancora funzionare!
Programmi Redwolf

2
La maggior parte degli algoritmi di apprendimento funziona letteralmente in modo casuale per le prime iterazioni, non solo in modo casuale.
fəˈnɛtɪk

Indovina un po? Questo bot ha ottenuto in media quasi 0,22 monete per round!
Programmi Redwolf

17

Potenzialmente vittorioso | JavaScript

Il colore preferito per questo bot è #1600a6.

function (me, others, coins)
{
    let huntingTimer = botNotes.getData("huntingTimer");
    let huntedIndex = botNotes.getData("huntedIndex");
    if(!huntingTimer)
    huntingTimer = 0;
    else if(huntingTimer >0)
    huntingTimer--;
    else if(huntingTimer == -1)
    huntingTimer = Math.ceil(20*(1+Math.log2(me.coins/25)));
    else
    huntingTimer++;

    function distanceFromMe(X, Y) { return Math.abs(me.locationX - X) + Math.abs(me.locationY - Y); }

    function U(x, y)
    {
    function distance(X, Y) { return Math.abs(X-x) + Math.abs(Y-y); }
    function gravitation(k, X, Y) { return - k / ( distance(X, Y) + .2 ); }
    function exponential(k, q, X, Y) { return - 5*k * Math.exp(- q * distance(X,Y)); }

    // No going away from the arena.
    if(!((0 <= x) && (x < me.arenaLength) && (0 <= y) && (y < me.arenaLength)))
    {
        return Infinity;
    }

    let reachability = [1, 1, 1, 1, 1];
    let distances = coins.map(c => distanceFromMe(c[0], c[1]));
    for(let i = 0; i < others.length; i++)
    {
        for(let coin = 0; coin < 5; coin++)
            reachability[coin] += (Math.abs(others[i][0] - coins[coin][0]) + Math.abs(others[i][1] - coins[coin][1])) < distances[coin];
    }

    let potential = gravitation(40, coins[0][0], coins[0][1]) / (reachability[0]); // Gold

    // Silver
    for(let i = 1; i < 5; i++)
    {
        potential += gravitation(10, coins[i][0], coins[i][1]) / (reachability[i]);
    }

    others.sort((a, b) => b[2] - a[2]);

    // Other bots
    for(let i = 0; i < others.length; i++)
    {
        if(
            ((Math.abs(me.locationX - others[i][0]) + Math.abs(me.locationY - others[i][1])) < 3) &&
            (huntingTimer == 0) &&
            (me.coins > 25) && 
            (me.coins < (others[0][2]*.9)) &&
            (others[i][2] < me.coins-5) && (others[i][2] >= 10)
        )
        {
            huntingTimer = -10;
            huntedIndex = i;
        }

        if((huntingTimer < 0) && (huntedIndex == i))
           potential += exponential(30, 1, others[i][0], others[i][1]);

        if(others[i][2] >= me.coins)
        {
        // Otherwise, they could eat us, and we will avoid them.
        potential += exponential(-1400, 3, others[i][0], others[i][1]);
        }
    }

    return potential;
    }

    // All possible squares we can move to, with their names.
    let movements = [
    [ "north", U(me.locationX, me.locationY - 1)],
    [ "south", U(me.locationX, me.locationY + 1)],
    [ "east", U(me.locationX + 1, me.locationY)],
    [ "west", U(me.locationX - 1, me.locationY)],
    [ "none", U(me.locationX, me.locationY)]
    ];

    botNotes.storeData("huntingTimer", huntingTimer);
    botNotes.storeData("huntedIndex", huntedIndex);

    // Sort them according to the potential U and go wherever the potential is lowest.
    movements.sort((a, b) => a[1] - b[1]);
    return movements[0][0];
}

(Mi scuso per la formattazione sciatta, il rientro dei 4 spazi per questo sito non va bene con la mia abitudine di usare le schede.)

Spiegazione approssimativa

Con la presente, mi dimetto dal tentativo di aggiornare la spiegazione delle formule. I coefficienti cambiano costantemente ed è difficile mantenere aggiornata la spiegazione. Quindi spiegherò solo il principio generale.

Ogni moneta e ogni robot genera un campo di forza con un potenziale. Aggiungo semplicemente i potenziali di tutto e il bot va ovunque il potenziale sia il più basso. (Ovviamente questa idea è stata rubata dalla fisica.)

Uso due tipi di potenziali. Il primo è uno pseudo-gravitazionale (che agisce a qualsiasi distanza), con Lakè una "forza" del campo e, con questa scelta di segno, il potenziale è attraente. Larqui (e ovunque) è la distanza nella metrica del taxi,r = | x₁ - x₂ | + | y₁ - y₂ | .

U=kr+1511+n.

Uso k = 40 per le monete d'oro e k = 10 per le monete d'argento. n è il numero di robot più vicini alla moneta particolare di noi. Altrimenti, ignoriamo assolutamente gli altri robot (se ostacoliamo un bot più forte, scappiamo, ma è tutto). Apprezzo le monete d'oro per più di quanto valgono perché altrimenti i bot che vanno principalmente dopo l'oro mi picchiano continuamente.

Il secondo potenziale è un decadimento esponenziale (che agisce efficacemente solo a distanze molto ridotte). Questo è generato dall'altro, principalmente dai robot più potenti.

Questi producono un campo con Questa forza è proibitivamente forte nell'intervallo 0-1, ma decade a quasi nulla alle distanze più grandi. (Distanza + 1 significa tagliare la forza in 1/20.)

U=5×1400e3r.

Generalmente non attacciamo gli altri robot intenzionalmente (ovviamente se si intralciano e li calpestiamo, è colpa loro), ma c'è la possibilità di farlo. Se vengono soddisfatte alcune condizioni difficili, possiamo entrare nella modalità di caccia , concentrandoci su un singolo bot. Per accedere alla modalità di caccia:

  1. Dobbiamo avere almeno 25 monete. (Prima dobbiamo prendere delle monete.)
  2. Devono avere al massimo (le nostre monete - 5) monete e almeno 10 monete. (Non vogliamo dare la caccia a qualcuno che afferra una moneta ed è improvvisamente più potente, e non vogliamo nemmeno perseguire robot a zero monete.)
  3. Dobbiamo rimanere indietro rispetto al bot attualmente in testa di almeno 1/10 delle sue monete. (Devi essere fortunato a cacciare qualcosa, quindi non è necessario dare una buona posizione solo per tentare la fortuna.)
  4. Non dobbiamo essere in un cooldown di caccia (vedi sotto).

Se tutti questi sono soddisfatti, viene attivata la modalità di caccia. Per i successivi 10 round, il bot cacciato emette solo il potenziale Trascorsi questi 10 round, entriamo nel cooldown di caccia, durante il quale potremmo non entrare di nuovo nella modalità di caccia. (Questo per impedirci di inseguire senza fine e inutilmente un robot mentre tutti gli altri afferrano felicemente le monete.) Il tempo di recupero della caccia è di 20 round quando abbiamo 25 monete, e aumenta di 20 monete per ogni raddoppio di quello. (In altre parole, il tempo di recupero è

U=150er.
20(1 + log2(c / 25)).) (Lo usiamo perché nel gioco finale, tutti i robot cacciabili sono probabilmente morti, e quindi ogni caccia sarà molto probabilmente vana. Per questo motivo, vogliamo limitare il tempo sprecato. Ma a volte, un fortunato in ritardo- il game game può cambiare tutto, quindi manteniamo la possibilità.)

Infine, l'intera arena è posizionata in un potenziale infinito che impedisce al bot di fuggire.


Penso che questo bot probabilmente superi anche il mio movimento ponderato.
fəˈnɛtɪk

@ fəˈnɛtɪk - Anch'io :—). Penso che questo possa gestire un po 'meglio gli altri robot. (Inoltre non è "accecato" da una moneta in una piazza adiacente.) Ma ti ho dato sicuramente +1 perché sono un grande fan di questa idea.
Ramillies,

Potresti applicare il principio della minima azione a questo?
Decadimento beta

@BetaDecay: Non ho paura, il calcolo non risponde bene a problemi discreti come questo. Anche nel caso continuo non sarebbe banale (a causa della magnitudine fissa della velocità), ma potrebbe essere fattibile dopo alcune magiche coordinate polari immagino.
Ramillies,

4
Questo è fico. Non sono sicuro che il rischio sia monotonicamente correlato alla distanza, tuttavia sembra che una minaccia a 2 spazi di distanza abbia maggiori probabilità di ucciderti rispetto a uno adiacente, poiché in quest'ultimo caso uno di voi deve rimanere fermo affinché si verifichi una collisione.
Caino

16

Big King Little Hill | JavaScript

function BigKingLittleHill(me, enemies, coins) {

	
	// Is a move safe to execute?
	function isItSafe(x){
			let loc = [x[0] + me.locationX,x[1] + me.locationY];
			return loc[0] >= 0 && loc[0] < me.arenaLength
			&& loc[1] >= 0 && loc[1] < me.arenaLength
			&& enemies
					.filter(enemy => me.coins <= enemy[2])
					.filter(enemy => getDist(enemy,loc) == 1).length === 0;
	}

	
	// Dumb conversion of relative coord to direction string
	function coordToString(coord){
		if (coord[0] == 0 && coord[1] == 0) return 'none';
		if (Math.abs(coord[0]) > Math.abs(coord[1]))
			return coord[0] < 0 ? 'west' : 'east';
		return coord[1] < 0 ? 'north' : 'south';
	}
	
	
	// Calculate a square's zone of control
	function getZOC(x) {
		let n = 0;
		for(let i = 0; i < me.arenaLength;i++){
			for(let j = 0; j < me.arenaLength;j++){
				if (doesAControlB(x, [i,j])) n++;
			}
		}
		return n;
	}
	
	function doesAControlB(a, b) {
		return getEnemyDist(b) > getDist(a, b);
	}
  
	// Distance to nearest enemy
	function getEnemyDist(x) {
			return enemies.filter(enemy => enemy[2] >= me.coins/50).map(enemy => getWeightedDist(enemy, x)).reduce((accumulator, current) => Math.min(accumulator, current));
	}
  
	// Weights distance by whether enemy is weaker or stronger
	function getWeightedDist(enemy, pos) {
		return getDist(enemy, pos) + (enemy[2] < me.coins ? 1 : 0);
	}
  
	function getDist(a, b){
		return (Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]))
	}
	
	//check whether there are coins in our Zone of Control, if yes move towards the closest one
	let loc = [me.locationX,me.locationY];
	let sortedCoins = coins.sort((a,b) => getDist(loc,a) - getDist(loc,b));
	for (let coin of sortedCoins) {
		if (doesAControlB(loc,coin)){
			return coordToString([coin[0] - loc[0],coin[1] - loc[1]]);
		}
	}
	
	//sort moves by how they increase our Zone of Control
	northZOC = [[0,-1], getZOC([loc[0],loc[1]-1])];
	southZOC = [[0,1], getZOC([loc[0],loc[1]+1])];
	westZOC = [[-1,0], getZOC([loc[0]-1,loc[1]])];
	eastZOC = [[1,0], getZOC([loc[0]+1,loc[1]])];
	noneZOC = [[0,0], getZOC([loc[0],loc[1]])];
	let moves = [northZOC,southZOC,westZOC,eastZOC,noneZOC].sort((a,b) => b[1] - a[1]);
	
	//check whether these moves are safe and make the highest priority safe move
	for (let move of moves) {
		if (isItSafe(move[0])) { 
			return coordToString(move[0]);
		}
	}
	//no moves are safe (uh oh!), return the highest priority
	return coordToString(moves[0][0])
}

Provalo online!

Big King Little Hill prende decisioni basate su "zone di controllo". Inseguirà solo le monete che si trovano nella sua zona di controllo, il che significa che può raggiungere la moneta prima di qualsiasi altro bot. Quando non ci sono monete nella sua zona di controllo, si sposta invece per massimizzare la dimensione della sua zona di controllo. Big King Little Hill calcola la zona di controllo di ciascuna delle sue 5 mosse possibili e favorisce le mosse che massimizzano la dimensione della sua zona di controllo. In questo modo, Big King Little Hill alla fine raggiunge un massimo locale (piccola collina) di controllo e attende che venga generata una moneta nella sua zona. Inoltre, Big King Little Hill rifiuta qualsiasi mossa che potrebbe causare la sua morte a meno che non ci siano alternative.

Big King Little Hill è un pessimista (preferisce il termine realista) perché non si preoccupa di contestare alcuna moneta che non è certo di ottenere. È anche un pacifista in quanto non persegue robot più deboli in alcun senso (anche se potrebbe calpestarne uno se si frappongono). Infine, Big King Little Hill è un codardo che non metterà in pericolo la propria vita per qualsiasi ricompensa a meno che non sia assolutamente necessario.


