Colma le lacune


14

Dato un'immagine in bianco e nero con uno sfondo bianco e una serie di punti neri, dipingi una serie di pixel bianchi in rosso, in modo che vi sia un percorso tra ogni coppia di pixel neri.

Dettagli

  • Un percorso è un insieme di pixel connessi (connettività a 8 quartieri). I pixel neri possono essere utilizzati come parte dei percorsi. L'obiettivo è cercare di ridurre al minimo l'insieme dei pixel rossi nelle condizioni sopra e produrre un'immagine corrispondente.

  • Non è necessario trovare la soluzione ottimale.

  • Una soluzione banale e allo stesso tempo peggiore è semplicemente dipingere di rosso tutti i pixel bianchi.

  • Esempio (i pixel sono ingranditi per la visibilità):

Dettagli

  • Data un'immagine pixel (in qualsiasi formato adatto) restituisce un'altra immagine con i punti collegati come specificato sopra, nonché un numero intero che indica quanti pixel rossi sono stati utilizzati.
  • Il punteggio è il prodotto di (1 + il numero di pixel rossi) per ciascuna delle 14 prove.
  • L'obiettivo è ottenere il punteggio più basso.

Casi test

Di seguito sono riportati i 14 casi di prova. Un programma Python per verificare la connessione degli output è disponibile qui.

Meta

Grazie a @Veskah, @Fatalize, @ wizzwizz4 e @trichoplax per i vari suggerimenti.


1
Bella sfida; Mi piacciono quelli con schemi di punteggio diversi e creativi. Suppongo che il programma debba lavorare su un'immagine arbitraria, non solo su questi 14 esempi specifici? In tal caso, possiamo assumere una dimensione massima ragionevole, come 512x512 per l'immagine della Gioconda, o 1024x1024?
BradC

Grazie per il feedback! Sì, puoi assumere una dimensione massima (se necessario anche una dimensione minima), a condizione che tutti i 14 esempi possano essere elaborati.
flawr

come faccio a convertire PNG in ASCII o JSON o qualcos'altro facile da analizzare?
ngn,

Devi essere in grado di calcolare il tuo punteggio? Un programma che prova ogni possibile combinazione di pixel bianchi a dipingere di rosso e vede quale sottoinsieme ha il minor numero di pixel rossi mentre collega tutti i pixel neri avrebbe il miglior punteggio possibile, ma sarebbe così lento da richiedere più tempo della vita dell'universo per calcolare effettivamente quel punteggio.
Leo Tenenbaum,

1
@ngn Apri in GIMP, salva come formato netpbm.
wizzwizz4,

Risposte:


7

C, punteggio 2.397x10 ^ 38

Amico, ci è voluto troppo tempo per farlo, molto probabilmente a causa della mia scelta della lingua. Ho fatto funzionare l'algoritmo abbastanza presto, ma ho riscontrato molti problemi con l'allocazione della memoria (impossibile ricorsivamente liberare materiale a causa di overflow dello stack, le dimensioni delle perdite erano enormi).

Ancora! Batte l'altra voce su ogni caso di test e potrebbe anche essere ottimale ottenere soluzioni abbastanza vicine o esattamente ottimali per la maggior parte del tempo.

Comunque, ecco il codice:

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>

#define WHITE 'W'
#define BLACK 'B'
#define RED   'R'


typedef struct image {
    int w, h;
    char* buf;
} image;

typedef struct point {
    int x, y;
    struct point *next;
    struct point *parent;
} point;

typedef struct shape {
    point* first_point;
    point* last_point;

    struct shape* next_shape;
} shape;


typedef struct storage {
    point* points;
    size_t points_size;
    size_t points_index;

    shape* shapes;
    size_t shapes_size;
    size_t shapes_index;
} storage;

char getpx(image* img, int x, int y) {
    if (0>x || x>=img->w || 0>y || y>=img->h) {
        return WHITE;
    } else {
        return img->buf[y*img->w+x];
    }
}

