Crea interprete per un linguaggio inesistente


18

Costruisci un interprete per un linguaggio falso e basato su stack che ottiene un input, lo interpreta e genera il risultato come una matrice di numeri. Dovrebbe scorrere attraverso ogni byte ed eseguire una funzione diversa basata su questa tabella:

0000 (0): Concatena (Combina i primi due numeri in una pila come se fossero una stringa. Es: 12,5 -> 125)
0001 (1): Incrementa (aggiungi 1 al numero in cima alla pila)
0010 (2): Decrementa (Sottrai uno dal numero in cima alla pila)
0011 (3): Moltiplica (Moltiplica i primi due numeri nella pila)
0100 (4): Dividi (Dividi il secondo in ordine superiore per il numero più alto nello stack)
0101 (5): Aggiungi (aggiungi i primi due numeri nello stack)
0110 (6): Sottrai (Sottrai il numero più alto nello stack da quello sotto di esso)
0111 (7): Esponente ( Calcola il numero dal secondo in alto alla potenza del numero in alto)
1000 (8): Modulo: (Trova il numero dal secondo in alto nel modulo in alto)
1001 (9): ruota a destra (sposta la pila in basso di una. Il numero in basso è ora in alto)
1010 (A): ruota a sinistra (sposta la pila in su di uno. Il numero in alto è ora in basso)
1011 (B): Duplica (Copia il numero in alto in modo che appaia due volte. Es: 4,1 diventa 4,1,1)
1100 (C): Duplica doppio (Copia i due numeri in cima allo stack. Es: 4, 1,2 diventa 4,1,2,1,2)
1101 (D): Scambia (Scambia i primi due numeri in pila es. 4,1,2 diventa 4,2,1)
1110 (E): Doppio Scambia (Scambia i primi due numeri con due sotto di loro.ex: 1,2,3,4,5 diventa 1,4,5,2,3)
1111 (F): Elimina / Pop (Rimuovi il numero nella parte superiore di la pila)

Ad esempio, un file contenente

1 1 BC 5 C 5 B 9 5 - Ingresso (esadecimale)
| | | | | | | | | |
1 2 2 2 4 4 6 6 2 8 - Stack
    2 2 2 2 4 6 6 6
      2 2 4 2 4 6 4
      2 2 2 2 4 2
          2 2 2

produrrebbe [8,6,4,2]

Regole:

  • Unicode / simboli vanno bene, ma ASCII è il migliore.
  • Essere creativo! La mancanza conta, ma la creatività è fantastica!
  • Se i byte sono troppo difficili, utilizzare "$iv*/+-^%><dtsz."o "0123456789ABCDEF"anziché i byte effettivi.
  • VELOCITÀ! Più veloce, meglio è.
  • Il punteggio si basa sulla reputazione, ma la dimensione è un fattore enorme.

Bonus:

Prova a completare questa sfida usando il tuo interprete appena creato nel più breve tempo possibile.

Nota:

La cosa che rende questo impegnativo al contrario di altre sfide del code-golf è che non c'è codice a seguire. Se, diciamo, hai dovuto scrivere un interprete brainf * ck, potresti guardare le implementazioni di altre persone. Con questo, non puoi farlo.


Ho dimenticato di mettere e data di fine su questo. Immagino che ce la farò un mese da quando l'ho creato. Vince la persona con il punteggio più alto al 22 febbraio!


1
Se stai dicendo che il vincitore è deciso dai voti, è un concorso di popolarità , non un codice-golf .
Ry,

8
Non è più inesistente, vero? :)
Kendall Frey,

1
Tecnicamente , una lingua non ha bisogno di un interprete o di un compilatore per essere una lingua. : P
Kendall Frey,

2
IIUC, dovremmo iniziare con uno stack vuoto e trattare i underflow come zero?
John Dvorak,

2
Dovresti iniziare con un singolo 0 nello stack (poiché non c'è modo di fare nulla se non c'è un numero per cominciare). Lascio a te il problema del underflow. Qualunque cosa sia più facile.
Taconut,

Risposte:


14

Rubino, 67 linee di sostituzioni regex

Ho deciso di scrivere l'interprete in regex, mantenendo gli algoritmi efficienti.

Avrei potuto optare per semplici byte, ma l'uso dei simboli rende il codice più leggibile secondo me. Naturalmente, se potessimo racimolare due istruzioni in un byte ...