1
Benvenuti in PPCG! Questo è un ottimo bot = D
Luis felipe De jesus Munoz

Questo è quello che stavo pensando per un bot. Buon lavoro.
Jo.

10

Moneta di sicurezza | JavaScript

SafetyCoin=(myself,others,coins)=>{
  x=myself.locationX;
  y=myself.locationY;
  power=myself.coins;
  arenaSize=myself.arenaLength;
  dist=0;
  optimalCoin=7;
  optimalDist=11*arenaSize;
  for(i=0;i<coins.length;i++){
    enemyDist=3*arenaSize;
    dist=Math.abs(x-coins[i][0])+Math.abs(y-coins[i][1])
    for(j=0;j<others.length;j++){
      if(i==0){
        if(others[j][2]+5>=power){
          enemyDist=Math.min(enemyDist,Math.abs(others[j][0]-coins[i][0])+Math.abs(others[j][1]-coins[i][1]))
        }
      }
      else{
        if(others[j][2]+2>=power){
          enemyDist=Math.min(enemyDist,Math.abs(others[j][0]-coins[i][0])+Math.abs(others[j][1]-coins[i][1]))
        }
      }

    }
    if(enemyDist>dist){
      if(i==0){
        if(dist/5<optimalDist){
          optimalDist=dist/5;
          optimalCoin=i;
        }
      }
      else{
        if(dist/2<optimalDist){
          optimalDist=dist/2;
          optimalCoin=i;
        }
      }
    }
  }
  if(optimalCoin==7){
    safeDir=15;
    if(x==0){safeDir-=8;}
    if(x==arenaSize-1){safeDir-=2;}
    if(y==0){safeDir-=1;}
    if(y==arenaSize-1){safeDir-=4;}
    for(i=0;i<others.length;i++){
      if(others[i][2]>=power){
        if(Math.abs(x-others[i][0])+Math.abs(y-others[i][1])==2){
          if(x-others[i][0]>0){safeDir-=8;}
          if(x-others[i][0]<0){safeDir-=2;}
          if(y-others[i][1]>0){safeDir-=1;}
          if(y-others[i][1]<0){safeDir-=4;}
        }
      }
    }
    directions=["north","east","south","west"];
    if(safeDir!=0){
      tmp="";
      tmp+="0".repeat(Math.max(Math.sqrt(arenaSize)/2|0,y-(arenaSize/2|0)));
      tmp+="2".repeat(Math.max(Math.sqrt(arenaSize)/2|0,(arenaSize/2|0)-y));
      tmp+="1".repeat(Math.max(Math.sqrt(arenaSize)/2|0,(arenaSize/2|0)-x));
      tmp+="3".repeat(Math.max(Math.sqrt(arenaSize)/2|0,x-(arenaSize/2|0)));
      rnd=tmp[Math.random()*tmp.length|0];
      while(!(2**rnd&safeDir)){rnd=tmp[Math.random()*tmp.length|0];}
      return directions[rnd];
    }
    return "none";//the only safe move is not to play :P
  }
  distX=coins[optimalCoin][0]-x;
  distY=coins[optimalCoin][1]-y;
  if(Math.abs(distX)>Math.abs(distY)){
    if(distX>0){return "east";}
    else{return "west";}
  }
  else{
    if(distY>0){return "south";}
    else{return "north";}
  }
}

Questo robot si dirige direttamente verso una moneta ponderata (valore / distanza) che non può morire raggiungendo contemporaneamente o dopo un altro robot. Se non esiste una moneta valida con questa proprietà, si trova dove si trova il robot ora si sposta in una direzione sicura casuale (sicurezza significa che se un robot si sposta verso di essa, la moneta di sicurezza non può scontrarsi. Ciò consente al robot di scambiare i posti con un altro bot se immediatamente accanto), ponderato verso il centro dell'arena.


1
Eh, questo potrebbe effettivamente vincere. Anche se ci sono molti robot
Redwolf Program

Questo metodo avrà più problemi, più i robot nemici con valore più alto o uguale vengono posizionati in modo non uniforme.
fəˈnɛtɪk

1
Bene, probabilmente tutti faranno un beeline alla moneta più vicina a loro / moneta d'oro.
Programmi Redwolf

Andrà bene solo se riuscirà a ottenere alcune monete all'inizio.
fəˈnɛtɪk

E questo è per lo più fortuna, dal momento che il luogo in cui vengono generate le monete viene deciso casualmente
Redwolf Program

10

Il Bot che gioca il gioco con cautela ma può essere aggressivo | JavaScript

Colore preferito: #F24100

Nota: sebbene questo bot abbia preso il 1 ° posto, è dovuto alla collaborazione con "Feudal Noble" alla fine e mangiandolo per altre monete. Altrimenti questo bot sarebbe stato terzo. Se sei interessato a robot più potenti individualmente, dai un'occhiata a Potenzialmente vittorioso e Big King Little Hill .

function (me, monsters, coins) {
    var i, monstersCount = monsters.length, phaseSize = Math.round((me.arenaLength - 4) / 4),
        center = (me.arenaLength - 1) / 2, centerSize = me.arenaLength / 4,
        centerMin = center - centerSize, centerMax = center + centerSize, centerMonsters = 0, centerMonstersAvg = null,
        end = 2e4, apocalypse = end - ((me.arenaLength * 2) + 20), mode = null;

    var getDistance = function (x1, y1, x2, y2) {
        return (Math.abs(x1 - x2) + Math.abs(y1 - y2)) + 1;
    };

    var isAtCenter = function (x, y) {
        return (x > centerMin && x < centerMax && y > centerMin && y < centerMax);
    };

    var round = botNotes.getData('round');
    if (round === null || !round) round = 0;
    round++;
    botNotes.storeData('round', round);

    var isApocalypse = (round >= apocalypse && round <= end);
    if (isApocalypse) {
        mode = botNotes.getData('mode');
        if (mode === null || !mode) mode = 1;
    }

    for (i = 0; i < monstersCount; i++) if (isAtCenter(monsters[i][0], monsters[i][1])) centerMonsters++;

    var lc = botNotes.getData('lc');
    if (lc === null || !lc) lc = [];
    if (lc.length >= 20) lc.shift();
    lc.push(centerMonsters);
    botNotes.storeData('lc', lc);

    if (lc.length >= 20) {
        centerMonstersAvg = 0;
        for (i = 0; i < lc.length; i++) centerMonstersAvg += lc[i];
        centerMonstersAvg = centerMonstersAvg / lc.length;
    }

    var getScore = function (x, y) {
        var score = 0, i, chaseFactor = 0.75, coinFactor = 1;

        if (monstersCount < phaseSize) {
            chaseFactor = 0;
            coinFactor = 0.25;
        } else if (monstersCount < phaseSize * 2) {
            chaseFactor = 0;
            coinFactor = 0.5;
        } else if (monstersCount < phaseSize * 3) {
            chaseFactor = 0.5;
            coinFactor = 0.75;
        }

        if (isApocalypse) {
            if (mode === 1) {
                var centerDistance = getDistance(x, y, center, center);
                if (centerDistance <= 3) {
                    mode = 2;
                } else {
                    score += 5000 / (centerDistance / 10);
                }
            }
            if (mode === 2) chaseFactor = 1000;
        }

        for (i = 0; i < monstersCount; i++) {
            var monsterCoins = monsters[i][2], monsterDistance = getDistance(x, y, monsters[i][0], monsters[i][1]);
            if (me.coins > monsterCoins && monsterDistance <= 3) {
                score += (Math.min(5, monsterCoins) * chaseFactor) / monsterDistance;
            } else if (me.coins <= monsterCoins && monsterDistance <= 3) {
                score -= (monsterDistance === 3 ? 50 : 10000);
            }
        }

        for (i = 0; i < coins.length; i++) {
            var coinDistance = getDistance(x, y, coins[i][0], coins[i][1]),
                coinDistanceCenter = getDistance(center, center, coins[i][0], coins[i][1]),
                coinValue = (i === 0 ? 250 : 100), coinCloserMonsters = 0;

            for (var j = 0; j < monstersCount; j++) {
                var coinMonsterDistance = getDistance(monsters[j][0], monsters[j][1], coins[i][0], coins[i][1]);
                monsterCoins = monsters[j][2];

                if (
                    (coinMonsterDistance < coinDistance && monsterCoins >= me.coins / 2) ||
                    (coinMonsterDistance <= coinDistance && monsterCoins >= me.coins)
                ) {
                    coinCloserMonsters++;
                }
            }

            var coinMonsterFactor = (100 - ((100 / monstersCount) * coinCloserMonsters)) / 100;
            if (coinMonsterFactor < 1) coinMonsterFactor *= coinFactor;
            if (coinMonsterFactor >= 1) coinMonsterFactor *= 15;
            score += ((coinValue * coinMonsterFactor) / coinDistance) + (centerMonstersAvg === null || centerMonstersAvg > 1.75 ? -1 * (50 / coinDistanceCenter) : 200 / coinDistanceCenter);
        }

        return score + Math.random();
    };

    var possibleMoves = [{x: 0, y: 0, c: 'none'}];
    if (me.locationX > 0) possibleMoves.push({x: -1, y: 0, c: 'west'});
    if (me.locationY > 0) possibleMoves.push({x: -0, y: -1, c: 'north'});
    if (me.locationX < me.arenaLength - 1) possibleMoves.push({x: 1, y: 0, c: 'east'});
    if (me.locationY < me.arenaLength - 1) possibleMoves.push({x: 0, y: 1, c: 'south'});

    var topCommand, topScore = null;
    for (i = 0; i < possibleMoves.length; i++) {
        var score = getScore(me.locationX + possibleMoves[i].x, me.locationY + possibleMoves[i].y);
        if (topScore === null || score > topScore) {
            topScore = score;
            topCommand = possibleMoves[i].c;
        }
    }

    if (isApocalypse) botNotes.storeData('mode', mode);

    return topCommand;
}

Questo bot (noto anche come "TBTPTGCBCBA") cerca di prendere la migliore decisione possibile generando un punteggio per ogni possibile mossa e seleziona la mossa con punteggio più alto per ogni turno.

Il sistema di punteggio ha molti dettagli che si sono evoluti dall'inizio della sfida. Possono essere descritti generalmente in questo modo:

  • Più le monete sono vicine a una possibile mossa, maggiore è il punteggio ottenuto da tale mossa. Se una moneta non ha altri possibili concorrenti, il punteggio aumenta ulteriormente. Se una moneta ha altri possibili concorrenti, il punteggio diminuisce.
  • Se un altro bot è vicino a una possibile mossa e ha meno monete, a seconda della fase del gioco, potrebbe significare più punteggio per quella mossa. Quindi è casuale che "TBTPTGCBCBA" mangi qualche altro robot in ogni partita.
  • Se un altro robot è vicino a una possibile mossa con punti uguali o più, quella mossa ottiene abbastanza punteggio negativo per assicurarsi che la morte sia evitata. Naturalmente ci potrebbero essere alcuni casi in cui tutte le possibili mosse sono sbagliate e la morte non può essere evitata, ma è molto raro.
  • C'è un meccanismo per tenere traccia del numero di robot al centro del tabellone negli ultimi 20 turni. Se la media è abbastanza bassa, tutti i movimenti verso le monete nel mezzo ottengono più punteggio e se la media è alta, allora tutti i movimenti verso le monete nel mezzo ottengono un punteggio più basso. Questo meccanismo consente di evitare conflitti con "Nobile feudale". Poiché il "Nobile feudale" è sempre nel mezzo (a meno che non venga inseguito), il numero medio di bot nel mezzo aumenta e "TBTPTGCBCBA" capisce di evitare il mezzo se esiste una migliore opzione al di fuori dell'area centrale. Se "Feudal Noble" muore, la media diminuisce e "TBTPTGCBCBA" comprende che può usare la metà.
  • Ci sono alcuni fattori che cambiano dinamicamente in base alla fase del gioco (rilevati dal numero di bot vivi), questi fattori influenzano il punteggio in ciascuno degli oggetti sopra.
  • Questo bot ha un'abilità speciale. Nel tempo si stanca dell'egoismo di "Nobile feudale" e dell'oppressione dei contadini. Al momento giusto, sorgerà per porre fine allo spiacevole sistema feudalesimo. Un tentativo riuscito non solo aiuta i poveri contadini, ma offre anche maggiori possibilità di vincita a causa delle monete prese dal "Nobile feudale".