storage* create_storage(int w, int h) {
    storage* ps = (storage*)malloc(sizeof(storage));

    ps->points_size = 8*w*h;
    ps->points = (point*)calloc(ps->points_size, sizeof(point));
    ps->points_index = 0;

    ps->shapes_size = 2*w*h;
    ps->shapes = (shape*)calloc(ps->shapes_size, sizeof(shape));
    ps->shapes_index = 0;

    return ps;
}

void free_storage(storage* ps) {
    if (ps != NULL) {
        if (ps->points != NULL) {
            free(ps->points);
            ps->points = NULL;
        }
        if (ps->shapes != NULL) {
            free(ps->shapes);
            ps->shapes = NULL;
        }
        free(ps);
    }
}


point* alloc_point(storage* ps) {
    if (ps->points_index == ps->points_size) {
        printf("WHOAH THERE BUDDY SLOW DOWN\n");
        /*// double the size of the buffer
        point* new_buffer = (point*)malloc(ps->points_size*2*sizeof(point));
        // need to change all existing pointers to point to new buffer
        long long int pointer_offset = (long long int)new_buffer - (long long int)ps->points;
        for (size_t i=0; i<ps->points_index; i++) {
            new_buffer[i] = ps->points[i];
            if (new_buffer[i].next != NULL) {
                new_buffer[i].next += pointer_offset;
            }
            if (new_buffer[i].parent != NULL) {
                new_buffer[i].parent += pointer_offset;
            }
        }

        for(size_t i=0; i<ps->shapes_index; i++) {
            if (ps->shapes[i].first_point != NULL) {
                ps->shapes[i].first_point += pointer_offset;
            }
            if (ps->shapes[i].last_point != NULL) {
                ps->shapes[i].last_point += pointer_offset;
            }
        }

        free(ps->points);
        ps->points = new_buffer;
        ps->points_size = ps->points_size * 2;*/
    }
    point* out = &(ps->points[ps->points_index]);
    ps->points_index += 1;
    return out;
}

shape* alloc_shape(storage* ps) {
    /*if (ps->shapes_index == ps->shapes_size) {
        // double the size of the buffer
        shape* new_buffer = (shape*)malloc(ps->shapes_size*2*sizeof(shape));
        long long int pointer_offset = (long long int)new_buffer - (long long int)ps->shapes;
        for (size_t i=0; i<ps->shapes_index; i++) {
            new_buffer[i] = ps->shapes[i];
            if (new_buffer[i].next_shape != NULL) {
                new_buffer[i].next_shape += pointer_offset;
            }
        }
        free(ps->shapes);
        ps->shapes = new_buffer;
        ps->shapes_size = ps->shapes_size * 2;
    }*/
    shape* out = &(ps->shapes[ps->shapes_index]);
    ps->shapes_index += 1;
    return out;
}

shape floodfill_shape(image* img, storage* ps, int x, int y, char* buf) {
    // not using point allocator for exploration stack b/c that will overflow it

    point* stack = (point*)malloc(sizeof(point));
    stack->x = x;
    stack->y = y;
    stack->next = NULL;
    stack->parent = NULL;

    point* explored = NULL;
    point* first_explored;
    point* next_explored;

    while (stack != NULL) {
        int sx = stack->x;
        int sy = stack->y;
        point* prev_head = stack;
        stack = stack->next;
        free(prev_head);

        buf[sx+sy*img->w] = 1; // mark as explored

        // add point to shape
        next_explored = alloc_point(ps);
        next_explored->x = sx;
        next_explored->y = sy;
        next_explored->next = NULL;
        next_explored->parent = NULL;

        if (explored != NULL) {
            explored->next = next_explored;
        } else {
            first_explored = next_explored;
        }
        explored = next_explored;

