Decimale impacchettato densamente (DPD) in decimale, con porte logiche


13

Ispirato dalla recente popolarità di nandgame su TNB e dalla mia precedente sfida .

sfondo

Il decimale densamente compresso (DPD) è un modo per memorizzare in modo efficiente le cifre decimali in binario. Memorizza tre cifre decimali (da 000 a 999) in 10 bit, il che è molto più efficiente del BCD ingenuo (che memorizza una cifra in 4 bit).

Tabella di conversione

DPD è progettato per convertire facilmente tra i bit e le cifre mediante una semplice corrispondenza del modello dall'alto verso il basso. Ogni modello di bit definisce quante cifre alte (8-9) ha il numero, dove sono e come spostare i bit per formare la rappresentazione decimale.

Di seguito è riportata la tabella di conversione da 10 bit di DPD a tre cifre decimali. Ogni cifra decimale è rappresentata come binario a 4 bit (BCD). Entrambe le parti sono scritte da sinistra a destra dalla cifra più significativa alla minima.

Bits                 =>  Decimal         (Digit range)

a b c d e f 0 g h i  =>  0abc 0def 0ghi  (0-7) (0-7) (0-7)

a b c d e f 1 0 0 i  =>  0abc 0def 100i  (0–7) (0–7) (8–9)
a b c g h f 1 0 1 i  =>  0abc 100f 0ghi  (0–7) (8–9) (0–7)
g h c d e f 1 1 0 i  =>  100c 0def 0ghi  (8–9) (0–7) (0–7)

g h c 0 0 f 1 1 1 i  =>  100c 100f 0ghi  (8–9) (8–9) (0–7)
d e c 0 1 f 1 1 1 i  =>  100c 0def 100i  (8–9) (0–7) (8–9)
a b c 1 0 f 1 1 1 i  =>  0abc 100f 100i  (0–7) (8–9) (8–9)
x x c 1 1 f 1 1 1 i  =>  100c 100f 100i  (8–9) (8–9) (8–9)

notazioni

  • Le lettere minuscole ain isono i bit che vengono copiati nella rappresentazione decimale.
  • 0e 1sono i bit esatti nei modelli di bit di input o output.
  • x i bit vengono ignorati nella conversione.

Compito

Costruisci un circuito logico usando porte NAND a due ingressi per convertire 10 bit di DPD in 12 bit di BCD.

Esempi

I bit enfatizzati sono i bit corrispondenti al modello.

DPD                    Decimal  BCD
0 0 0 0 0 0 0 1 0 1    005      0000 0000 0101
            ^
0 0 0 1 1 0 0 0 1 1    063      0000 0110 0011
            ^
0 0 0 1 1 1 1 0 0 1    079      0000 0111 1001
            ^ ^ ^
0 0 0 0 0 1 1 0 1 0    090      0000 1001 0000
            ^ ^ ^
0 0 0 1 0 1 1 1 1 0    098      0000 1001 1000
      ^ ^   ^ ^ ^
1 0 1 0 1 1 1 0 1 0    592      0101 1001 0010
            ^ ^ ^
0 0 1 1 0 0 1 1 0 1    941      1001 0100 0001
            ^ ^ ^
1 1 0 0 1 1 1 1 1 1    879      1000 0111 1001
      ^ ^   ^ ^ ^
1 1 1 0 0 0 1 1 1 0    986      1001 1000 0110
      ^ ^   ^ ^ ^
0 0 1 1 1 1 1 1 1 1    999      1001 1001 1001
      ^ ^   ^ ^ ^
1 1 1 1 1 1 1 1 1 1    999      1001 1001 1001
      ^ ^   ^ ^ ^

Punteggio e criterio di vincita

Il punteggio è il numero di porte NAND a due ingressi utilizzate nel circuito. Vince il punteggio più basso.

È possibile definire piccoli componenti in termini di porte NAND a due ingressi e quindi utilizzarli nella costruzione finale. Se un componente Xinclude Nporte NAND a due input, ogni utilizzo di Xaggiunge Nal tuo punteggio. Per le porte logiche di base, ciò significa:

  • NON: +1
  • 2 ingressi AND: +2
  • 2 ingressi OPPURE: +3
  • XOR a 2 ingressi: +4

Eseguito il rollback della modifica di Luis perché atomic-code-golf è un tag criterio vincente e la sfida codice è per le domande che hanno un criterio vincente non coperto da altri tag.
Peter Taylor,

Questo non è ancora chiaro per me. Penso che ci deve essere ulteriormente descrizione di ciò che le lettere aalla imedia e il processo di conversione. Segui i passaggi, piuttosto che mostrare solo esempi e sperare di capirlo.
mbomb007,

@ mbomb007, forse mi è chiaro perché una delle mie lingue è SML. Quel primo blocco di codice è praticamente un'implementazione di riferimento in un linguaggio di corrispondenza dei modelli (sebbene funzioni meglio in SMLNJ, che echeggia il risultato di ogni istruzione, che in MLton).
Peter Taylor,

@ mbomb007 Ho provato a chiarire la natura di corrispondenza dei modelli della tabella di conversione. Aiuta?
Bubbler,

1
@Bubbler Sì, è utile
mbomb007,

Risposte:


4

45 NAND (o 43)

45 sembra essere il minimo assoluto, ma è possibile raggiungere 43 NAND con un trucco: assumendo che i numeri più grandi siano codificati correttamente.