Sembra molto più ... intelligente degli altri
Programmi Redwolf

5
Mi piacciono i mostri parte dei params
Redwolf Program

9

L'anticapitalista | Javascript

Non ha alcun incentivo a cercare monete, ma cerca di posizionarsi esattamente tra i due robot più ricchi con la stessa quantità di denaro, nella speranza che lo cacciano e alla fine lo catturino allo stesso tempo, portando con sé due capitalisti quando muore . Non resiste attivamente all'ottenimento di monete, quindi potrebbe diventare un bersaglio più succoso.

function antiCapitalist(me, capitalists, coins){

    function acquireTargets(capitalists){
        capitalists.sort((a, b) => a[2] < b[2]);
        let previousCapitalist;
        for(let i in capitalists){
            let capitalist = capitalists[i];

            if(capitalist[2] === 0){
                return false;
            }
            if(previousCapitalist && capitalist[2] === previousCapitalist[2]){
                return [previousCapitalist, capitalist];
            }

            previousCapitalist = capitalist;
        }

        return false;
    }

    function move(){
        const targets = acquireTargets(capitalists);
        if(!targets){
            return 'none';
        }

        const coordinates = [Math.floor((targets[0][0] + targets[1][0]) / 2), Math.floor((targets[0][1] + targets[1][1]) / 2)];
        if(me.locationX !== coordinates[0]){
            return me.locationX < coordinates[0] ? 'east' : 'west';
        }
        else if(me.locationX !== coordinates[1]){
            return me.locationY < coordinates[1] ? 'south' : 'north';
        }
        else {
            return 'none';
        }
    }

    return move();
}

9

The GUT, JavaScript

function gut(me, others, coins) {
    // Prepare values for the calculation
    var x = me.locationX;
    var y = me.locationY;
    var cMe = me.coins+1;
    var arenaLen = me.arenaLength;

    var objects = [];

    // Add bots to objects
    for (var i = 0; i < others.length; i++) {
        objects.push([others[i][0],others[i][1],others[i][2]/cMe]);
    }

    // Add coins to objects
    for (var j = 0; j < coins.length; j++) {
        var coinVal = 0;

        if (j == 0) {
            // Gold has a higher coin value
            coinVal = -10;
        } else {
            // Silver has a lower coin value
            coinVal = -5;
        }

        objects.push([coins[j][0],coins[j][1],coinVal/cMe]);
    }

    // Perform the calculation
    // x acceleration
    var x_acceleration = 0;

    for (var k=0; k < objects.length; k++) {
        var kval = objects[k][2];
        var xval = objects[k][0];

        x_acceleration += 200*kval/cMe*(x-xval)*Math.exp(Math.pow(kval,2)-50*Math.pow(x-xval,2));
    }

    // y acceleration
    var y_acceleration = 0;

    for (var l=0; l < objects.length; l++) {
        var kval = objects[l][2];
        var yval = objects[l][1];

        y_acceleration += 200*kval/cMe*(y-yval)*Math.exp(Math.pow(kval,2)-50*Math.pow(y-yval,2));
    }

    // Compare the values
    if (Math.abs(y_acceleration)>Math.abs(x_acceleration)) {
        if (y_acceleration < 0) {
            // Don't fall off the edge
            if (y>0) {
                return "north";
            } else {
                return "none";
            }
        } else {
            if (y<arenaLen-1) {
                return "south";
            } else {
                return "none";
            }
        }
    } else if (Math.abs(y_acceleration)<Math.abs(x_acceleration)) {
        if (x_acceleration < 0) {
            if (x>0) {
                return "west";
            } else {
                return "none";
            }
        } else {
            if (x<arenaLen-1) {
                return "east";
            } else {
                return "none";
            }
        }
    } else {
        return "none";
    }
}

Con Potenzialmente vittorioso abbiamo due campi: il campo bot e il campo moneta. Tuttavia, la natura non è così complicata. È tempo di unificare i due campi per produrre la Grande Teoria Unificata .

In primo luogo, dobbiamo capire qual è il potenziale del campo. Supponendo che il nostro bot non influisca in alcun modo sul campo, possiamo scrivere questo come:

V=nkn(ekn2100(xxn)2+ekn2100(yyn)2)

kn(xn,yn)

La proprietà relativa dell'oggetto viene calcolata in questo modo:

k=cobjectcme

ccme=cself+1cself

Chiamiamo semplicemente questa parte di correzione di Modified Betanian Dynamics (MOBD) .

Possiamo anche trovare l'energia cinetica come:

T=12cme(x˙2+y˙2)

Ora possiamo calcolare l'azione:

Action=ab(TV)dt=ab(12cme(x˙2+y˙2)nkn(ekn2100(xxn)2+ekn2100(yyn)2))dt

E così il lagrangiano del nostro bot nel campo del coin-bot è:

L=12cme(x˙2+y˙2)nkn(ekn2100(xxn)2+ekn2100(yyn)2)

Ora dobbiamo risolvere le equazioni di Eulero-Lagrange:

ddtLx˙=Lx

e:

ddtLy˙=Ly

Così:

ddtLx˙=ddt[cmex˙]=cmex¨

Lx=n200kn(xxn)ekn2100(xxn)2

x¨=n200kncme(xxn)ekn2100(xxn)2

E anche:

ddtLy˙=ddt[cmey˙]=cmey¨

Ly=n200kn(yyn)ekn2100(yyn)2

y¨=n200kncme(yyn)ekn2100(yyn)2

Ora non abbiamo bisogno di andare oltre: guardiamo solo alla direzione dell'accelerazione generale:

output={northif y¨<0 and |y¨|>|x¨|southif y¨>0 and |y¨|>|x¨|westif x¨<0 and |x¨|>|y¨|eastif x¨>0 and |x¨|>|y¨|noneif |y¨|=|x¨|

E proprio così, abbiamo unificato le monete e i robot. Dov'è il mio premio Nobel?


5
Il tuo premio Nobel è stato perso per posta, ma potremmo invece assegnarti un Emmy Award
Redwolf Program

1
Sembra che la fisica inizi a diventare popolare in questa sfida. :-D. E ovviamente sono molto curioso di sapere come andrà bene.
Ramillies,

1
(A proposito, avresti potuto salvare la seccatura con le equazioni di Eulero-Lagrange, perché riducono al fatto ben noto che F = c_me a = - grad U :—).)
Ramillies

@Ramillies Meh, è ​​stato più divertente farlo in questo modo: D
Decadimento beta

1
Sei sicuro di voler utilizzare le k = monete di qualcos'altro / le tue monete? Inizi senza monete ... e con NaN ovunque, non hai troppa probabilità di ottenerle.
Ramillies,

8

Riccioli d'oro, JavaScript (Node.js)

function goldilocks(me, others, coins) {
  let target = coins[0]; // Gold
  let x = target[0] - me.locationX;
  let y = target[1] - me.locationY;

  mymove = 'none'
  if (Math.abs(x) <= Math.abs(y) && x != 0)
    mymove = x < 0 ? 'west' : 'east'
  else if (y != 0)
    mymove = y < 0 ? 'north' : 'south'

  return mymove
}

Provalo online!

Si aggancia alla posizione della moneta d'oro e si sposta verso di essa ogni volta. (Grazie al bot 'B33-L1N3' di @ Mayube per il codice originale utilizzato, anche se a malapena ne rimane.)


Questo è un robot piuttosto carino e semplice. Mi piace.
Programmi Redwolf

2
A proposito, sto usando questo bot come test per il mio controller (:
Programmi Redwolf

8

Algoritmo di apprendimento di terza generazione | JavaScript (Node.js)

function run(me) {
	options = [];
	if (me.locationX > 0) options.push('west');
	if (me.locationY > 0) options.push('north');
	if (me.locationX < me.arenaLength) options.push('east');
	if (me.locationY < me.arenaLength) options.push('south');

	return options[Math.floor(Math.random() * options.length)];
}

Provalo online!

Dopo alcune generazioni di apprendimento, questo bot ha imparato che lasciare l'arena = male


Oh bene. Ho sentito che questo si chiama "Selezione naturale"
Redwolf Program

5
Dov'è la seconda generazione
Luis felipe De jesus Munoz,

11
@LuisfelipeDejesusMunoz Ha lasciato l'arena.
Jo.

Questo è un buon bot per il debug del controller
Programmi Redwolf

3
Oh, a proposito, l'arena inizia da 0, quindi dovrebbe essere arenaLength - 1. Questo ha ucciso il tuo bot un paio di volte abbastanza per molti
Programmi Redwolf,

7

B33-L1N3 | JavaScript (Node.js)

function(me, others, coins) {
	// Do nothing if there aren't any coins
	if (coins.length == 0) return 'none';
	// Sort by distance using Pythagoras' Theorem
	coins = coins.sort((a, b) => (a[0] ** 2 + a[1] ** 2) - (b[0] ** 2 + b[1] ** 2));
	// Closest coin
	let target = coins[0];
	let x = target[0];
	let y = target[1];

	// Util function for movement
	function move(pos, type) {
		let moveTypes = { X: ['east', 'west'], Y: ['south', 'north'] };
		if (pos > me['location'+type]) return moveTypes[type][0];
		else return moveTypes[type][1];
	}

	// Move the shortest distance first
	if (x < y && x != me.locationX) return move(x, 'X');
	else if (y != me.locationY) return move(y, 'Y');
}

Provalo online!

Fa una scala per la moneta più vicina


Oh, pensavo che B33-L1N3 fosse una specie di numero di modello
Redwolf Program

+1 per il nome
Caino

let coins = ...Uncaught SyntaxError: Identifier 'coins' has already been declared
Night2

Eliminare illet
Redwolf Programmi

5

Livin 'on the Edge, JavaScript

function LivinOnTheEdge (myself, others, coins) {
  x = myself.locationX;
  y = myself.locationY;
  xymax = myself.arenaLength - 1;
  if (x < xymax && y == 0) {
      return 'east';
    } else if (y < xymax && x == xymax) {
      return 'south';
    } else if (x > 0 && y == xymax) {
      return 'west';
  } else {
    return 'north';
  }
}

Questo ha sentito che il bordo dell'arena è un posto pericoloso dove stare. Non avendo paura, gira instancabilmente la tavola in senso orario, a pochi centimetri dalla morte certa che attende dietro il confine, sperando che nessun altro robot oserà muoversi così da vicino nelle vicinanze del bordo.


1
Questo non finirebbe bene se venisse creato un altro bot con 1 moneta in più, e pattugliato il confine nella direzione opposta (:
Programmi Redwolf

8
Farei una battuta sul controllo delle frontiere, ma la lascio fino a @BetaDecay
Redwolf Programmi

5

Damacy, JavaScript (Node.js)

function damacy(me, others, coin) {
  let xdist = t => Math.abs(t[0] - me.locationX)
  let ydist = t => Math.abs(t[1] - me.locationY)
  function distanceCompare(a, b, aWt, bWt) {
    aWt = aWt || 1
    bWt = bWt || 1
    return (xdist(a) + ydist(a)) / aWt - (xdist(b) + ydist(b)) / bWt
  }
  function hasThreat(loc) {
    let threat = others.filter(b => b[0] == loc[0] && b[1] == loc[1] && b[2] >= me.coins)
    return (threat.length > 0)
  }
  function inArena(loc) {  // probably unnecessary for this bot
    return loc[0] >= 0 && loc[1] >= 0 && loc[0] < me.arenaLength && loc[1] < me.arenaLength
  }
  function sortedCoins() {
    coinsWithValues = coin.map((coords, i) => coords.concat((i == 0) ? 5 : 2))
    coinsWithValues.sort((a, b) => distanceCompare(a, b, a[2], b[2]))
    return coinsWithValues.map(c => c.slice(0, 2))
  }
  othersPrev = botNotes.getData('kata_others_pos')
  botNotes.storeData('kata_others_pos', others)
  if (othersPrev) {

    for(let i = 0; i < others.length; i++) {
      let bot = others[i]

      let matchingBots = othersPrev.filter(function (b) {
        let diff = Math.abs(b[0] - bot[0]) + Math.abs(b[1] - bot[1])
        if (diff >= 2)
          return false // bot can't have jumped
        return [0, 2, 5].includes(bot[2] - b[2])
      })

      if (matchingBots.length > 0) {
        let botPrev = matchingBots.shift()
        // remove matched bot so it doesn't get matched again later
        othersPrev = othersPrev.filter(b => b[0] != botPrev[0] || b[1] != botPrev[1])
        bot[0] = Math.min(Math.max(bot[0] + bot[0] - botPrev[0], 0), me.arenaLength-1)
        bot[1] = Math.min(Math.max(bot[1] + bot[1] - botPrev[1], 0), me.arenaLength-1)
      }
    }
  }

  let eatables = others.filter(b => b[2] < me.coins && b[2] > 0)
  let targets
  if (eatables.length > 0) {
    targets = eatables.sort(distanceCompare)
  }
  else {
    targets = sortedCoins()
  }

  let done, newLoc, dir
  while (!done && targets.length > 0) {
    t = targets.shift()
    if ((xdist(t) <= ydist(t) || ydist(t) == 0) && xdist(t) != 0) {
      let xmove = Math.sign(t[0] - me.locationX)
      dir = xmove < 0 ? 'west' : 'east'
      newLoc = [me.locationX + xmove, me.locationY]
      if (!hasThreat(newLoc) && inArena(newLoc))
        done = 1
    }

    if (!done) {
      let ymove = Math.sign(t[1] - me.locationY)
      dir = ['north', 'none', 'south'][ymove + 1]
      newLoc = [me.locationX, me.locationY + ymove]
      if (!hasThreat(newLoc) && inArena(newLoc))
        done = 1
    }
  }

  if (!done)
    dir = 'none'


  return dir
}

Provalo online!