La concatenazione di valori negativi provoca un comportamento del complemento di dieci, che riflette la rappresentazione interna.

La divisione è divisione intera e il resto non è mai negativo.

subs = [
  # stack expansion
  [/^ ?([$iv*\/+\-^%dtsz.])/,  ' 0 \1'  ],
  [/^ (\d+ [$*\/+\-^%tsz])/,   ' 0 \1'  ],
  [/^ ((\d+ ){2,3}z)/,         ' 0 \1'  ],
  [/ (0|9)\1+/,                ' \1'    ],
  # concatenation
  [/ (\d+) (?:0+|9+)(\d+) \$/, ' \1\2 ' ], 
  [/ (\d+) (0|9) \$/,          ' \1\2 ' ],
  # swaps
  [/ ((?:\d+ )*)(\d+) </,      ' \2 \1' ],
  [/ (\d+)((?: \d+)*) >/,      '\2 \1 ' ],
  [/ (\d+) (\d+) s/,           ' \2 \1 '],
  [/ (\d+ \d+) (\d+ \d+) z/,   ' \2 \1 '],
  # dups
  [/ (\d+) d/,                 ' \1 \1 '],
  [/ (\d+ \d+) t/,             ' \1 \1 '],
  # pop
  [/ (\d+) \./,                ' '      ],

  # increment / decrement
  [/ (\d+) i/, ' \1I '], [/ (\d+) v/, ' \1V '],
  *(%w[0I 1I 2I 3I 4I 5I 6I 7I 8I 9I].zip [*?1..?9, 'I0']),
  *(%w[0V 1V 2V 3V 4V 5V 6V 7V 8V 9V].zip ['V9', *?0..?8]), 
  [' 1', ' 01'], [' 8', ' 98'], [' I', ' '], [' V', ' '],
  # addition, subtraction
  [/ (\d+) (\d+) \+/,                ' \1P \2P '       ], #init addition
  [/ (\d+) (\d+) \-/,                ' \1S \2S '       ], #init subtraction
  [/ ([PS](\d)\w*) (\d+[PS]\w*) /,   ' \2\1 \3 '       ], #sign extend left
  [/ (\d+[PS]\w*) ([PS](\d)\w*) /,   ' \1 \3\2 '       ], #sign extend right
  [/ (\d*)(\d)P(\S*) (\d*)0P(0*) /,  ' \1P\2\3 \4P0\5 '], #advance addition
  [/ (\d*)(\d)S(\S*) (\d*)0S(0*) /,  ' \1S\2\3 \4S0\5 '], #advance subtraction
  [/ (\d+)P(\S*) (\d*[1-5])P(0*) /,  ' \1IP\2 \3VP\4 ' ], #transfer left
  [/ (\d+)P(\S*) (\d*[6-9])P(0*) /,  ' \1VP\2 \3IP\4 ' ], #transfer right
  [/ (\d+)S(\S*) (\d*[1-5])S(0*) /,  ' \1VS\2 \3VS\4 ' ], #decrement both
  [/ (\d+)S(\S*) (\d*[6-9])S(0*) /,  ' \1IS\2 \3IS\4 ' ], #increment both
  [/ [PS](\S+) [PS]0+ /,             ' \1 '            ], #finish 

  # digitwise negation
  *(%w[9N 8N 7N 6N 5N 4N 3N 2N 1N 0N].zip [*'N0'..'N9']),
  #multiplication and division by 2
  *([*'H0'..'H9'].zip %w[0H 0F 1H 1F 2H 2F 3H 3F 4H 4F]),
  *([*'F0'..'F9'].zip %w[5H 5F 6H 6F 7H 7F 8H 8F 9H 9F]),  
  *(%w[0T 1T 2T 3T 4T 5T 6T 7T 8T 9T].zip %w[T0 T2 T4 T6 T8 TI0 TI2 TI4 TI6 TI8]), 
  ['H ', ' '], [' T', ' '],