        for (int dy=-1; dy<2; dy++) {
        for (int dx=-1; dx<2; dx++) {
            if (dy != 0 || dx != 0) {
                int nx = sx+dx;
                int ny = sy+dy;
                if (getpx(img, nx, ny) == WHITE || buf[nx+ny*img->w]) {
                    // skip adding point to fringe
                } else {
                    // push point to top of stack
                    point* new_point = (point*)malloc(sizeof(point));
                    new_point->x = nx;
                    new_point->y = ny;
                    new_point->next = stack;
                    new_point->parent = NULL;

                    stack = new_point;
                } 
            }
        }
        }
    }

    /*if (getpx(img, x, y) == WHITE || buf[x+y*img->w]) {
        return (shape){NULL, NULL, NULL};
    } else {
        buf[x+y*img->w] = 1;

        shape e  = floodfill_shape(img, ps, x+1, y,   buf);
        shape ne = floodfill_shape(img, ps, x+1, y+1, buf);
        shape n  = floodfill_shape(img, ps, x,   y+1, buf);
        shape nw = floodfill_shape(img, ps, x-1, y+1, buf);
        shape w  = floodfill_shape(img, ps, x-1, y,   buf);
        shape sw = floodfill_shape(img, ps, x-1, y-1, buf);
        shape s  = floodfill_shape(img, ps, x,   y-1, buf);
        shape se = floodfill_shape(img, ps, x+1, y-1, buf);

        point *p = alloc_point(ps);
        p->x = x;
        p->y = y;
        p->next = NULL;
        p->parent = NULL;

        shape o = (shape){p, p, NULL};
        if (e.first_point != NULL) {
            o.last_point->next = e.first_point;
            o.last_point = e.last_point;
        }
        if (ne.first_point != NULL) {
            o.last_point->next = ne.first_point;
            o.last_point = ne.last_point;
        }
        if (n.first_point != NULL) {
            o.last_point->next = n.first_point;
            o.last_point = n.last_point;
        }
        if (nw.first_point != NULL) {
            o.last_point->next = nw.first_point;
            o.last_point = nw.last_point;
        }
        if (w.first_point != NULL) {
            o.last_point->next = w.first_point;
            o.last_point = w.last_point;
        }
        if (sw.first_point != NULL) {
            o.last_point->next = sw.first_point;
            o.last_point = sw.last_point;
        }
        if (s.first_point != NULL) {
            o.last_point->next = s.first_point;
            o.last_point = s.last_point;
        }
        if (se.first_point != NULL) {
            o.last_point->next = se.first_point;
            o.last_point = se.last_point;
        }

        return o;
    }*/

    shape out = {first_explored, explored, NULL};

    return out;
}

shape* create_shapes(image* img, storage* ps) {
    char* added_buffer = (char*)calloc(img->w*img->h, sizeof(char));
    shape* first_shape = NULL;
    shape* last_shape = NULL;
    int num_shapes = 0;
    for (int y=0; y<img->h; y++) {
        for (int x=0; x<img->w; x++) {
            if (getpx(img, x, y) != WHITE && !(added_buffer[x+y*img->w])) {
                shape* alloced_shape = alloc_shape(ps);
                *alloced_shape = floodfill_shape(img, ps, x, y, added_buffer);

                if (first_shape == NULL) {
                    first_shape = alloced_shape;
                    last_shape = alloced_shape;
                } else if (last_shape != NULL) {
                    last_shape->next_shape = alloced_shape;
                    last_shape = alloced_shape;
                }

                num_shapes++;
            }
        }
    }

    free(added_buffer);

    return first_shape;
}

void populate_buf(image* img, shape* s, char* buf) {
    point* p = s->first_point;

    while (p != NULL) {
        buf[p->x+p->y*img->w] = 1;
        p = p->next;
    }
}

bool expand_frontier(image* img, storage* ps, shape* prev_frontier, shape* next_frontier, char* buf) {
    point* p = prev_frontier->first_point;
    point* n = NULL;

    bool found = false;

    size_t starting_points_index = ps->points_index;