Un ultimo bot basato su katamari per oggi, questa volta con un po 'di memoria. Grazie a @BetaDecay per il suggerimento sul nome - sicuramente un nome più divertente del mio simplePredictorKatamari.

Cerca di capire come si sono mossi i robot nell'ultimo turno e, in base a quello, predice dove proveranno a muoversi alla fine di questo turno (supponendo che continuino a muoversi nella stessa direzione).

(Grazie a @ fəˈnɛtɪk, per aver notato che stavo chiamando il nome della funzione errata in botNotes, e a @ OMᗺ per aver notato un bug nel codice di base.)


Questo è probabilmente l'unico in questo momento che può catturare gli altri al di fuori del solo essere fortunato.
Caino

Le botnote non dovrebbero essere "salvate" o non impostate?
fəˈnɛtɪk,

@ fəˈnɛtɪk Vedi, ha già bisogno di un bugfix! :) Grazie, corretto ora.
Sundar - Ripristina Monica il

Dovresti sostituire aWt = 1i parametri con aWte metterli aWt = aWt || 1sotto (Lo stesso con bWt). Questo impedisce errori.
Programmi Redwolf,

5

Proton | JavaScript

Proton=(myself,others,coins)=>{
  x=myself.locationX;
  y=myself.locationY;
  power=myself.coins;
  arenaSize=myself.arenaLength;
  forceX=0;
  forceY=0;
  prevState=botNotes.getData("proton_velocity");
  if(prevState){
    velocity=prevState[0];
    direction=prevState[1];
  }
  else{
    velocity=0;
    direction=0;
  }
  for(i=0;i<coins.length;i++){
    if(Math.abs(x-coins[i][0])+Math.abs(y-coins[i][1])==1){
      velocity=0;
      direction=0;
      botNotes.storeData("proton_velocity",[velocity,direction]);
      if(x-coins[i][0]==1){return "west";}
      if(coins[i][0]-x==1){return "east";}
      if(y-coins[i][1]==1){return "north";}
      if(coins[i][1]-y==1){return "south";}
    }
    else{
      dist=Math.sqrt(Math.pow(x-coins[i][0],2)+Math.pow(y-coins[i][1],2));
      if(i==0){
        forceX+=(x-coins[i][0])*5/Math.pow(dist,3);
        forceY+=(y-coins[i][1])*5/Math.pow(dist,3);
      }
      else{
        forceX+=(x-coins[i][0])*2/Math.pow(dist,3);
        forceY+=(y-coins[i][1])*2/Math.pow(dist,3);
      }
    }
  }
  for(i=0;i<others.length;i++){
    if(Math.abs(x-others[i][0])+Math.abs(y-others[i][1])==1&&power>others[i][2]){
      velocity=0;
      direction=0;
      botNotes.storeData("proton_velocity",[velocity,direction]);
      if(x-others[i][0]==1){return "west";}
      if(others[i][0]-x==1){return "east";}
      if(y-others[i][1]==1){return "north";}
      if(others[i][1]-y==1){return "south";}
    }
    else{
      dist=Math.sqrt(Math.pow(x-others[i][0],2)+Math.pow(y-others[i][1],2));
      forceX+=(x-others[i][0])*others[i][2]/Math.pow(dist,3);
      forceY+=(y-others[i][1])*others[i][2]/Math.pow(dist,3);
    }
  }
  vX=velocity*Math.cos(direction)+10*forceX/Math.max(1,power);
  vY=velocity*Math.sin(direction)+10*forceY/Math.max(1,power);
  velocity=Math.sqrt(vX*vX+vY*vY);
  if(velocity==0){return "none"}
  retval="none";
  if(Math.abs(vX)>Math.abs(vY)){
    if(vX>0){
      if(x<arenaSize-1){retval="east";}
      else{vX=-vX;retval="west";}
    }
    else{
      if(x>0){retval="west";}
      else{vX=-vX;retval="east";}
    }
  }
  else{
    if(vY>0){
      if(y<arenaSize-1){retval="south";}
      else{vY=-vY;retval="north";}
    }
    else{
      if(y>0){retval="north";}
      else{vY=-vY;retval="south";}
    }
  }
  direction=Math.atan2(-vY,vX);
  botNotes.storeData("proton_velocity",[velocity,direction]);
  return retval;
}

Tutte le monete (comprese quelle detenute da altri robot) emettono una forza repulsiva verso Protonbot. Basato su questa forza, aumenta la velocità e rimbalza sui muri (si gira immediatamente dopo aver colpito un confine). Se finisce vicino a un robot o una moneta che può consumare, la Forza nucleare forte prende il sopravvento e si muove per consumarlo, facendo cadere tutta la velocità quando lo fa.


Hmm, la fisica nucleare applicata alla caccia al tesoro? Questo batte Science Channel ogni giorno!
Programmi Redwolf

Devi sostituire sincon Math.sin, coscon Math.cose così via
Programmi Redwolf,

4

Non così ciecamente | JavaScript (Node.js)

Nota importante: questo approccio non è interamente mio ed è stata data una risposta in una domanda simile . Assicurati di votare anche quella risposta.

Hai mai sentito parlare dell'algoritmo A * pathfinding? Ecco qui. Crea il percorso migliore da un punto alla moneta meno preziosa (poiché tutti stanno andando per il più prezioso, nessuno sta andando per il meno) e cerca di non scontrarsi con nessun altro utente.

Si aspetta i parametri come segue:

AI({locationX: 3, locationY: 1, arenaLength: [5,5]}, [[2,1],[2,2], ...],[[1,2],[3,1], ...])

Forse ne faccio uno che va a caccia di altri robot


function AI(me, others, coins){
    var h = (a,b) => Math.abs(a[0] -b[0]) + Math.abs(a[1] -b[1])
    var s = JSON.stringify;
    var p = JSON.parse;
    var walls = others.slice(0,2).map(s);
    var start = [me.locationX, me.locationY];
    var goal = coins.pop();
    var is_closed = {};
    is_closed[s(start)] = 0;
    var open = [s(start)];
    var came_from = {};
    var gs = {};
    gs[s(start)] = 0;
    var fs = {};
    fs[s(start)] = h(start, goal);
    var cur;
    while (open.length) {
        var best;
        var bestf = Infinity;
        for (var i = 0; i < open.length; ++i) {
            if (fs[open[i]] < bestf) {
                bestf = fs[open[i]];
                best = i;
            }
        }
        cur = p(open.splice(best, 1)[0]);
        is_closed[s(cur)] = 1;
        if (s(cur) == s(goal)) break;
        for (var d of [[0, 1], [0, -1], [1, 0], [-1, 0]]) {
            var next = [cur[0] + d[0], cur[1] + d[1]];
            if (next[0] < 0 || next[0] >= me.arenaLength[0] ||
                next[1] < 0 || next[1] >= me.arenaLength[1]) {
                continue;
            }
            if (is_closed[s(next)]) continue;
            if (open.indexOf(s(next)) == -1) open.push(s(next));
            var is_wall = walls.indexOf(s(next)) > -1;
            var g = gs[s(cur)] + 1 + 10000 * is_wall;
            if (gs[s(next)] != undefined && g > gs[s(next)]) continue;
            came_from[s(next)] = cur;
            gs[s(next)] = g;
            fs[s(next)] = g + h(next, goal);
        }
    }
    var path = [cur];
    while (came_from[s(cur)] != undefined) {
        cur = came_from[s(cur)];
        path.push(cur);
    }
    var c = path[path.length - 1];
    var n = path[path.length - 2];
    if(n){
        if (n[0] < c[0]) {
            return "west";
        } else if (n[0] > c[0]) {
            return "east";
        } else if (n[1] < c[1]) {
            return "north";
        } else {
            return "south";
        }
    }else{
        return "none";
    }
}

1
Wow ... un algoritmo di pathfinding già? Sono passate solo 3 ore!
Programmi Redwolf

@RedwolfPrograms Come ho già detto, viene copiato da un'altra sfida simile. Ho solo bisogno di adattarlo a questo.
Luis felipe De jesus Munoz,

I miei algoritmi vanno per qualsiasi moneta più sicura.
fəˈnɛtɪk

4

Vigliacco | Python 2

import random

def move(me, others, coins):
    target = (me.locationX, me.locationY)

    # Identify the dangerous opponents.
    threats = [i for i, value in enumerate(others[2]) if value >= me.coins]

    # If no one scary is nearby, find a nearby coin.
    safe = True
    for x, y in self.coins:
        distance = abs(me.locationX - x) + abs(me.locationY - y)
        safe = True
        for i in threats:
            if abs(others[0][i] - x) + abs(others[1][i] - y) <= distance:
                safe = False
                break

        if safe:
            target = (x, y)
            break

    # Otherwise, just try not to die.
    if not safe:
        certain = []
        possible = []
        for x, y in [
            (me.locationX, me.locationY),
            (me.locationX + 1, me.locationY),
            (me.locationX - 1, me.locationY),
            (me.locationX, me.locationY + 1),
            (me.locationX, me.locationY - 1),
        ]:
            # Don't jump off the board.
            if x < 0 or y < 0 or x == me.arenaLength or y == me.arenaLength:
                continue

            # Check if we can get away safely.
            for i in threats:
                if abs(others[0][i] - x) + abs(others[1][i] - y) <= 1:
                    break
            else:
                certain.append((x, y))

            # Check if we can take a spot someone is leaving.
            for i in threats:
                if others[0][i] = x and others[1][i] == y:
                    for i in threats:
                        if abs(others[0][i] - x) + abs(others[1][i] - y) == 1:
                            break
                    else:
                        possible.append((x, y))

        if certain:
            target = random.choice(certain)
        elif possible:
            target = random.choice(possible)
        # Otherwise, we're doomed, so stay still and pray.

    directions = []
    x, y = target
    if x < me.locationX:
        directions.append('west')
    if x > me.locationX:
        directions.append('east')
    if y < me.locationY:
        directions.append('north')
    if y > me.locationY:
        directions.append('south')
    if not directions:
        directions.append('none')

    return random.choice(directions)

Evita i robot con più soldi, se possibile. Altrimenti, prendi i soldi che ti stanno intorno.


Questo è il bot più semplice che ha la possibilità di vincere
Redwolf Program

4

Wild Goose Chase Bot, Javascript

Un robot che è davvero bravo a schivare altri robot, ma molto cattivo a ottenere monete.


Algoritmo:

  1. Se non ci sono bot adiacenti, non restituire nessuno
  2. Altrimenti:
    1. Restituisci nessuno con una possibilità casuale 1/500 di probabilità (questo ha lo scopo di prevenire stallo).
    2. Determina in quali spazi è sicuro spostarsi (ovvero all'interno dell'arena e non occupato da un altro bot)
    3. Restituisci uno a caso

Codice:

function wildGooseChase(me, others, coins){
    x = me.locationX;
    y = me.locationY;

    dirs = {};
    dirs[(x+1)+" "+y] = "east";
    dirs[(x-1)+" "+y] = "west";
    dirs[x+" "+(y+1)] = "south";
    dirs[x+" "+(y-1)] = "north";

    mov = {};
    mov["east"] = [x+1,y];
    mov["west"] = [x-1,y];
    mov["north"] = [x,y-1];
    mov["south"] = [x,y+1]; 

    possibleDirs = ["east","west","north","south"];

    for (i = 0; i < others.length; i++){
        if (others[i][0]+" "+others[i][1] in dirs){
            possibleDirs.splice(possibleDirs.indexOf(dirs[others[i][0]+" "+others[i][1]]),1);
        }
    }

    if (possibleDirs.length == 4 || Math.floor(Math.random() * 500) == 0){
        return "none"
    }

    for (i = 0; i < possibleDirs.length; i++){
        if (mov[possibleDirs[i]][0] == me.arenaLength || mov[possibleDirs[i]][0] < 0 
        || mov[possibleDirs[i]][1] == me.arenaLength || mov[possibleDirs[i]][1] < 0){
            var index = possibleDirs.indexOf(possibleDirs[i]);
            if (index != -1) {
                possibleDirs.splice(index, 1);
                i--;
            }
        }
    }

    if (possibleDirs.length == 0){
         return "none";
    }

    return possibleDirs[Math.floor(Math.random() * possibleDirs.length)];
}

Provalo online!