  # sign correction for */%
  [/ (\d+) (9\d*) ([*\/%])/, ' \1NI \2NI \3'], [' N', ' '],
  # multiplication
  [/ (0+ \d+|\d+ 0+) \*/,     ' 0 '          ], #multiplication by zero
  [/ (\d+) (0\d*[02468]) \*/, ' \1T H\2 *'   ], #multiplication by an even number
  [/ (\d+) (0\d*[13579]) \*/, ' \1 \1 \2V *+'], #multiplication by an odd number
  # division / modulo
  [?/, 'r.'], [?%, 'rs.'],
  [/ (0|9)(\d*) (0\d+) r/,           ' \3 0 \1D\2 '          ], #init division
  [/ (\d+) (\d+) (0\d*)D(\d*) /,     ' \1 \2I \3SD\4 \1S '   ], #subtract divisor
  [/ (\d+) (\d+) (9\d*)D(\d)(\d*) /, ' \1 \2V0 \3P\4D\5 \1P '], #add divisor and advance
  [/ (\d+) (\d+) (9\d*)D /,          ' \2V \3P \1P '         ], #add divisor and finish  

  #exponentiation
  [/ \d+ 0+ \^/,             ' 01 '          ], # case: zeroth power
  [/ 9\d+ 9+ \^/,            ' 9 '           ], # case: reciprocal of negative
  [/ \d+ 9\d+ \^/,           ' 0 '           ], # case: high negative power
  [/ 0\d+ 9\d+ \^/,          ' 0 '           ], # case: reciprocal of positive
  [/ (\d+) 0+1 \^/,          ' \1 '          ], # case: power of one
  [/ (\d+) (\d*[02468]) \^/, ' \1 \1 *H\2 ^' ], # case: even exponent
  [/ (\d+) (\d*[13579]) \^/, ' \1 \2V ^\1 *' ], # case: odd exponent
]                                   

x = gets.tr '^$iv*/+\-^%><dtsz.', ''
until x =~ /^ (\d+ )*$/
  subs.each do |sub|
    x.sub!(*sub) # && (puts x; sleep 0.1)
  end
end

Per quanto riguarda il round bonus, la soluzione più breve che ho escogitato ( 13 caratteri ) è una soluzione pulita:

iistisii$<$<$

Mi sembra che alla tua soluzione bonus manchi un'iniziale d(dopo ii, lo stack contiene solo 2 , nulla con cui scambiare), e il finale ruota (beh, almeno il primo, il secondo è solo uno scambio sotto mentite spoglie ... ) dovrebbe essere a sinistra, non a destra.
Mormegil,

@Mormegil Sto usando l'interpretazione che lo stack si espande automaticamente con zero, se necessario. Pertanto, non è necessario duplicare lo zero iniziale. Per quanto riguarda il senso di rotazione, ricontrollerò ...
John Dvorak,

@Mormegil senso di rotazione fisso, grazie.
John Dvorak,

Oh, sì, ho perso il commento sull'interpretazione di underflow e purtroppo la mia soluzione non può farlo.
Mormegil,

11

assembly x86 (su Win32)

"VELOCITÀ!" Sembra essere estremamente importante qui, e sappiamo tutti che niente batte il linguaggio degli assemblaggi in questo senso. Quindi, facciamolo insieme!

Questa è un'implementazione del linguaggio in linguaggio assembly x86 (nella sintassi NASM), con i numeri memorizzati e interpretati come numeri interi a 32 bit senza segno, utilizzando direttamente lo stack nativo x86. Stack underflow e overflow durante qualsiasi operazione aritmetica (o divisione per zero) è un errore di runtime, che termina il programma con un messaggio di errore.

        global _start

        extern _GetCommandLineA@0
        extern _GetStdHandle@4
        extern _CreateFileA@28
        extern _GetFileSize@8
        extern _LocalAlloc@8
        extern _ReadFile@20
        extern _CloseHandle@4
        extern _WriteFile@20

section .text

; ---------------------------------------------------------------------------------------
; Initialization
; ---------------------------------------------------------------------------------------

_start:
        ; Retrieve command line
        CALL _GetCommandLineA@0

        ; Skip argv[0]
        MOV ESI, EAX
        XOR EAX, EAX
skipuntilspace:
        MOV AL, [ESI]
        INC ESI
        TEST EAX, EAX
        JE missingparam
        CMP EAX, ' '
        JNE skipuntilspace
        INC ESI

        ; Open the file
        PUSH 0
        PUSH 80h
        PUSH 3
        PUSH 0
        PUSH 1
        PUSH 80000000h
        PUSH ESI
        CALL _CreateFileA@28
        CMP EAX, -1
        JE  cannotopenfile

