Quanti tre?


16

In questa attività al codice verrà assegnato un numero intero n come input. Il codice dovrebbe quindi generare il maggior numero di multipli di 3 che possono essere concatenati (nella base 10 ) per formare (senza zeri iniziali). Ad esempio, se ti è stato dato come input,3n26042

26042×3=78126

e possono essere creati concatenando , e , in modo da produrre .78126781263

Sono consentite tutte le forme standard di I / O. Le risposte dovrebbero mirare a ridurre al minimo il numero di byte nel loro codice.


Ecco le prime voci in questa sequenza che iniziano con zero:6562

1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,3,3,3,3,3,3,4,4,4,4,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,2,2,2,2,2,2,3,3,3,3,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2,2,2,1,1,1,1,1,1,2,2

8
Sarebbe bello avere alcuni esempi nel modulo n -> f(n), dov'è f(n)la risposta. Allo stato attuale, non so nemmeno se le tue voci 6561 sono indicizzate 0 o 1 indicizzate.
max

@maxb Ci sono troppi esempi per fare quel formato. Il mio elenco è indicizzato zero.
Post Rock Garf Hunter,

2
Certo, ma alcuni selezionano pochi sarebbe fantastico, oltre al primo esempio. E da quello che posso vedere, c'è consentito di dividere il numero alcun modo che vogliamo? Quindi sarebbe necessaria un'implementazione della forza bruta (in alcune lingue) per trovare il numero massimo di multipli di 3? Inoltre, definisci 0 come multiplo di 3? Dalla tua domanda sembra così. 3n
maxb

@maxb Esistono due trucchi che possono essere utilizzati per ottenere soluzioni in modi più brevi e veloci. (il suggerimento 3 è speciale) e sì 0 è un multiplo di 3. Non so come potrebbe essere altrimenti.
Post Rock Garf Hunter,

Risposte:


9

Haskell , 51 byte

f n=sum[1|x<-scanr(:)"0".show$3*n,read x`mod`3<1]-1

Provalo online!

L'idea chiave è la seguente: dato un multiplo di 3 (chiamalo 3n ), il modo migliore per scriverlo come la giustapposizione di multipli di 3 è di iniziare dalla fine (o dall'inizio) e selezionare i multipli di 3 avidamente. Ad esempio, se 3n=78126 , otteniamo (a partire dalla fine) un 6 , quindi un 12 e infine un 78 : 78|12|6 . Si noti che questo è possibile perché un numero è un multiplo di 3 se la somma delle sue cifre è un multiplo di 3. Si noti inoltre che se concateniamo due multipli di 3, otteniamo un altro multiplo di 3, quindi 6 , 12 | 6,6,12|6,78|12|6 sono tutti multipli di 3.

Quindi la risposta può essere trovata considerando l'elenco dei suffissi di 3n (es. [78126,8126,126,26,6] ) e contando i multipli di 3.


9

Retina , 11 byte di Latin-1

v`.3*[012¶]

Provalo online!

Retina funziona su stringhe anziché su numeri interi, quindi sto prendendo il numero come apparirebbe in un file (cifre seguite da una nuova riga).

Algoritmo

Quasi tutte le soluzioni qui hanno una moltiplicazione per 3, ma ho pensato che sarebbe stato interessante provare a risolvere il problema senza di essa. Sappiamo già dall'algoritmo maggior parte delle persone stanno usando che abbiamo bisogno di identificare il numero di suffissi di 3 n che sono divisibili per 3. Ora, dato un suffisso n (diciamo s ), 3 s appariranno come suffisso di 3 n se la moltiplicazione s × 3 non viene inserita nella cifra prima del suffisso. Nel frattempo, se la moltiplicazione s × 3 fa riporto, allora il corrispondente suffisso 3 nnon sarà divisibile per 3 (poiché la radice digitale di 3 * s * è divisibile per 3 - 3 divide (10-1) e stiamo lavorando nella base 10 - e il suffisso corrispondente di 3 * n * sarà uguale a 3 * s * ma senza un inizio 1o 2, nessuna delle quali è divisibile per 3).