Nota per i programmi Redwolf:

Questo bot ha il potenziale per causare round molto lunghi. Mi sono preso alcune libertà per prevenire le situazioni di stallo, ma non ho testato se sono effettivamente efficaci. Se questo bot diventa un problema durante il test, non esitate a squalificarlo.


Grazie per la nota. Un evasore esperto ha buone possibilità se riesce a raccogliere abbastanza monete mentre viene inseguito
Redwolf Programmi

Mi piace questo. È quasi come un'esca per i robot da caccia
Decadimento beta

4

KatamariWithValues, JavaScript (Node.js) ,

function katamariWithValues(me, others, coin) {
  let xdist = t => Math.abs(t[0] - me.locationX)
  let ydist = t => Math.abs(t[1] - me.locationY)
  function distanceCompare(a, b, aWt = 1, bWt = 1) {
    return (xdist(a) + ydist(a)) / aWt - (xdist(b) + ydist(b)) / bWt
  }
  function hasThreat(loc) {
    let threat = others.filter(b => b[0] == loc[0] && b[1] == loc[1] && b[2] >= me.coins)
    return (threat.length > 0)
  }
  function inArena(loc) {  // probably unnecessary for this bot
    return loc[0] >= 0 && loc[1] >= 0 && loc[0] < me.arenaLength && loc[1] < me.arenaLength
  }
  function sortedCoins() {
    coinsWithValues = coin.map((coords, i) => coords.concat((i == 0) ? 5 : 2))
    coinsWithValues.sort((a, b) => distanceCompare(a, b, a[2], b[2]))
    return coinsWithValues.map(c => c.slice(0, 2))
  }

  let eatables = others.filter(b => b[2] < me.coins && b[2] > 0)
  let targets
  if (eatables.length > 0) {
    targets = eatables.sort(distanceCompare)
  }
  else {
    targets = sortedCoins()
  }

  let done, newLoc, dir
  while (!done && targets.length > 0) {
    t = targets.shift()
    if ((xdist(t) <= ydist(t) || ydist(t) == 0) && xdist(t) != 0) {
      let xmove = Math.sign(t[0] - me.locationX)
      dir = xmove < 0 ? 'west' : 'east'
      newLoc = [me.locationX + xmove, me.locationY]
      if (!hasThreat(newLoc) && inArena(newLoc))
        done = 1
    }

    if (!done) {
      let ymove = Math.sign(t[1] - me.locationY)
      dir = ['north', 'none', 'south'][ymove + 1]
      newLoc = [me.locationX, me.locationY + ymove]
      if (!hasThreat(newLoc) && inArena(newLoc))
        done = 1
    }
  }

  if (!done)
    dir = 'none'

  return dir
}

Provalo online!

(Grazie a @ OMᗺ per aver segnalato un bug nel codice originale su cui si basava.)

Cerca di crescere "mangiando" robot con meno monete di se stesso. Se ciò non è possibile (non esiste un robot simile), cerca la moneta più vicina.

Questa versione ha piccole modifiche per (a) dare maggiore preferenza alle monete d'oro rispetto alle monete d'argento - con il rischio che la ricerca di una moneta d'oro più distante possa finire per costare la vita del robot o portare a inseguire l'oro degli sciocchi (b) saltare i robot con 0 monete - non c'è bisogno di perdere tempo a inseguirle.


Un cacciatore intelligente ... beh, è ​​ancora meglio!
Programmi Redwolf

@RedwolfPrograms Speriamo di sì! :)
Sundar - Ripristina Monica l'

Avrei dovuto chiamarlo Damacy;)
Beta Decay


4

Bot ubriaco educato miope | JavaScript

function politeNearSightedDrunkBot(me, others, coins) {
  let directions = ['none','east','south','west','north']
  let drunkennessCoefficient = .2
  let nearSightedness = me.arenaLength - others.length + 2
  //drawCircle(me.locationX, me.locationY, nearSightedness*squareSize)

  function randomInt(a) {
    return Math.floor(Math.random() * a);
  }
  function getRandomDirection() {
    return ['east', 'west', 'north', 'south'][randomInt(4)]
  }

  function distanceTo(a) {
    return (Math.abs(a[0] - me.locationX) + Math.abs(a[1] - me.locationY))
  }
  function distanceBetween(a, b){
    return (Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]))
  }
  function isTargetSafe(a) {
    for (let i = 0; i < others.length; i++) {
      if (others[i][2] >= me.coins && distanceBetween(a, others[i]) <= distanceTo(a)) {
        return false //unnecessary loop, but I don't want to split out into a function
      }
    }
    return true
  }
  function amISafe() {
    for (let i = 0; i < others.length; i++) {
      if (others[i][2] >= me.coins && distanceTo(others[i]) == 1) {
        /*let num = botNotes.getData('turnsSpentAdjacentToEnemy')
        if (!num) {
          console.log('politeNearSightedDrunkBot: Woops!')
          botNotes.storeData('turnsSpentAdjacentToEnemy', 1)
        } else if (num == 1) {
          console.log('politeNearSightedDrunkBot: \'Scuse me...')
          botNotes.storeData('turnsSpentAdjacentToEnemy', 2)
        } else if (num == 2) {
          console.log('politeNearSightedDrunkBot: D\'ye mind?')
          botNotes.storeData('turnsSpentAdjacentToEnemy', 3)
        } else if (num == 3) {
          console.log('politeNearSightedDrunkBot: Bugger off!')
        }*/
        return false
      }
    }
    return true
  }
  function getSafeDirections() {
    let candidates = {'none': true, 'east': true, 'south': true, 'west': true, 'north': true}
    if (me.locationY == 0) {
      candidates['north'] = false
    } else if (me.locationY == me.arenaLength - 1) {
      candidates['south'] = false
    }
    if (me.locationX == 0) {
      candidates['west'] = false
    } else if (me.locationX == me.arenaLength - 1) {
      candidates['east'] = false
    }
    if (!amISafe()) {
      candidates['none'] = false
    }/* else {
      botNotes.storeData('turnsSpentAdjacentToEnemy', 0)
    }*/
    if (candidates['north'] && !isTargetSafe([me.locationX, me.locationY-1])) {
      candidates['north'] = false
    }
    if (candidates['south'] && !isTargetSafe([me.locationX, me.locationY+1])) {
      candidates['south'] = false
    }
    if (candidates['west'] && !isTargetSafe([me.locationX-1, me.locationY])) {
      candidates['west'] = false
    }
    if (candidates['east'] && !isTargetSafe([me.locationX+1, me.locationY])) {
      candidates['east'] = false
    }
    if (candidates['none']) {
    }
    return candidates
  }
  function getSafeCoins() {
    let safestCoins = []
    let coinSizes = [5, 2, 2, 2, 2]
    for (let i = 0; i < coins.length; i++) {
      let distanceToThisCoin = distanceTo(coins[i])
      if (distanceToThisCoin < nearSightedness && isTargetSafe(coins[i])) {
        safestCoins.push([coins[i][0], coins[i][1], coinSizes[i], distanceToThisCoin])
        //alert('Coin at (' + coins[i][0] + ', ' + coins[i][1] + ') is safe!')
      }
    }
    if (safestCoins.length == 0) {
      //alert('No safe coins!')
    }
    return safestCoins
  }

  function getAdditiveBestDirectionToTargets(targets) {
    let candidates = {'east': 0, 'south': 0, 'west': 0, 'north': 0}
    for (let i = 0; i < targets.length; i++) {
      if (targets[i][0] < me.locationX) { 
        candidates['west'] = candidates['west'] + targets[i][2]/targets[i][3]
      } else if (targets[i][0] > me.locationX) {
        candidates['east'] = candidates['east'] + targets[i][2]/targets[i][3]
      }
      if (targets[i][1] > me.locationY) { 
        candidates['south'] = candidates['south'] + targets[i][2]/targets[i][3]
      } else if (targets[i][1] < me.locationY) {
        candidates['north'] = candidates['north'] + targets[i][2]/targets[i][3]
      }
    }
    for (let key in candidates) {
      //alert(key + ': ' + candidates[key])
    }
    return candidates
  }

    let targetCoins = getSafeCoins()
    let safeDirections = getSafeDirections()
    let chosenDir = null
    if (targetCoins.length > 0) {
      //alert('Coins found! Exactly ' + targetCoins.length)
      let weightedDirections = getAdditiveBestDirectionToTargets(targetCoins)
      let bestOptionWeight = 0
      let choices = []
      for (let key in safeDirections) {
        if (safeDirections[key] && key != 'none') {
          if (weightedDirections[key] == bestOptionWeight) {
            choices.push(key)
          } else if (weightedDirections[key] > bestOptionWeight) {
            choices = [key]
            bestOptionWeight = weightedDirections[key]
          }
        }
      }
      if (choices.length > 0) {
        //alert('Picking from choices, ' + choices.length + ' options and best weight is ' + bestOptionWeight)
        chosenDir = choices[randomInt(choices.length)]
      } else {
        //alert('No safe choices!')
      }
    } else {
      let lastDir = botNotes.getData('direction') || 'none'
      if (safeDirections[lastDir] && Math.random() >= drunkennessCoefficient) {
        chosenDir = lastDir
      }
    }

    if (!chosenDir) {
      //alert('indecisive!')
      let choices = []
      for (key in safeDirections) {
        if (safeDirections[key]) {
          choices.push(key)
        }
      }
      if (choices.length > 0) {
        chosenDir = choices[randomInt(choices.length)]
      } else {
        chosenDir = getRandomDirection()
      }
    }

    botNotes.storeData('direction', chosenDir)
    //alert('Moving ' + chosenDir)
    return chosenDir
}

Barcolla in giro raccogliendo monete vicine, ma cambia casualmente le direzioni ogni tanto. Fa quello che può per evitare di imbattersi in qualcuno, ma diventa ... bellicoso ... quando aggravato. Tende a sobrio mentre la competizione continua.

Potrebbe aver bisogno di un po 'di debug, quando il controller è completo ci lavorerò.


3
Hmm, alza il livello, poi si ubriaca al suo interno
Redwolf Program

4

Movimento ponderato | JavaScript

WeightedMotion=(myself,others,coins)=>{
  x=myself.locationX;
  y=myself.locationY;
  power=myself.coins;
  arenaSize=myself.arenaLength;
  dirX=0;
  dirY=0;
  for(i=0;i<coins.length;i++){
    if(i==0){
      dirX+=5/(x-coins[i][0]);
      dirY+=5/(y-coins[i][1]);
    }
    else{
      dirX+=2/(x-coins[i][0]);
      dirY+=2/(y-coins[i][1]);
    }
  }
  for(i=0; i<others.length;i++){
    dirX+=(power-others[i][2])/(2*(x-others[i][0]));
    dirY+=(power-others[i][2])/(2*(y-others[i][1]));
  }
  if(Math.abs(dirX)>Math.abs(dirY)){
    if(dirX>0){
      if(x>0){return "west";}
      else{
        if(dirY>0){if(y>0)return "north";}
        else if(dirY<0){if(y<arenaSize-1)return "south";}
      }
    }
    else if(x<arenaSize-1){return "east";}
    else{
      if(dirY>0){if(y>0)return "north";}
      else if(dirY<0){if(y<arenaSize-1)return "south";}
    }
  }
  else{
    if(dirY>0){
      if(y>0){return "north";}
      else{
        if(dirX>0){if(x>0)return "west";}
        else if(dirX<0){if(x<arenaSize-1)return "east";}
      }
    }
    else if(y<arenaSize-1){return "south";}
    else{
      if(dirX>0){if(x>0)return "west";}
      else if(dirX<0){if(x<arenaSize-1){return "east";}
    }
  }
  return "none";
}

Si sposta nella direzione in cui ha assegnato il valore più alto evitando di correre fuori dal bordo della tavola.