    while (p != NULL) {
        for (int dy=-1; dy<2; dy++) {
        for (int dx=-1; dx<2; dx++) {
            if (dy != 0 || dx != 0) {
                int nx = p->x+dx;
                int ny = p->y+dy;
                if ((0<=nx && nx<img->w && 0<=ny && ny<img->h) // in bounds
                        && !buf[nx+ny*img->w]) {               // not searched yet
                    buf[nx+ny*img->w] = 1;
                    if (getpx(img, nx, ny) != WHITE) {
                        // found a new shape!
                        ps->points_index = starting_points_index;
                        n = alloc_point(ps);
                        n->x = nx;
                        n->y = ny;
                        n->next = NULL;
                        n->parent = p;
                        found = true;
                        goto __expand_frontier_fullbreak;
                    } else {
                        // need to search more
                        point* f = alloc_point(ps);
                        f->x = nx;
                        f->y = ny;
                        f->next = n;
                        f->parent = p;
                        n = f;
                    }
                }
            }
        }}

        p = p->next;
    }
__expand_frontier_fullbreak:
    p = NULL;
    point* last_n = n;
    while (last_n->next != NULL) {
        last_n = last_n->next;
    }

    next_frontier->first_point = n;
    next_frontier->last_point = last_n;

    return found;
}

void color_from_frontier(image* img, point* frontier_point) {
    point* p = frontier_point->parent;

    while (p->parent != NULL) { // if everything else is right,
                                // a frontier point should come in a chain of at least 3
                                // (f point (B) -> point to color (W) -> point in shape (B) -> NULL)
        img->buf[p->x+p->y*img->w] = RED;
        p = p->parent;
    }
}

int main(int argc, char** argv) {
    if (argc < 3) {
        printf("Error: first argument must be filename to load, second argument filename to save to.\n");
        return 1;
    }

    char* fname = argv[1];
    FILE* fp = fopen(fname, "r");

    if (fp == NULL) {
        printf("Error opening file \"%s\"\n", fname);
        return 1;
    }

    int w, h;
    w = 0;
    h = 0;
    fscanf(fp, "%d %d\n", &w, &h);

    if (w==0 || h==0) {
        printf("Error: invalid width/height specified\n");
        return 1;
    }

    char* buf = (char*)malloc(sizeof(char)*w*h+1);
    fgets(buf, w*h+1, fp);
    fclose(fp);

    image img = (image){w, h, buf};

    int nshapes = 0;
    storage* ps = create_storage(w, h);

    while (nshapes != 1) {
        // main loop, do processing step until one shape left
        ps->points_index = 0;
        ps->shapes_index = 0;

        shape* head = create_shapes(&img, ps);
        nshapes = 0;
        shape* pt = head;
        while (pt != NULL) {
            pt = pt->next_shape;
            nshapes++;
        }
        if (nshapes % 1024 == 0) {
            printf("shapes left: %d\n", nshapes);
        }
        if (nshapes == 1) {
            goto __main_task_complete;
        }


        shape* frontier = alloc_shape(ps);
        // making a copy so we can safely free later
        point* p = head->first_point;
        point* ffp = NULL;
        point* flp = NULL;
        while (p != NULL) {
            if (ffp == NULL) {
                ffp = alloc_point(ps);
                ffp->x = p->x;
                ffp->y = p->y;
                ffp->next = NULL;
                ffp->parent = NULL;
                flp = ffp;
            } else {
                point* fnp = alloc_point(ps);
                fnp->x = p->x;
                fnp->y = p->y;
                fnp->next = NULL;
                fnp->parent = NULL;

                flp->next = fnp;
                flp = fnp;
            }

            p = p->next;
        }
        frontier->first_point = ffp;
        frontier->last_point = flp;
        frontier->next_shape = NULL;

        char* visited_buf = (char*)calloc(img.w*img.h+1, sizeof(char));
        populate_buf(&img, frontier, visited_buf);