Dobbiamo adeguarci alla possibilità che 3 * n * contenga più cifre di n , il che significa che 3 * n * ha un suffisso extra che non corrisponde a nessun suffisso di n . Questo suffisso è banalmente il numero intero 3 * n * e sarà sempre divisibile per 3 (per ovvi motivi). Pertanto, se la moltiplicazione n × 3 comporta, dobbiamo aggiungere 1 al risultato. Possiamo notare che se n × 3 non porta, contribuirà 1 al risultato usando un algoritmo ingenuo, mentre se lo fa, non lo farà; e quindi possiamo fare questo aggiustamento semplicemente contando il "suffisso che rappresenta l'intero numero n " incondizionatamente, piuttosto che verificare un carry. Equivalente (e un po 'più conciso), possiamo incondizionatamente non conta questo suffisso e conta invece un altro suffisso (il suffisso vuoto è conveniente), poiché arriverà allo stesso totale.

Come possiamo determinare se una moltiplicazione per 3 porterebbe? Bene, se la prima cifra del numero è maggiore di 3, deve; se è inferiore a 3, non può. Se è 3, se trasporta o meno dipenderà dalla cifra successiva del numero allo stesso modo. Se il numero è costituito interamente da 3 secondi, la moltiplicazione non sarà valida (si fermerà solo in breve con un numero composto interamente da 9 secondi). Pertanto, l'algoritmo che vogliamo è "contare il numero di suffissi propri che iniziano con 0 o più 3 secondi, seguito da 0, 1, 2 o la fine della stringa; più un suffisso extra".

Spiegazione

Questo algoritmo finisce più a lungo dell'algoritmo di consenso nella maggior parte delle lingue, quindi lo sto inviando in Retina, una lingua in cui risulta essere più corta del metodo più usuale (e una lunghezza simile alle lingue del golf).

v`.3*[012¶]
v`            {Count the number of} points within the input from which you can
  .             ignore one character,
   3*           and skip past any number (including zero) of 3s,
     [012¶]     to find 0, 1, 2, or the newline at the end of the input.

Il requisito di ignorare un carattere prima di iniziare a cercare significa che il suffisso improprio costituito dall'intero numero non può essere contato (poiché i suffissi che effettivamente guardiamo saranno quelli che iniziano un carattere a destra di dove inizia Retina, e quindi no al primo personaggio). Tuttavia, il suffisso improprio costituito solo dalla nuova riga alla fine del numero verrà sempre conteggiato, dandoci così l'unico suffisso extra di cui abbiamo bisogno.


Questo era l'algoritmo che avevo in mente quando ho scritto la domanda. Mi fa piacere che qualcuno l'abbia usato!
Post Rock Garf Hunter,

@WW: Questa risposta è stata più un caso di "questo è un algoritmo interessante, troviamo un linguaggio in cui è efficiente" che "questo è un linguaggio interessante, troviamo l'algoritmo migliore in esso". (Anche se Retina è comunque un linguaggio interessante, come succede!) Immagino che questo sia uno strano effetto collaterale della "competizione per lingua"; significa che puoi rendere una risposta "migliore", in un certo senso, traducendola in una lingua che non tratta bene le traduzioni di risposte concorrenti.
ais523,

Credo che [¶-2]salva un byte poiché dovresti essere in grado di supporre che l'input sia composto solo da cifre numeriche e dalla nuova riga.
FryAmTheEggman,


3

Perl 6 , 54 28 byte

-14 byte grazie a nwellnhof!

{+grep *%%3,[\~] .comb}o*×3

Provalo online!

Questo conta quanti prefissi del numero tre volte sono divisibili per 3.

Spiegazione:

{                     }o*×3  # Pass the input times 3 into the code block
            [\~] .comb   # Get all the prefixes of the number
  grep     , # Filter from that
       *%%3  # All numbers divisible by 3
 +   # Return the length of the list

Rasato da un altro byte .
nwellnhof,

@nwellnhof Non avevo capito che potresti combinare con qualunque codice. ! Neat
Jo King,

3

05AB1E , 14 12 7 6 byte

3*η3ÖO

-5 byte creando una porta della risposta Husk di @BMO .
-1 byte grazie a @Nitrodon modificando i suffissi in prefissi.

Provalo online o verifica i primi 1000 articoli .