Il valore viene calcolato come tale:

  • Moneta = potenza della moneta / distanza dalla moneta
  • Bot = Differenza di potenza dei bot / 2 * distanza dal bot

1
Bene, questo sembra un robot davvero fantastico. Assicurati di controllare le indicazioni, dal momento che sarebbe una vera perdita se il tuo bot fosse un maestro nel scappare dalle monete (:
Programmi Redwolf

Bene, ancora. Devo essere gentile, vero?
Programmi Redwolf

Bene, pubblicalo! Compenserà i robot più piccoli e veloci che al momento esistono anche in grandi quantità.
Programmi Redwolf

for(i=0;i<6;i++){ci sono solo 5 monete in totale, 1 oro e 4 argento. Il tuo ciclo è in esecuzione 6 volte da 0 a 5.
Night2

3

Blindy | JavaScript (Node.js)

Questo sicuramente non vincerà ma almeno parteciperà. Prima prova alla sfida KoH. Ordina le monete e va al più vicino. Non cerca giocatori, quindi non gli importa se si scontra con altri.

function(myself, others, coins){
    mx = myself.locationX
    my = myself.locationY
    l="west"
    r="east"
    u="north"
    d="south"
    n="none"

    if(coins.length == 0)
        return n

    var closestCoin = coins.sort(a=>Math.sqrt(Math.pow(mx-a[0],2) + Math.pow(my-a[1],2))).pop()
    cx = closestCoin[0]
    cy = closestCoin[1]

    return mx>cx?l:mx<cx?r:my>cy?u:my<cy?d:n
}

Hmm, potrebbe funzionare dal momento che altri robot cercheranno l'oro principalmente, potenzialmente lasciandoti a ottenere l'argento senza combattere
Redwolf Programmi

3

Nobile feudale | JavaScript

Colore preferito: #268299

function (noble, peasants, coins) {
    var center = (noble.arenaLength - 1) / 2, centerSize = noble.arenaLength / 4, peasantsCount = peasants.length,
        centerMin = center - centerSize, centerMax = center + centerSize, apocalypse = 2e4 - ((noble.arenaLength * 2) + 20), inDanger = false;

    var round = botNotes.getData('round');
    if (round === null || !round) round = 0;
    round++;
    botNotes.storeData('round', round);

    var getDistance = function (x1, y1, x2, y2) {
        return (Math.abs(x1 - x2) + Math.abs(y1 - y2)) + 1;
    };

    var isAtCenter = function (x, y) {
        return (x > centerMin && x < centerMax && y > centerMin && y < centerMax);
    };

    var getScore = function (x, y) {
        var score = 0, i, centerFactor = 10;

        for (i = 0; i < peasantsCount; i++) {
            var peasantCoins = peasants[i][2], peasantDistance = getDistance(x, y, peasants[i][0], peasants[i][1]);

            if (noble.coins > peasantCoins && isAtCenter(x, y)) {
                score += Math.min(100, peasantCoins) / peasantDistance;
            } else if (noble.coins <= peasantCoins && peasantDistance <= 3) {
                score -= (peasantDistance === 3 ? 50 : 2000);
                inDanger = true;
            }
        }

        for (i = 0; i < coins.length; i++) {
            if (isAtCenter(coins[i][0], coins[i][1])) {
                var coinDistance = getDistance(x, y, coins[i][0], coins[i][1]),
                    coinValue = (i === 0 ? 500 : 200),
                    coinCloserPeasants = 1;

                for (var j = 0; j < peasantsCount; j++) {
                    var coinPeasantDistance = getDistance(peasants[j][0], peasants[j][1], coins[i][0], coins[i][1]);
                    if (coinPeasantDistance <= coinDistance && peasants[j][2] >= noble.coins) coinCloserPeasants++;
                }

                score += (coinValue / coinCloserPeasants) / (coinDistance / 3);
            }
        }

        if (round >= apocalypse) centerFactor = 1000;
        score -= getDistance(x, y, center, center) * centerFactor;

        return score;
    };

    var possibleMoves = [{x: 0, y: 0, c: 'none'}];
    if (noble.locationX > 0) possibleMoves.push({x: -1, y: 0, c: 'west'});
    if (noble.locationY > 0) possibleMoves.push({x: -0, y: -1, c: 'north'});
    if (noble.locationX < noble.arenaLength - 1) possibleMoves.push({x: 1, y: 0, c: 'east'});
    if (noble.locationY < noble.arenaLength - 1) possibleMoves.push({x: 0, y: 1, c: 'south'});

    var topCommand, topScore = null;
    for (var i = 0; i < possibleMoves.length; i++) {
        var score = getScore(noble.locationX + possibleMoves[i].x, noble.locationY + possibleMoves[i].y);
        if (topScore === null || score > topScore) {
            topScore = score;
            topCommand = possibleMoves[i].c;
        }
    }

    if (round >= apocalypse) {
        var dg = botNotes.getData('dg');
        if (dg === null || !dg) dg = [];
        if (dg.length >= 20) dg.shift();
        dg.push(inDanger);
        botNotes.storeData('dg', dg);
        if (dg.length >= 20) {
            var itsTime = true;
            for (i = 0; i < dg.length; i++) if (!dg[i]) itsTime = false;
            if (itsTime) return 'none';
        }
    }

    return topCommand;
}

Questo nobile feudale rimane al centro del campo e lo rivendica come il suo palazzo. Raccoglie qualsiasi cosa al centro per se stesso, ma qualsiasi cosa nelle fattorie lontane dovrebbe essere portata a lui dai contadini. Ovviamente se un contadino potente e arrabbiato appare al palazzo, il nobile potrebbe scappare per salvargli la vita, ma ritorna non appena è al sicuro!

Col passare del tempo, i contadini diventano sempre più forti. Combattenti professionisti e potenti eroi iniziano a sollevarsi dai contadini. Il potere del nobile continua a decadere. Cerca di mantenere insieme la sua ricchezza e il suo sistema feudalista il più a lungo possibile. Ma finalmente arriva il momento in cui dovrebbe accettare la sua fede, dovrebbe accettare che le persone non vogliono più il feudalesimo. Quello è il giorno in cui il nobile feudale rinuncia a tutto, non scappa più da potenti contadini e viene ucciso da uno di loro.


2

Bot Quantum Gnat | JavaScript

function quantumGnatBot(me, others, coins) {
  let quantumCoefficient = .2
  let turn = botNotes.getData('turn')
  botNotes.storeData('turn', turn+1)
  botNotes.storeData('test', [2, 5, 7])
  botNotes.getData('test')
  let dG = {'none': [0, 0, -2, -2], 'east': [1, 0, me.arenaLength-1, -2], 'south': [0, 1, -2, me.arenaLength-1], 'west': [-1, 0, 0, -2], 'north': [0, -1, -2, 0]}

  function randomInt(a) {
    return Math.floor(Math.random() * a);
  }
  function getRandomDirection() {
    return ['east', 'west', 'north', 'south'][randomInt(4)]
  }
  function distanceBetween(a, b){
    return (Math.abs(a[0] - b[0]) + Math.abs(a[1] - b[1]))
  }
  function isTargetSafe(a) {
    for (let i = 0; i < others.length; i++) {
      if (others[i][2] >= me.coins && distanceBetween(a, others[i]) <= 1) {
        return false
      }
    }
    return true
  }
  function isEnemySquare(a) {
    for (let i = 0; i < others.length; i++) {
      if (distanceBetween(a, others[i]) == 0) {
        return true
      }
    }
    return false
  }
  function getSafeDirections() {
    let candidates = {'none': true, 'east': true, 'south': true, 'west': true, 'north': true}
    for (let key in dG) {
      if (me.locationX == dG[key][2] || me.locationY == dG[key][3] || !isTargetSafe([me.locationX+dG[key][0], me.locationY+dG[key][1]])) {
        candidates[key] = false
      }
    }
    //alert('Safe: ' + candidates['north'] + ', ' + candidates['east'] + ', ' + candidates['south'] + ', ' + candidates['west'])
    return candidates
  }
  function getThreatDirections() {
    let candidates = {'none': false, 'east': false, 'south': false, 'west': false, 'north': false}
    for (let key in dG) {
      if (isEnemySquare([me.locationX+dG[key][0], me.locationY+dG[key][1]])) {
        candidates[key] = true
      }
    }
    return candidates
  }
  function getTargetDirections() {
    let targetBot = null
    let candidates = {'none': false, 'east': false, 'south': false, 'west': false, 'north': false}
    for (let i = 0; i < others.length; i++) {
      if (distanceBetween([me.locationX, me.locationY], others[i]) > 2 && (!targetBot || targetBot[2] < others[i][2])) {
        targetBot = others[i]
      }
    }
    if (targetBot[0] < me.locationX) {
      candidates['west'] = true
    } else if (targetBot[0] > me.locationX) {
      candidates['east'] = true
    }
    if (targetBot[1] > me.locationY) {
      candidates['south'] = true
    } else if (targetBot[1] < me.locationY) {
      candidates['north'] = true
    } 
    //alert('Chasing ' + targetBot[0] + ', ' + targetBot[1] + ' (' + targetBot[2] + ')')
    //alert('Path: ' + candidates['north'] + ', ' + candidates['east'] + ', ' + candidates['south'] + ', ' + candidates['west'])
    return candidates
  }

  let safeDirections = getSafeDirections()
  let threatDirections = getThreatDirections()
  let targetDirections = getTargetDirections()
  let chosenDir = null
  let choices = []
  for (key in safeDirections) {
    if (safeDirections[key] && targetDirections[key]) {
      choices.push(key)
    }
  }
  if (choices.length == 0) {
    //alert('Best options are blocked...')
    for (key in safeDirections) {
      if (safeDirections[key]) {
        choices.push(key)
      }
    }
  }
  for (key in threatDirections) {
    if (threatDirections[key] && Math.random() < quantumCoefficient) {
      //alert('Chance for quantum swap!')
      choices.push(key)
    }
  }
  if (choices.length > 0) {
    chosenDir = choices[randomInt(choices.length)]
  } else {
    //alert('No options? Guess we spin the wheel.')
    chosenDir = getRandomDirection()
  }

  return chosenDir
}

Questo fastidioso bot cerca di aggirarsi attorno al bot più forte senza essere schiacciato e ha una leggera possibilità di sfasare coloro che cercano di cacciarlo. Ha la tendenza ad attirare i due robot più potenti nelle immediate vicinanze ...;)


Se non riesce a trovare un obiettivo adatto getTargetDirections(), allora iniziano a succedere cose interessanti. (Come abbattere tutto a causa di un undefined has no property 0errore.)
Ramillies,

2

Agente ICE in pensione, JavaScript

Colore preferito: indianred

function(me, others, coins) {
    me.arenaLength = me.arenaLength - 1;
    // Calculate the average coin value of bots
    var avg = 2;

    for (var i = 0; i < others.length; i++) {
    avg += others[i][2];
    }

    avg /= others.length;

    // Find nearest coins
    var min = [];
    var min_distance = 100000
    for (var j = 0; j < coins.length; j++) {
    var distance = Math.sqrt(Math.pow(me.locationX - coins[j][0],2) + Math.pow(me.locationY - coins[j][1],2));
    if (distance < min_distance) {
        min_distance = distance;
        min = coins[j];
    }
    }

    if (me.coins <= avg || min_distance < 5) {
    // If own coinage is lower than the average or a coin is very close, find some coins

    // Move straight to the nearest coin
    if (me.locationY != min[1]) {
        if (me.locationY - min[1] > 0) {
        return "north";
        } else {
        return "south";
        }
    } else {
        if (me.locationX - min[0] > 0) {
        return "west";
        } else {
        return "east";
        }
    }
    } else {
        // You have enough money to eat most bots
        // Find the weakest bot
        var weakling = [];
        var weakling_money = 1000000;

        for (var k = 0; k < others.length; k++) {
            if (others[k][2] < weakling_money) {
                weakling_money = others[k][2];
                weakling = others[k];
            }
        }

        // Move to the weakest bot
        if (me.locationY != weakling[1]) {
            if (me.locationY - weakling[1] > 0) {
                return "north";
            } else {
                return "south";
            }
        } else {
            if (me.locationX - weakling[0] > 0) {
                return "west";
            } else {
                return "east";
            }
        }
    }
}

Ora in pensione, questo agente ICE è amaro dell'umanità. Di conseguenza, ICE in pensione ora punta al bot più debole, mantenendo il valore della sua moneta sopra la media (secondo la politica ICE).


2

Inseguimento goloso | Haskell

Colore preferito: #62bda4

import Data.List

f x y c _ bs _
  | [bx,by,_]:_ <- sortByDist x y $ filter ((c>).last) bs = toDir (bx-x,by-y)
f x y _ _ _ cs
  | [cx,cy,_]:_ <- sortByDist x y cs = toDir (cx-x,cy-y)
f _ _ _ _ _ _ = "none"


sortByDist x y = sortOn (\[bx,by,_]-> abs (bx-x) + abs (by-y))

toDir (dx,dy)
  | dx > 0 = "east"
  | dx < 0 = "west"
  | dy > 0 = "south"
  | dy < 0 = "north"
  | otherwise = "none"

Provalo online! *

Strategia piuttosto semplice, prende la prima decisione da:

  • se ci sono robot con meno monete: scegli il più vicino e muoviti verso di esso
  • se ci sono monete: scegli il più vicino e spostati verso di esso
  • impostazione predefinita: rimanere

Il bot cerca solo di catturare altri robot o monete senza preoccuparsi di robot potenzialmente più potenti che potrebbero tentare di catturarlo.

* Non conosco JavaScript ma ho fatto la cosa con google (potrebbe non essere preciso): provalo online!