        shape* new_frontier = alloc_shape(ps);
        new_frontier->first_point = NULL;
        new_frontier->last_point = NULL;
        new_frontier->next_shape = NULL;

        while (!expand_frontier(&img, ps, frontier, new_frontier, visited_buf)) {
            frontier->first_point = new_frontier->first_point;
            frontier->last_point = new_frontier->last_point;
            new_frontier->next_shape = frontier;
        }

        free(visited_buf);
        color_from_frontier(&img, new_frontier->first_point);
__main_task_complete:
        img = img;
    }

    free_storage(ps);

    char* outfname = argv[2];
    fp = fopen(outfname, "w");

    if (fp == NULL) {
        printf("Error opening file \"%s\"\n", outfname);
        return 1;
    }

    fprintf(fp, "%d %d\n", img.w, img.h);
    fprintf(fp, "%s", img.buf);

    free(img.buf);

    fclose(fp);

    return 0;
}

Testato su: Arch Linux, GCC 9.1.0, -O3

Questo codice accetta input / output in un file personalizzato che chiamo "cppm" (perché è come una versione ridotta del classico formato PPM). Di seguito è riportato uno script Python da convertire in / da esso:

from PIL import Image

BLACK='B'
WHITE='W'
RED  ='R'


def image_to_cppm(infname, outfname):
    outfile = open(outfname, 'w')
    im = Image.open(infname)

    w, h = im.width, im.height
    outfile.write(f"{w} {h}\n")
    for y in range(h):
        for x in range(w):
            r, g, b, *_ = im.getpixel((x, y))
            if r==0 and g==0 and b==0:
                outfile.write(BLACK)
            elif g==0 and b==0:
                outfile.write(RED)
            else:
                outfile.write(WHITE)
    outfile.write("\n")
    outfile.close()
    im.close()

def cppm_to_image(infname, outfname):
    infile = open(infname, 'r')

    w, h = infile.readline().split(" ")
    w, h = int(w), int(h)

    im = Image.new('RGB', (w, h), color=(255, 255, 255))

    for y in range(h):
        for x in range(w):
            c = infile.read(1)
            if c==BLACK:
                im.putpixel((x,y), (0, 0, 0))
            elif c==RED:
                im.putpixel((x,y), (255, 0, 0))

    infile.close()
    im.save(outfname)
    im.close()


if __name__ == "__main__":
    import sys
    if len(sys.argv) < 3:
        print("Error: must provide 2 files to convert, first is from, second is to")

    infname = sys.argv[1]
    outfname = sys.argv[2]

    if not infname.endswith("cppm") and outfname.endswith("cppm"):
        image_to_cppm(infname, outfname)
    elif infname.endswith("cppm") and not outfname.endswith("cppm"):
        cppm_to_image(infname, outfname)
    else:
        print("didn't do anything, exactly one file must end with .cppm")

Spiegazione dell'algoritmo

Come funziona questo algoritmo è che inizia trovando tutte le forme connesse nell'immagine, inclusi i pixel rossi. Prende quindi il primo ed espande la sua frontiera di un pixel alla volta fino a quando non incontra un'altra forma. Quindi colora tutti i pixel dalla forma toccante a quella originale (usando l'elenco collegato creato lungo il percorso per tenere traccia). Infine, ripete il processo, trovando tutte le nuove forme create, fino a quando rimane solo una forma.

Galleria di immagini

Testcase 1, 183 pixel

testcase 1

Testcase 2, 140 pixel

testcase 2

Testcase 3, 244 pixel

testcase 3

Testcase 4, 42 pixel

testcase 4

Testcase 5, 622 pixel

testcase 5

Testcase 6, 1 pixel

testcase 6

Testcase 7, 104 pixel

testcase 7

Testcase 8, 2286 pixel

testcase 8

Testcase 9, 22 pixel

testcase 9

Testcase 10, 31581 pixel

testcase 10

Testcase 11, 21421 pixel

testcase 11

Testcase 12, 5465 pixel

testcase 12

Testcase 13, 4679 pixel

testcase 13

Testcase 14, 7362 pixel

testcase 14


2
Bel lavoro! Sembra molto efficiente, anche se posso immaginare alcune forme con soluzioni leggermente più ottimali: Testcase 3 (4 punti in un quadrato), ad esempio, ho (manualmente) ridotto a 175 (una X rossa), non sono sicuro di come Lo forzerei tramite algoritmo.
BradC,