888, 889, 898, 899, 988, 989, 998, 999 devono essere codificati con il 2 MSB come 00, che richiede solo 43 NAND per la decodifica.

Tuttavia, nelle specifiche per la decodifica, vengono specificate per essere ignorate, il che significa che possono essere qualsiasi cosa. È ragionevole supporre che questa specifica più libera possa richiedere ancora meno porte, ma è vero il contrario. Per questo sono necessari 45 cancelli. Questo risparmio potrebbe offrire vantaggi reali per i circuiti reali.

Ho anche trovato circuiti significativamente più efficienti e veloci, contenenti alcuni più gate.

Questa volta nessuna immagine disegnata a matita del circuito. Forse più tardi.

Il circuito è presentato in ovvio codice Verilog, pronto per essere eseguito con il test incluso.

Codice Verilog:

// Densely packed decimal (DPD) to decimal, circuit in Verilog.
// 45 NANDs only, which seems to be minimal.
//
// By Kim Øyhus 2019 (c) into (CC BY-SA 3.0.)
// This work is licensed under the Creative Commons Attribution 3.0
// Unported License. To view a copy of this license, visit
// https://creativecommons.org/licenses/by-sa/3.0/
//
// This is my entry to win this Programming Puzzle & Code Golf
// at Stack Exchange: 
// /codegolf/176557/densely-packed-decimal-dpd-to-decimal-with-logic-gates
//
// TASK:
// 3 decimal digits are stored in 10 bits in the DPD format,
// and this circuit transforms them into 3 decimal digits in
// 4 bits each, BCD format.
//
// 45 gates seem to be the smallest possible NAND circuit there is
// for this task, but I can get even lower by a trick, to 43:
// I assume that the largest numbers are correctly encoded.
//   888, 889, 898, 899, 988, 989, 998, 999 are to be encoded
// with the 2 MSB as 00, requiring just 43 NANDs for decoding.
//
//   However, in the specification for decoding, they are specified
// to be ignored, meaning they can be anything. It is a reasonable
// assumption that this freer specification could require even fewer
// gates, but the opposite is true. 45 gates are required for this.
// This saving could give real benefits for real circuits.
//
//   This DPD format seems to be used a lot for storing decimal numbers
// in computers and IO for ALUs, even though it is stored as 12 bits
// per 3 digits inside the ALUs and for other calculations.
// It is also used in many patents.


module decode1000 ( in_000, in_001, in_002, in_003, in_004, in_005, in_006, in_007, in_008, in_009, out000, out001, out002, out003, out004, out005, out006, out007, out008, out009, out010, out011 );
  input  in_000, in_001, in_002, in_003, in_004, in_005, in_006, in_007, in_008, in_009;
  output out000, out001, out002, out003, out004, out005, out006, out007, out008, out009, out010, out011;
  wire   wir000, wir001, wir002, wir003, wir004, wir005, wir006, wir007, wir008, wir009, wir010, wir011, wir012, wir013, wir014, wir015, wir016, wir017, wir018, wir019, wir020, wir021, wir022, wir023, wir024, wir025, wir026, wir027, wir028, wir029, wir030, wir031, wir032;