6
Mi chiedo come tradurrà l'hashell in js
Luis felipe De jesus Munoz,

3
@LuisfelipeDejesusMunoz: Sì, anch'io. Ma per fortuna, non è un codice molto sofisticato.
ბიმო

@LuisfelipeDejesusMunoz Basta usare Node.JS e process.open(o child_process.spawn, o simile) con qualche analisi.
user202729

@LuisfelipeDejesusMunoz: ho provato a tradurlo e ho aggiunto un link, ma non mi sento molto sicuro di scrivere JavaScript, quindi potrebbe essere difettoso.
ბიმო

4
@LuisfelipeDejesusMunoz Sarebbe una cosa se si trattasse di un programma di apprendimento AI di 10.000 righe, ma penso di poterlo gestire (:
Programmi Redwolf

1

Magnete per monete | JavaScript

CoinMagnet=(myself,others,coins)=>{
  x=myself.locationX;
  y=myself.locationY;
  power=myself.coins;
  arenaSize=myself.arenaLength;
  dirX=0;
  dirY=0;
  for(i=0;i<coins.length;i++){
    if(i==0){
      dirX+=(coins[i][0]-x)*3
      dirY+=(coins[i][1]-y)*3
    }
    dirX+=(coins[i][0]-x)*2
    dirY+=(coins[i][1]-y)*2
  }
  for(i=0;i<others.length;i++){
    dirX+=Math.ceil(0.85*others[i][2])*(others[i][0]-x)
    dirX+=Math.ceil(0.85*others[i][2])*(others[i][1]-y)
  }
  if(Math.abs(dirX)>Math.abs(dirY)){
    if(dirX>0){return "east";}
    else{return "west";}
  }
  else if(dirY!=0){
    if(dirY>0){return "south";}
    else{return "north";}
  }
  return "none";
}

Questo robot è piuttosto stupido, si dirige nella direzione delle monete più acquistabili. Ciò include le monete che non è possibile ottenere perché altri robot hanno un potere maggiore di se stesso.


1

Agente ICE | Javascript

function(me, others, coins) {
    me.arenaLength = me.arenaLength - 1;
    // Calculate the average coin value of bots
    var avg = 2;

    for (var i = 0; i < others.length; i++) {
        avg += others[i][2];
    }

    avg /= others.length;

    // Find nearest coins
    var min = [];
    var min_distance = 100000
    for (var j = 0; j < coins.length; j++) {
        var distance = Math.sqrt(Math.pow(me.locationX - coins[j][0],2) + Math.pow(me.locationY - coins[j][1],2));
        if (distance < min_distance) {
            min_distance = distance;
            min = coins[j];
        }
    }

    if (me.coins <= avg || min_distance < 5) {
        // If own coinage is lower than the average or a coin is very close, find some coins

        // Move straight to the nearest coin
        if (me.locationY != min[1]) {
            if (me.locationY - min[1] > 0) {
                return "north";
            } else {
                return "south";
            }
        } else {
            if (me.locationX - min[0] > 0) {
                return "west";
            } else {
                return "east";
            }
        }
    } else {
        // You have enough money to eat most bots
        // Check if already on border
        if (me.locationX == 0 || me.locationX == me.arenaLength || me.locationY == 0 || me.locationY == me.arenaLength) {
            // Move anticlockwise around the border
            if (me.locationX == 0 && me.locationY != 0 && me.locationY != me.arenaLength) {
                return "south";
            }
            if (me.locationX == 0 && me.locationY == 0) {
                return "south";
            }

            if (me.locationY == me.arenaLength && me.locationX != 0 && me.locationX != me.arenaLength) {
                return "east";
            }
            if (me.locationX == 0 && me.locationY == me.arenaLength) {
                return "east";
            }

            if (me.locationX == me.arenaLength && me.locationY != 0 && me.locationY != me.arenaLength) {
                return "north";
            }
            if (me.locationX == me.arenaLength && me.locationY == me.arenaLength) {
                return "north";
            }

            if (me.locationY == 0 && me.locationX != 0 && me.locationX != me.arenaLength) {
                return "west";
            }
            if (me.locationX == me.arenaLength && me.locationY == 0) {
                return "west";
            }
        } else {
            // Find the nearest border and move to it
            if (me.locationX <= me.arenaLength - me.locationX) {
                // Move to left border
                return "west";
            } else {
                // Move to right border
                return "east";
            }
        }
    }
}

Qual è il punto di un confine se non viene pattugliato? ICE si sposta in senso antiorario attorno al bordo, raccogliendo tutti i robot che si spostano sul suo cammino.

Prima che possa farlo, deve essere in grado di mangiare prima altri robot. Per questo motivo ICE, mantiene le sue monete al di sopra della media di tutti i robot.

Garantito per rubare i bambini dai loro genitori ™


Sarebbe più divertente se non fosse così rilevante
Don Mille

1

X segna il punto | JavaScript

function(me, others, coins){
    if (me.locationY != 0) {
        // If not on X axis
        if (others.every(other => other[1]==me.locationY-1)) {
            // If any in my way
            if (!others.every(other => other[0]==me.locationX-1)) {
                if (me.locationX != 0) {
                    // If no one to my left and not on edge of board
                    return "west"
                } else {
                    return "none"
                }
            } else if (!others.some(other => other[0]==me.locationX+1)) {
                if (me.locationX != me.arenaLength-1) {
                    // If no one to my right and not on edge of board
                    return "east"
                } else {
                    return "none"
                }
            } else {
                // I'm surrounded
                return "none"
            }
        } else {
            // No one in my way
            return "north"
        }
    } else {
        // If on the x axis
        if (!others.some(other => Math.abs(other[0]-me.locationX)==1 && other[1] == me.locationY)) {
            // If no one next to me
            move = ["east","west"][Math.floor(Math.random()*2)]

            // Prevent from falling off the board
            if (move == "east" && me.locationX == me.arenaLength-1) {
                return "west"
            } else if (move == "west" && me.locationX == 0) {
                return "east"
            } else {
                return move
            }
        } else {
            // I'm surrounded
            return "none"
        }
    }
}

X segna il punto, quindi tutto l'oro deve essere sull'asse x, giusto? Il mio bot crea una linea guida per la linea y = 0, quindi rimane lì, spostandosi in modo casuale.


Eh, un metodo davvero interessante
Programmi Redwolf


1
Detto questo The arena starts at (0,0) in the upper left corner, sei sicuro di voler muoverti southper arrivare a y=0?
AdmBorkBork

@AdmBorkBork Grazie, sarebbe potuto andare male
Decadimento beta

1

Firebird

    function(me,others,coins) {
        var x = me.locationX;
        var y = me.locationY;
        var safe = [true, true, true, true];
        var threats = [];
        var targets = [];
        var opps = [];

        var meTo = (loc) => (Math.abs(x - loc[0]) + Math.abs(y - loc[1]));
        var inSquare = (loc, r) => (Math.abs(loc[0] - x) <= r && Math.abs(loc[1] - y) <= r);
        var distance = (from, loc) => (Math.abs(from[0] - loc[0]) + Math.abs(from[1] - loc[1]));
        var attackRange = (from, check, r) => {
            for (var i = 0; i < check.length; i++) {
                if (distance(check[i], from) == (r || 1)) {
                    return true;
                }
            }
            return false;
        };
        var dirStr = (dir) => (['north','east','south','west'][dir]);

        var i, n, o, p;
        for (i = 0; i < others.length; i++) {
            o = others[i];
            if (o[2] >= me.coins) {
                threats.push(o);
            } else {
                targets.push([o[0], o[1], Math.floor(o[2] * 0.55)]);
            }
        }
        for (i = 1; i < 5; i++) {
            targets.push([coins[i][0], coins[i][1], 2]);
        }
        targets.push([coins[0][0], coins[0][1], 5]);
        if (y === 0 || attackRange([x, y - 1], threats)) {
            safe[0] = false;
        }
        if (x == me.arenaLength - 1 || attackRange([x + 1, y], threats)) {
            safe[1] = false;
        }
        if (y == me.arenaLength - 1 || attackRange([x, y + 1], threats)) {
            safe[2] = false;
        }
        if (x === 0 || attackRange([x - 1, y], threats)) {
            safe[3] = false;
        }
        if (safe.includes(false)) {
            if (!(safe[0]) && safe[2]) {
               opps.push(2);
            }
            if (!(safe[1]) && safe[3]) {
                opps.push(3);
            }
            if (!(safe[2]) && safe[0]) {
                opps.push(0);
            }
            if (!(safe[3]) && safe[1]) {
                opps.push(1);
            }
        } else {
            targets.sort((a,b)=>(meTo(a) - meTo(b)));
            o = targets[0];
            if (o[0] == x) {
                if (o[1] < y) {
                    return 'north';
                } else {
                    return 'south';
                }
            } else if (o[1] == y) {
                if (o[0] < x) {
                    return 'west';
                } else {
                    return 'east';
                }
            } else if (Math.abs(o[0] - x) < Math.abs(o[1] - y)) {
                if (o[1] < y) {
                    return 'north';
                } else {
                    return 'south';
                }
            } else if (Math.abs(o[0] - x) > Math.abs(o[1] - y)) {
                if (o[0] < x) {
                    return 'west';
                } else {
                    return 'east';
                }
            }
        }
        console.log(safe[opps[0]]);
        var lx, ly;
        for (i = 0; i < opps.length; i++) {
            if (opps[i] === 0) {
                lx = x;
                ly = y - 1;
            }
            if (opps[i] == 1) {
                lx = x + 1;
                ly = y;
            }
            if (opps[i] == 2) {
                lx = x;
                ly = y + 1;
            }
            if (opps[i] == 3) {
                lx = x - 1;
                ly = y;
            }
            if (attackRange([lx, ly], targets, 0)) {
                return dirStr(opps[i]);
            }
        }
        return dirStr(opps[0]);
    }

Completamente rinnovato per essere più mortale di prima (:


2
Il mio perdente assoluto di un bot
Redwolf Program

Non li sta
prendendo di

Oh scusa, ho capito male
Decadimento Beta

1

A-Path-y | JavaScript

Il colore preferito per questo bot è #0077b3.

 run: function (me, others, coins)
{
    var X_INDEX = 0;
    var Y_INDEX = 1;
    var COIN_INDEX = 2;

    var GOLD_POINTS = 5;
    var SILVER_POINTS = 2;

    var NORTH = 0;
    var SOUTH = 1;
    var WEST = 2;
    var EAST = 3;
    var IDLE = 4;
    var MOVE_COMMANDS_COUNT = IDLE+1;

    var MAP_TYPE_BLANK = 0;
    var MAP_TYPE_BOT = 1;
    var MAP_TYPE_GOLD_COIN = 2;
    var MAP_TYPE_SILVER_COIN = 3;

    var MIDGAME_THRESHOLD = 25;

    var PATH_FINDING_MAX_STEPS = 10000;
    var offsets = [[0,-1],[1,0],[0,1],[-1,0]];

function randInt(min,max)
    {
        return  Math.floor(Math.random() * ((max - min) + 1)) + min;
    }


    /**
     * Find a path using a*, returns the direction to take from the starting position coupled with a metric describing the cost of the path
     */
function pathFind(startX,startY,targetX,targetY,map,mapSize)
    {
        var i;
        var j;

        // shuffleIndecies to make path selection slightly random
        var indecies = [0,1,2,3];
        var shuffleIndecies = new Array(4);
        for (j=0;j<4;j++)
        {
            var randomIndex = randInt(0,3-j);
            shuffleIndecies[j] = indecies[randomIndex];
            indecies[randomIndex] = indecies[0];
            var lastElementIndex = 4-j-1;
            indecies[0] = indecies[lastElementIndex];
        }

        // A*
        if (!(startX===targetX && startY===targetY))
        {

            var tileX = new Array(PATH_FINDING_MAX_STEPS);
            var tileY = new Array(PATH_FINDING_MAX_STEPS);
             var fscore = new Array(PATH_FINDING_MAX_STEPS);
             var gscore = new Array(PATH_FINDING_MAX_STEPS);
             var openList = new Array(PATH_FINDING_MAX_STEPS);
             var tileParent = new Array(PATH_FINDING_MAX_STEPS);
             var tileIsClosed = new Array(mapSize);

             for (i = 0;i<PATH_FINDING_MAX_STEPS;i++)
             {
                 tileX[i]=0;
                 tileY[i]=0;
                 fscore[i]=0;
                 gscore[i]=0;
                 openList[i]=0;
                 tileParent[i]=0;
             }


             for (i = 0;i<mapSize;i++)
             {
                 var newArray = new Array(mapSize);
                 tileIsClosed[i] = newArray;
                 for (j = 0;j<mapSize;j++)
                 {
                     tileIsClosed[i][j] = 0;
                 }
             }

             var currentIndex = -1;     

            var openListSize=1;
            var tileId=1;

            tileX[0]=targetX;
            tileY[0]=targetY;
            fscore[0]=1;
            gscore[0]=map[targetX][targetY].negativeWeight;



            do
            {
              var currentBestIndex=-1;
              var currentBestScore=2147483647;
              //  Look for the lowest F cost square on the open list
              for (var ii=0;ii<openListSize;ii++)
              {
                if (fscore[openList[ii]]<currentBestScore)
                {
                  currentBestScore=fscore[openList[ii]];
                  currentBestIndex=ii;
                }
              }
              if (currentBestIndex===-1)
              {
                break;
              }
              currentIndex=openList[currentBestIndex];
              var currentTileX=tileX[currentIndex];
              var currentTileY=tileY[currentIndex];