Spiegazione:

3*        # Multiply the (implicit) input by 3
          #  i.e. 26042 → 78126
  η       # List of prefixes
          #  i.e. 78126 → ["7","78","781","7812","78126"]
   3Ö     # Check for each if its divisible by 3
          #  i.e. ["7","78","781","7812","78126"] → [0,1,0,1,1]
     O    # And take the sum (which is implicitly output)
          #  i.e. [0,1,0,1,1] → 3

Vecchia risposta da 12 byte:

3*.œʒ3ÖP}€gà

O in alternativa €gàpuò essereéθg .

Provalo online o verifica i primi 1000 articoli

Spiegazione:

3*             # Multiply the (implicit) input by 3
               #  i.e. 26042 → 78126
             # Take all possible partitions of this number
               #  i.e. 78126 → [["7","8","1","2","6"],["7","8","1","26"],["7","8","12","6"],
               #                ...,["781","26"],["7812","6"],["78126"]]
    ʒ   }      # Filter these partitions by:
     3ÖP       #  Only keep partitions where every number is divisible by 3
               #   i.e. ["7","8","1","2","6"] → [0,0,0,0,1] → 0
               #   i.e. ["78","12","6"] → [1,1,1] → 1

               #(option 1:)
         g    # Take the length of each remaining partition
               #  i.e. [["78","12","6"],["78","126"],["7812","6"],["78126"]] → [3,2,2,1]
           à   # And take the max (which we output implicitly)
               #  i.e. [3,2,2,1] → 3

               #(option 2:)
         é     # Sort the remaining partitions by length
               #  i.e. [["78","12","6"],["78","126"],["7812","6"],["78126"]]
               #   → [["78126"],["78","126"],["7812","6"],["78","12","6"]]
          θ    # Take the last one (the longest)
               #  i.e. [["78126"],["78","126"],["7812","6"],["78","12","6"]]
               #   → ["78","12","6"]
           g   # And take its length (which we output implicitly)
               #  i.e. ["78","12","6"] → 3

1
L'uso dei prefissi anziché dei suffissi dà lo stesso risultato in un byte in meno.
Nitrodon,

@Nitrodon Grazie! :) Conoscevo i prefissi a 1 byte incorporati, ma non mi rendevo conto che la sfida funziona usando prefissi invece che suffissi.
Kevin Cruijssen,


2

APL (Dyalog Unicode) , 14 byte

+/0=3|+\⍎¨⍕3×⎕

Provalo online! o verifica i primi 1000

Explanaition

+/0=3|+\⍎¨⍕3×⎕
               prompt for input
           3×   multiply by 3
        ⍎¨⍕     convert the number to a vector of digits
      +\        take the cumulative sum
    3|          find each term modulo 3
+/0=            count those that equal 0

Questo funziona perché un numero è divisibile per tre se e solo se la somma delle sue cifre è divisibile per tre



2

Haskell , 44 byte

g.(*3).max 1
g 0=0
g n=0^mod n 3+g(div n 10)

Provalo online!

Utilizza l'osservazione di Delfad0r secondo cui l'output è il numero di suffissi (equivalentemente, prefissi) di 3n che sono multipli di 3. Questo metodo trova i prefissi aritmeticamente dividendo ripetutamente il pavimento per 10 anziché utilizzare la rappresentazione di stringhe. Il 0^è un modo breve aritmetica per produrre 1se l'esponente mod n 3è zero, e produrre 0altrimenti.

La prima riga è la funzione principale, che triplica l'ingresso prima di passarlo alla funzione di supporto gdefinita in modo ricorsivo. Il max 1è un hack per rendere f(0)uguale a 1, dal momento che siamo tenuti a gestire lo zero come la corda '0'piuttosto che la stringa vuota.


2

MathGolf , 15 14 byte

3*▒0\Ƨ_3÷\;]Σ

Provalo online!

-1 byte grazie a JoKing

Spiegazione

3*                Multiply the input by 3
  ▒               Convert to a list of digits
   0\             Push a zero and swap the top two elements
     Æ            Execute the next 5 characters for each block
      §           Concatenate
       _          Duplicate
        3÷        Check divisibility by 3 (returns 0 or 1)
          \       Swap top two elements
           ;      Discard TOS (the last swap
            ]Σ    Wrap the entire stack in an array and output its sum

Non so se questa è la soluzione corretta al problema, ma imita la soluzione JS di Arnauld. Se non sono corretto, proverò a risolverlo.