  nand gate000 ( wir000, in_007, in_007 );
  nand gate001 ( wir001, in_003, in_001 );
  nand gate002 ( wir002, in_002, in_003 );
  nand gate003 ( wir003, wir001, in_006 );
  nand gate004 ( wir004, wir002, in_001 );
  nand gate005 ( wir005, wir001, wir001 );
  nand gate006 ( wir006, in_005, in_001 );
  nand gate007 ( wir007, wir006, in_003 );
  nand gate008 ( out008, wir000, wir000 );
  nand gate009 ( wir008, wir004, wir007 );
  nand gate010 ( wir009, wir005, in_006 );
  nand gate011 ( wir010, wir007, wir007 );
  nand gate012 ( wir011, wir009, in_002 );
  nand gate013 ( wir012, wir011, wir009 );
  nand gate014 ( wir013, wir011, wir011 );
  nand gate015 ( wir014, in_008, wir013 );
  nand gate016 ( wir015, in_009, wir013 );
  nand gate017 ( wir016, wir010, wir014 );
  nand gate018 ( wir017, wir014, wir005 );
  nand gate019 ( wir018, wir015, wir015 );
  nand gate020 ( wir019, wir011, wir008 );
  nand gate021 ( wir020, wir019, wir006 );
  nand gate022 ( wir021, wir010, wir018 );
  nand gate023 ( wir022, wir020, wir004 );
  nand gate024 ( wir023, wir016, wir008 );
  nand gate025 ( out001, wir023, wir023 );
  nand gate026 ( out003, wir022, wir022 );
  nand gate027 ( wir024, wir005, wir008 );
  nand gate028 ( wir025, wir012, wir002 );
  nand gate029 ( wir026, wir019, in_003 );
  nand gate030 ( wir027, in_004, in_004 );
  nand gate031 ( out007, wir024, wir009 );
  nand gate032 ( out011, wir026, wir026 );
  nand gate033 ( wir028, wir017, in_005 );
  nand gate034 ( wir029, in_000, in_000 );
  nand gate035 ( wir030, wir026, in_008 );
  nand gate036 ( out005, wir028, wir028 );
  nand gate037 ( out009, wir030, wir030 );
  nand gate038 ( out000, wir029, wir029 );
  nand gate039 ( wir031, wir026, in_009 );
  nand gate040 ( out004, wir027, wir027 );
  nand gate041 ( out010, wir031, wir031 );
  nand gate042 ( wir032, out003, wir018 );
  nand gate043 ( out006, wir003, wir032 );
  nand gate044 ( out002, wir025, wir021 );
endmodule

module test;
   reg  [ 9:0] AB; // input DPD
   wire [11:0] C; // output BCD

  decode1000 U1 ( 
  .in_000 (AB[ 0]), 
  .in_001 (AB[ 1]), 
  .in_002 (AB[ 2]), 
  .in_003 (AB[ 3]), 
  .in_004 (AB[ 4]), 
  .in_005 (AB[ 5]), 
  .in_006 (AB[ 6]), 
  .in_007 (AB[ 7]), 
  .in_008 (AB[ 8]), 
  .in_009 (AB[ 9]), 
  .out000 ( C[ 0]),
  .out001 ( C[ 1]),
  .out002 ( C[ 2]),
  .out003 ( C[ 3]),
  .out004 ( C[ 4]),
  .out005 ( C[ 5]),
  .out006 ( C[ 6]),
  .out007 ( C[ 7]),
  .out008 ( C[ 8]),
  .out009 ( C[ 9]),
  .out010 ( C[10]),
  .out011 ( C[11])
  ); 

   initial  AB=0;  //unary=0;  binary=0
  always  #1  AB = AB+1;
  initial  begin
    $display("\t\ttime,\tinn 10bit   \tout 3x4bit"); 
    $monitor("%d,\t%b %b %b\t%b %b %b\t %d%d%d",$time, AB[9:7],AB[6:4],AB[3:0], C[11:8], C[7:4], C[3:0],  C[11:8], C[7:4], C[3:0]); 
  end 
  initial  #1023  $finish; 
endmodule

// How I run and test it:
// iverilog -o decode1000 decode1000.v
// vvp decode1000

3

65 62 60 58 NAND

Prendendo ingressi come i0ad i9e le uscite come o0da o9, oa, obabbiamo

t0 = nand(i6, i7)
t1 = nand(t0, t0)
t2 = nand(i3, i4)
o0 = nand(nand(nand(t2, i3), t1), nand(nand(t2, i8), t1))
t3 = nand(o0, o0)
t4 = nand(i0, t3)
o1 = nand(t4, t4)
t5 = nand(i1, t3)
o2 = nand(t5, t5)
o3 = i2
# Score 13 for the first decimal digit

u0 = nand(i6, i8)
u1 = nand(u0, t0)
u2 = nand(i4, t2)
o4 = nand(nand(nand(u2, u0), u2), nand(u1, t0))
u3 = nand(o4, o4)
u4 = nand(o0, i8)
u5 = nand(u4, u4)
u6 = nand(u3, nand(nand(u5, i0), nand(u4, i3)))
o5 = nand(u6, u6)
u7 = nand(u3, nand(nand(u5, i1), nand(u4, i4)))
o6 = nand(u7, u7)
o7 = i5
# Score 20 for the second decimal digit

o8 = nand(nand(nand(nand(i4, i8), o0), t1), nand(nand(i6, u1), i6))
v2 = nand(o8, o8)
v3 = nand(i6, i6)
v4 = nand(i7, i7)
v5 = nand(v2, nand(nand(i6, nand(nand(i7, i0), nand(v4, i3))), nand(v3, i7)))
o9 = nand(v5, v5)
v6 = nand(v2, nand(nand(i6, nand(nand(i7, i1), nand(v4, i4))), nand(v3, i8)))
oa = nand(v6, v6)
ob = i9
# Score 25 for the third decimal digit

Framework di test Python per convalidare la correttezza della costruzione.

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.