              // found path
              if (startX===currentTileX && startY===currentTileY)
              {
                break;
              }

              // if not in closed list
              if (tileIsClosed[currentTileX][currentTileY]===0)
              {
                    // Switch it to the closed list.
                    tileIsClosed[currentTileX][currentTileY]=1;
                    // remove from openlist
                    openList[currentBestIndex]=openList[--openListSize];   

                    // add neighbours to the open list if necessary
                    for (j=0;j<4;j++)
                    {
                        i = shuffleIndecies[j];

                        var surroundingCurrentTileX=currentTileX+offsets[i][0];
                        var surroundingCurrentTileY=currentTileY+offsets[i][1];
                        if (surroundingCurrentTileX>=0 && surroundingCurrentTileX<mapSize &&
                            surroundingCurrentTileY>=0 && surroundingCurrentTileY<mapSize )
                        {
                          tileX[tileId]=surroundingCurrentTileX;
                          tileY[tileId]=surroundingCurrentTileY;

                          var surroundingCurrentGscore=gscore[currentIndex] + map[surroundingCurrentTileX][surroundingCurrentTileY].negativeWeight;
                          gscore[tileId]=surroundingCurrentGscore;
                          fscore[tileId]=surroundingCurrentGscore+Math.abs( surroundingCurrentTileX-startX)+Math.abs( surroundingCurrentTileY-startY);
                          tileParent[tileId]=currentIndex;
                          openList[openListSize++]=tileId++;
                        }
                    }
              }
              else
              {
              // remove from openlist
              openList[currentBestIndex]=openList[--openListSize];    
              }
            } while(true);

            if (tileX[tileParent[currentIndex]]<startX) return {moveDirection:WEST, pathLength:currentIndex, pathScore:gscore[currentIndex]+currentIndex/4};
            else if (tileX[tileParent[currentIndex]]>startX) return {moveDirection:EAST, pathLength:currentIndex, pathScore:gscore[currentIndex]+currentIndex/4};
            else if (tileY[tileParent[currentIndex]]<startY) return {moveDirection:NORTH, pathLength:currentIndex, pathScore:gscore[currentIndex]+currentIndex/4};
            else if (tileY[tileParent[currentIndex]]>startY) return {moveDirection:SOUTH, pathLength:currentIndex, pathScore:gscore[currentIndex]+currentIndex/4};
        }
        console.log("Path finding failed");
        return {moveDirection:IDLE, pathLength:0, pathScore:2147483647};
     }

function process(info,bots,coins)
    {
        var i;
        var j;
        var k;
        var x;
        var y;

        // initialise map
        var mapSize = info.arenaLength;
        var map = new Array(mapSize);
        for (i = 0;i < info.arenaLength;i++)
        {
            var newArray = new Array(info.arenaLength);
            map[i] =  newArray;
            for (j = 0;j < mapSize;j++)
            {
                map[i][j] = {type:MAP_TYPE_BLANK, coins: 0 , negativeWeight:i===0||i===mapSize-1||j===0||j===mapSize-1?3:1};
            }
        }

        // populate map with bots
        for (i = 0 ; i<bots.length;i++)
        {
            map[bots[i][X_INDEX]][bots[i][Y_INDEX]].type = MAP_TYPE_BOT;
            map[bots[i][X_INDEX]][bots[i][Y_INDEX]].coins = bots[i][COIN_INDEX];

            for (j=-1;j<2;j++)
            {
                x = bots[i][X_INDEX] + j;
                if (x>=0 && x < mapSize)
                {
                    for(k=-1;k<2;k++)
                    {
                        if (Math.abs((k+j)%2) === 1)
                        {
                            y = bots[i][Y_INDEX] + k;
                            if (y>=0 && y< mapSize )
                            {
                                // are we adjacent the bot or potentially will be?
                                if (Math.abs(info.locationX-x)<=1 && Math.abs(info.locationY-y)<=1)
                                {
                                    // make the cell significantly less attractive when the bot is stronger than us, or
                                    // make the cell slightly more attactive when the bot is weaker than us, or
                                    // not change if the bot has no coins
                                    map[x][y].negativeWeight+= bots[i][COIN_INDEX] >= info.coins?100000:(bots[i][COIN_INDEX]===0?0:-1);
                                }
                                // another bot is not a direct threat/target
                                else
                                {
                                    // make the cell moderately less attractive when the bot is stronger than us, or
                                    // make the cell slightly more attactive when the bot is weaker than us, or
                                    // not change if the bot has no coins
                                    map[x][y].negativeWeight+= bots[i][COIN_INDEX] >= info.coins?3:(bots[i][COIN_INDEX]===0?0:-1);
                                }
                            }
                        }
                    }
                }
            }
        }

        // populate map with coins
        for (i = 0 ; i<coins.length;i++)
        {
            map[coins[i][X_INDEX]][coins[i][Y_INDEX]].type = i === 0?MAP_TYPE_GOLD_COIN:MAP_TYPE_SILVER_COIN;
            map[coins[i][X_INDEX]][coins[i][Y_INDEX]].coins = i === 0?GOLD_POINTS:SILVER_POINTS;

            // check to see whether bots are adjacent to the coin
            for (j=-1;j<2;j++)
            {
                x = coins[i][X_INDEX] + j;
                if (x>=0 && x < mapSize)
                {
                    for(k=-1;k<2;k++)
                    {
                        if ((k+j)%2 === 1)
                        {
                            y = coins[i][Y_INDEX] + k;
                            if (y>=0 && y< mapSize )
                            {
                                if (map[x][y].type === MAP_TYPE_BOT)
                                {
                                    // this coin looks like a trap as a stronger bot is adjacent to it
                                    if (map[x][y].coins >= info.coins)
                                    {
                                        map[coins[i][X_INDEX]][coins[i][Y_INDEX]].negativeWeight+=100000;
                                    }
                                    else
                                    {
                                        // are we adjacent the coin? we might be able to kill another bot if it trys to get the coin
                                        if (Math.abs(info.locationX-coins[i][X_INDEX])<=1 && Math.abs(info.locationY-coins[i][Y_INDEX])<=1)
                                        {
                                            map[coins[i][X_INDEX]][coins[i][Y_INDEX]].negativeWeight+=-20;
                                        }
                                        // another bot is likely to get this coin... make it less attractive
                                        else
                                        {
                                            map[coins[i][X_INDEX]][coins[i][Y_INDEX]].negativeWeight=+100;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }

            // add the coin attractiveness, more for gold coins
            map[coins[i][X_INDEX]][coins[i][Y_INDEX]].negativeWeight += i === 0?-20:-10;
        }


        var pathBest = {moveDirection:IDLE, pathLength: 2147483647, pathScore: 2147483647};

        if (info.coins > MIDGAME_THRESHOLD)
        {
            var viableCoinCount =0;
            var viableCoins = new Array(5); 


            // find coins that are reachable before any other bot
            outer1:
            for (j = 0 ; j<coins.length;j++)
            {
                var contention = 0;

                var myDistanceToCoin = Math.abs(info.locationX-coins[j][X_INDEX]) + Math.abs(info.locationY-coins[j][Y_INDEX]);

                for (i = 0 ; i<bots.length;i++)
                {
                    var dist = Math.abs(bots[i][X_INDEX]-coins[j][X_INDEX]) + Math.abs(bots[i][Y_INDEX]-coins[j][Y_INDEX]);
                    if (dist < myDistanceToCoin)
                    {
                        continue outer1;
                    }
                }
                viableCoins[viableCoinCount++] = j;
            }

            // no coins are reachable before another bot so find the cell that is furthest away from any bot and head there
            if (viableCoinCount ===0)
            {
                var mostIsolatedCellX = mapSize/2;
                var mostIsolatedCellY = mapSize/2;
                var mostIsolatedCellMinBotDistance = 0;

                for (x=5;x<mapSize-5;x++)
                {
                    for (y=5;y<mapSize-5;y++)
                    {
                        if (x!= info.locationX && y!=info.locationY)
                        {

                            // ignore coin attractiveness
                            map[x][y].negativeWeight = map[x][y].negativeWeight<-4?map[x][y].negativeWeight:1;


                            var currentCellMinBotDistance = 2147483647;

                            for (i = 0 ; i<bots.length;i++)
                            {
                                var dist = Math.abs(bots[i][X_INDEX]-x) + Math.abs(bots[i][Y_INDEX]-y) + Math.abs(info.locationX-x) + Math.abs(info.locationY-y);
                                if (dist < currentCellMinBotDistance )
                                {
                                    {
                                        currentCellMinBotDistance = dist;                           
                                        if (currentCellMinBotDistance>mostIsolatedCellMinBotDistance)
                                        {
                                            mostIsolatedCellMinBotDistance = currentCellMinBotDistance;
                                            mostIsolatedCellX=x;
                                            mostIsolatedCellY=y;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }

                // attempt to find path to most isolated cell
                pathBest = pathFind(info.locationX, info.locationY, mostIsolatedCellX,mostIsolatedCellY, map, mapSize);
            }

            // attempt to find paths to each viable coin, keeping the best result
            for (i = 0 ; i<viableCoinCount;i++)
            {
                var path = pathFind(info.locationX, info.locationY, coins[viableCoins[i]][X_INDEX],coins[viableCoins[i]][Y_INDEX], map, mapSize);
                if (path.pathScore < pathBest.pathScore)
                {
                    pathBest = path;
                }
            }
        }
        else
        {
            // attempt to find paths to each coin, keeping the best result
            for (i = 0 ; i<coins.length;i++)
            {
                var path = pathFind(info.locationX, info.locationY, coins[i][X_INDEX],coins[i][Y_INDEX], map, mapSize);
                if (path.pathScore < pathBest.pathScore)
                {
                    pathBest = path;
                }
            }
        }


        var move = IDLE;
        if (pathBest.pathLength === 2147483647)
        {
            outer:
            for (i=0;i<MOVE_COMMANDS_COUNT;i++)
            {
                switch (i)
                {
                    case NORTH:
                        if (info.locationY-1 < 0)
                        {
                            continue;
                        }
                        move = i;
                        break outer;
                    case SOUTH:
                        if (info.locationY+1 === info.arenaLength)
                        {
                            continue;
                        }
                        move = i;
                        break outer;
                    case WEST:
                        if (info.locationX-1 < 0)
                        {
                            continue;
                        }
                        move = i;
                        break outer;
                    case EAST:
                        if (info.locationX+1 === info.arenaLength)
                        {
                            continue;
                        }
                        move = i;
                        break outer;
                    case IDLE:
                        move = i;
                        break;
                    default:
                }
            }
        }
        else
        {
            move = pathBest.moveDirection;
        }

        switch (move)
        {
        case NORTH:
            return "north";
        case SOUTH:
            return "south";
        case EAST:
            return "east";
        case WEST:
            return "west";
        default:
            return "none";
        }
    }
    return process(me, others, coins);
}

Questo bot utilizza la ricerca di percorsi abbinata a una mappa delle desiderabilità delle cellule per evitare robot che potrebbero ucciderci, cercare monete vicine, non trappole e meno rischiose.

Non sembra essere un contendente per il luogo vincente, ma tiene per sé e sarà vivo alla fine della partita se sopravvive alla mischia iniziale.

Il bot ora ha una strategia di gioco medio-tardiva che ignora le monete che non può raggiungere prima di altri robot e se non può andare a nessuna moneta, si sposta nella cella più vicina più lontana da tutti gli altri robot più forti di se stesso.

Ora ha la possibilità di vincere.

Nota scusa per il codice schifoso, l'ho convertito automaticamente da Java


Assicurati di rimuovere presto eventuali bug e / o aggiornamenti, 18 ore alla data di scadenza!
Programmi Redwolf

@RedwolfPrograms Hai osservato un errore? in tal caso per favore fatemi sapere in modo che io possa correggere. Grazie
Moogie,

No, ma non lo sai mai. Assicurati solo di ricontrollare, dal momento che ho visto perdere molti robot a causa di un numero errato, o di una funzione sbagliata, o di aver sbagliato a scrivere più volte di quante ne possa contare
Redwolf Programmi
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.