6

Python, 2,62 * 10 ^ 40

Questo algoritmo riempie semplicemente (BFS) il piano partendo dalle parti nere dell'immagine, dove per ogni nuovo pixel registriamo da quale parte nera è stata inondata. Non appena abbiamo due pixel vicini con diverse parti nere come antenati, fondiamo fondamentalmente queste due parti nere unendole attraverso gli antenati dei due vicini che abbiamo appena trovato. In teoria questo potrebbe essere implementato O(#pixels), ma per mantenere la quantità di codice a un livello accettabile questa implementazione è leggermente peggiore.

Produzione

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

import numpy as np
from scipy import ndimage
import imageio
from collections import deque

# path to your image
for k in range(1, 15):
    fname=str(k).zfill(2) +'.png'
    print("processing ", fname)

    # load image
    img = imageio.imread("./images/"+fname, pilmode="RGB")
    print(img.shape)

    # determine non_white part
    white = np.logical_and(np.logical_and(img[:,:,0] == 255, img[:,:,1] == 255), img[:,:,2] == 255)
    non_white = np.logical_not(white)

    # find connected components of non-white part
    neighbourhood = np.ones((3,3))
    labeled, nr_objects = ndimage.label(non_white, neighbourhood)

    # print result
    print("number of separate objects is {}".format(nr_objects))

    # start flood filling algorithm
    ind = np.nonzero(labeled)
    front = deque(zip(ind[0],ind[1]))

    membership = np.copy(labeled)
    is_merge_point = np.zeros_like(labeled) > 0
    parent = np.zeros((2,) + labeled.shape) #find ancestor of each pixel
    is_seed = labeled > 0
    size_i, size_j = labeled.shape
    # flood from every seed
    while front: #while we have unexplored pixels
        point = front.popleft()
        # check neighbours:
        for (di,dj) in [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]:
            current = membership[point[0], point[1]]
            new_i, new_j = point[0]+di, point[1]+dj
            if 0 <= new_i < size_i and 0 <= new_j < size_j:
                value = membership[new_i, new_j]
                if value == 0:
                    membership[new_i, new_j] = current
                    front.append((new_i, new_j))
                    parent[:, new_i, new_j] = point
                elif value != current: #MERGE!
                    is_merge_point[point[0], point[1]] = True
                    is_merge_point[new_i, new_j] = True
                    membership[np.logical_or(membership == value, membership == current)] = min(value, current)

    # trace back from every merger
    ind = np.nonzero(is_merge_point)
    merge_points = deque(zip(ind[0].astype(np.int),ind[1].astype(np.int)))
    for point in merge_points:
        next_p = point
        while not is_seed[next_p[0], next_p[1]]:
            is_merge_point[next_p[0], next_p[1]] = True
            next_p = parent[:, next_p[0], next_p[1]].astype(np.int)

    # add red points:
    img_backup = np.copy(img)
    img[:,:,0][is_merge_point] = 255 * img_backup[:,:,0]
    img[:,:,1][is_merge_point] = 0   * img_backup[:,:,1]
    img[:,:,2][is_merge_point] = 0   * img_backup[:,:,2]

    #compute number of new points
    n_red_points = (img[:,:,0] != img[:,:,1]).sum()
    print("#red points:", n_red_points)

    # plot: each component should have separate color
    imageio.imwrite("./out_images/"+fname, np.array(img))

Punto

(1+183)*(1+142)*(1+244)*(1+42)*(1+1382)*(1+2)*(1+104)*(1+7936)*(1+26)*(1+38562)*(1+42956)*(1+6939)*(1+8882)*(1+9916)
= 26208700066468930789809050445560539404000
= 2.62 * 10^40