@JoKing Dovrò capire cosa fa il tuo codice, quindi aggiornerò con una spiegazione (so cosa fa, ma non perché funzioni)
maxb,

1

Pyth, 16 15 byte

lef!.E%vT3./`*3

Provalo online qui .

lef!.E%vT3./`*3Q   Implicit: Q=eval(input())
                   Trailing Q inferred
            `*3Q   Input * 3
            `      Convert to string
          ./       Take divisions into disjoint substrings
  f                Filter the above using:
       vT            Convert each back to integer
      %  3           Mod 3
    .E               Are any non-0?
   !                 Logical NOT
le                 Take the length of the last value
                   As the substring sets are generated in order of number of 
                   substrings, the last value is guaranteed to be the longest

1

Shakespeare Programming Language , 376 byte

T.Ajax,.Page,.Act I:x.Scene I:x[Enter Ajax and Page]Ajax:Listen tothy!You be the sum ofthe sum ofyou you you!Scene V:x.Page:You be the sum ofyou the quotient betweena cat the sum ofa cat the remainder of the quotient betweenI the sum ofa big cat a cat!Ajax:You be the quotient betweenyou twice the sum ofa big big cat a cat!Be you nicer zero?If solet usscene V.Page:Open heart

Provalo online!

Mi chiedo se il 1/(1+I/3)trucco sia migliore di un flusso di controllo.


Non hai bisogno delle xscene successive. Provalo online!
Jo King,

1

Java 10, 66 byte

n->{int m=1,r=n<1?1:0;for(n*=3;m<n;m*=10)r+=n%m%3<1?1:0;return r;}

Provalo online.

Spiegazione:

Utilizza una combinazione della risposta Husk di @BMO (verificando quanti prefissi sono divisibili per 3) e la risposta JavaScript (ES6) di @Arnauld (moltiplicando un numero intero per 10 per ogni iterazione e ottenendo i prefissi con un modulo di questo intero) .

n->{             // Method with integer as both parameter and return-type
  int m=1,       //  Modulo-integer, starting at 1
      r=         //  Result-integer, starting at:
        n<1?     //   If the input is the edge-case 0:
         1       //    Start it at 1
        :        //   Else:
         0;      //    Start it at 0
  for(n*=3;      //  Multiply the input by 3
      m<n;       //  Loop as long as `m` is still smaller than `n`
      m*=10)     //    After every iteration: Multiply `m` by 10
    r+=n%m       //   If `n` modulo-`m` (to get a suffix),
          %3<1?  //   is divisible by 3:
        1        //    Increase the result-sum by 1
       :         //   Else:
        0;       //    Leave the result-sum the same by adding 0
  return r;}     //  Return the result-sum

1

Retina , 35 32 byte

.+
$.(*3*
Lv$`.+
<$&*->
<(---)*>

Provalo online! Spiegazione:

.+
$.(*3*

Moltiplicare l'input per 3.

Lv$`.+
<$&*->

Converti ogni suffisso in unario.

<(---)*>

Conta i multipli di tre.



1

Python 2 , 48 byte

n=input()*3;p=n<1
while n:p+=n%3<1;n/=10
print p

Provalo online!

Simile alla risposta di ovs , ma accetta l'intero prefisso mod 3 senza accumulare anziché l'ultima cifra. Emette Truecome 1 su input di 0.


Python 3 , 42 byte

f=lambda n:n>=1and(n%1<1/3)+f(n/10)or n==0

Provalo online!

Utilizza le idee della soluzione molto bella di ais523 . Ripetutamente il pavimento divide l'input per 10 fino a quando è zero e conta quante volte la parte frazionaria è inferiore a 1/3. Su input molto grandi la precisione del galleggiante alla fine sarà un problema. Il n=0caso viene gestito or n==0facendo in modo che restituisca True per 1. Il codice può funzionare in Python 2 se l'input è float, se riscriviamo n%1<1/3con n%1*3<1la stessa lunghezza.


1

Gelatina , 7 byte

×3DÄ3ḍS

Provalo online!

Come funziona

×3DÄ3ḍS  Main link. Argument: n

×3       Compute 3n.
  D      Decimal; convert 3n to the array of its digits in base 10.
   Ä     Accumulate; take the cumulative sum.
         Note that an integer and its digit sum are congruent modulo 3.
    3ḍ   Test each partial digit sum for divisibility by 3.
      S  Take the sum of the Booleans, counting the multiples of 3.




Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.