- Questo, credo, è ottimale. Ben fatto. Okay, questo non è ottimale. Non capisco perché no.
wizzwizz4,

@ wizzwizz4 Guarda il caso semplice dei quattro angoli di un quadrato: la soluzione ottimale sarebbe una X. Mentre in teoria il mio algoritmo potrebbe trovare questa soluzione, è molto improbabile. È molto più probabile che trovi una soluzione con tre percorsi che collegano ciascuno due punti.
Flawr,

@ wizzwizz4 Sì, ingrandisci l'esempio di testo di Wikipedia e vedrai tonnellate di piccoli posti in cui un diverso percorso di collegamento avrebbe salvato un pixel rosso o due; si sommeranno.
BradC,

Ma questo sembra bolle di sapone sui pioli, che è una soluzione legittima al problema dell'albero di Steiner .
wizzwizz4,

1
@ wizzwizz4 La differenza, quindi, deve essere che non stiamo collegando punti , stiamo collegando gruppi di punti, quindi non dobbiamo decidere quali punti in ciascun set si collegano in modo ottimale. Zoom nel testo di esempio ancora una volta, i miglioramenti si possono vedere in gran parte hanno a che fare con le quali sono collegate parti di ogni forma.
BradC

5

Python 3: 1.7x10 ^ 42 1,5x10 ^ 41

Utilizzando Pillow, numpye scipy.

Si presume che le immagini si trovino in una imagescartella situata nella stessa directory dello script.

Dichiarazione di non responsabilità : l'elaborazione delle immagini richiede molto tempo.

Codice

import sys
import os

from PIL import Image
import numpy as np
import scipy.ndimage


def obtain_groups(image, threshold, structuring_el):
    """
    Obtain isles of unconnected pixels via a threshold on the R channel
    """
    image_logical = (image[:, :, 1] < threshold).astype(np.int)
    return scipy.ndimage.measurements.label(image_logical, structure=structuring_el)


def swap_colors(image, original_color, new_color):
    """
    Swap all the pixels of a specific color by another color 
    """
    r1, g1, b1 = original_color  # RGB value to be replaced
    r2, g2, b2 = new_color  # New RGB value
    red, green, blue = image[:, :, 0], image[:, :, 1], image[:, :, 2]
    mask = (red == r1) & (green == g1) & (blue == b1)
    image[:, :, :3][mask] = [r2, g2, b2]
    return image


def main(image_path=None):
    images = os.listdir("images")
    f = open("results.txt", "w")

    if image_path is not None:
        images = [image_path]

    for image_name in images:
        im = Image.open("images/"+image_name).convert("RGBA")
        image = np.array(im)

        image = swap_colors(image, (255, 255, 255), (255, 0, 0))

        # create structuring element to determine unconnected groups of pixels in image
        s = scipy.ndimage.morphology.generate_binary_structure(2, 2)

        for i in np.ndindex(image.shape[:2]):
            # skip black pixels
            if sum(image[i[0], i[1]]) == 255:
                continue
            image[i[0], i[1]] = [255, 255, 255, 255]
            # label the different groups, considering diagonal connections as valid
            groups, num_groups = obtain_groups(image, 255, s)
            if num_groups != 1:
                image[i[0], i[1]] = [255, 0, 0, 255]
            # Show percentage
            print((i[1] + i[0]*im.size[0])/(im.size[0]*im.size[1]))

        # Number of red pixels
        red_p = 0
        for i in np.ndindex(image.shape[:2]):
            j = (im.size[1] - i[0] - 1, im.size[0] - i[1] - 1)
            # skip black and white pixels
            if sum(image[j[0], j[1]]) == 255 or sum(image[j[0], j[1]]) == 255*4:
                continue
            image[j[0], j[1]] = [255, 255, 255, 255]
            # label the different groups, considering diagonal connections as valid
            groups, num_groups = obtain_groups(image, 255, s)
            if num_groups != 1:
                image[j[0], j[1]] = [255, 0, 0, 255]
            # Show percentage
            print((j[1] + j[0]*im.size[0])/(im.size[0]*im.size[1]))
            red_p += (sum(image[j[0], j[1]]) == 255*2)

        print(red_p)
        f.write("r_"+image_name+": "+str(red_p)+"\n")

        im = Image.fromarray(image)
        im.show()
        im.save("r_"+image_name)
    f.close()


if __name__ == "__main__":
    if len(sys.argv) == 2:
        main(sys.argv[1])
    else:
        main()

Spiegazione

Soluzione banale. Iniziamo cambiando il colore di tutti i pixel bianchi di un'immagine in rosso. In questo modo, è garantito che tutti gli elementi (qualsiasi isola di pixel neri) sono collegati.

Quindi, eseguiamo l'iterazione su tutti i pixel nell'immagine a partire dall'angolo in alto a sinistra e spostandoci a destra e in basso. Per ogni pixel rosso troviamo che cambiamo il suo colore in bianco. Se dopo questo cambio di colore c'è ancora un solo elemento (un elemento ora è un'isola di pixel neri e rossi), lasciamo il pixel bianco e passiamo al pixel successivo. Tuttavia, se dopo che il colore cambia da rosso a bianco il numero di elementi è maggiore di uno, lasciamo il pixel rosso e passiamo al pixel successivo.

Aggiornare

Come si può vedere (e prevedere) le connessioni ottenute usando solo questo metodo mostrano uno schema regolare e in alcuni casi, come nella sesta e undicesima immagine, ci sono pixel rossi non necessari.

Questi pixel rossi extra possono essere facilmente rimossi ripetendo nuovamente sull'immagine ed eseguendo le stesse operazioni descritte sopra ma dall'angolo in basso a destra all'angolo in alto a sinistra. Questo secondo passaggio è molto più veloce poiché la quantità di pixel rossi che devono essere controllati.

risultati

Le immagini che vengono modificate dopo il secondo passaggio vengono elencate due volte per mostrare le differenze.

18825

Numero di pixel rossi: 18825

334

Numero di pixel rossi: 334

1352

Numero di pixel rossi: 1352

20214

Numero di pixel rossi: 20214

inserisci qui la descrizione dell'immagine

Numero di pixel rossi: 47268

63 inserisci qui la descrizione dell'immagine

Numero di pixel rossi: 63 27

17889

Numero di pixel rossi: 17889

259

Numero di pixel rossi: 259

6746

Numero di pixel rossi: 6746

586

Numero di pixel rossi: 586

9 inserisci qui la descrizione dell'immagine

Numero di pixel rossi: 9 1

126

Numero di pixel rossi: 126

212

Numero di pixel rossi: 212

683

Numero di pixel rossi: 683

Calcolo del punteggio:

(1 + 6746) * (1 + 126) * (1 + 259) * (1 + 17889) * (1 + 334) * (1 + 586) * (1 + 18825) * (1 + 9) * (1 +683) * (1 + 1352) * (1 + 20214) * (1 + 212) * (1 + 63) * (1 + 47268) = 1778700054505858720992088713763655500800000 ~ 1.7x10 ^ 42

Calcolo del punteggio aggiornato dopo l'aggiunta del secondo passaggio:

(1+ 18825) * (1+ 1352) * (1+ 20214) * (1+ 47268) * (1+ 27) * (1+ 17889) * (1+ 6746) * (1+ 586) * (1 + 1) * (1+ 126) * (1+ 212) * (1+ 334) * (1 + 259) * (1 + 683) = 155636254769262638086807762454319856320000 ~ 1.5x10 ^ 41


Bel lavoro. Sembra che potremmo aver bisogno di segnare questo in notazione scientifica: 1.7x10 ^ 42
BradC
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.