        ; Get its size
        PUSH EAX
        PUSH 0
        PUSH EAX
        CALL _GetFileSize@8

        PUSH EAX

        ; Allocate memory buffer
        PUSH EAX
        PUSH 0
        CALL _LocalAlloc@8
        TEST EAX, EAX
        MOV ESI, EAX
        JZ outofmemory

        POP ECX
        POP EAX
        PUSH EAX

        ; Store end-of-program pointer
        MOV [programend], ESI
        ADD [programend], ECX

        ; Read the file contents
        PUSH 0
        PUSH buff
        PUSH ECX
        PUSH ESI
        PUSH EAX
        CALL _ReadFile@20
        TEST EAX, EAX
        JZ cannotopenfile

        ; Close the file
        CALL _CloseHandle@4

; ---------------------------------------------------------------------------------------
; Main loop of the interpreter
; ---------------------------------------------------------------------------------------

        ; Store the end of stack into EBP
        MOV EBP, ESP

        ; Push an initial 0 onto the stack
        XOR EAX, EAX
        PUSH EAX

mainloop:
        ; Load the next opcode, if not end of program
        XOR EAX, EAX
        CMP ESI, [programend]
        MOV AL, [ESI]
        JAE endloop
        LEA ESI, [ESI+1]

        ; Check if the opcode is valid
        CMP EAX, (maxop - opcodetable) / 8
        JA  fault_invalidopcode

        ; Check for required stack space
        MOV ECX, [opcodetable + 8 * EAX + 4]
        LEA EDI, [ESP + ECX]
        CMP EDI, EBP
        JA  fault_stackunderflow

        ; Jump to the respective opcode handler
        MOV EAX, [opcodetable + 8 * EAX]
        JMP EAX

; ---------------------------------------------------------------------------------------
; Implementation of the specific operations
; ---------------------------------------------------------------------------------------

        ; ************** CAT 0000 (0): Concatenate (Combine top two numbers in a stack as if they were a string. ex: 12,5 -> 125)
op_concatenate:
        POP EBX
        POP EAX
        MOV ECX, EAX
        MOV EDI, 10
concat_loop:
        XOR EDX, EDX
        SHL EBX, 1
        DIV EDI
        LEA EBX, [4 * EBX + EBX]
        TEST EAX, EAX
        JNZ concat_loop

        ADD EBX, ECX
        PUSH EBX
        JMP mainloop

        ; ************** INC 0001 (1): Increment (Add 1 to the number on the top of the stack)
op_increment:
        POP EAX
        ADD EAX, 1
        PUSH EAX
        JNC mainloop
        JMP fault_intoverflow

        ; ************** DEC 0010 (2): Decrement (Subtract one from the number at the top of the stack)
op_decrement:
        POP EAX
        SUB EAX, 1
        PUSH EAX
        JNC mainloop
        JMP fault_intoverflow

        ; ************** MUL 0011 (3): Multiply (Multiply the top two numbers in the stack)
op_multiply:
        POP EAX
        POP EDX
        MUL EDX
        TEST EDX, EDX
        PUSH EAX
        JZ mainloop
        JMP fault_intoverflow

        ; ************** DIV 0100 (4): Divide (Divide the 2nd-to-top number by the top number on the stack)
op_divide:
        POP ECX
        TEST ECX, ECX
        POP EAX
        JZ fault_dividebyzero
        XOR EDX, EDX
        DIV ECX
        PUSH EAX
        JMP mainloop

        ; ************** MOD 0101 (5): Add (Add the top two numbers on the stack)
op_add:
        POP EAX
        ADD [ESP], EAX
        JNC mainloop
        JMP fault_intoverflow

        ; ************** SUB 0110 (6): Subtract (Subtract the top number on the stack from the one below it)
op_subtract:
        POP EAX
        SUB [ESP], EAX
        JNC mainloop
        JMP fault_intoverflow

        ; ************** EXP 0111 (7): Exponent (Calculate the second-to-top number to the power of the top number)
op_exponent:
        POP ECX
        POP EBX
        MOV EAX, 1
exploop:
        TEST ECX, 1
        JZ expnomult
        MUL EBX
        TEST EDX, EDX
        JNZ fault_intoverflow
expnomult:
        SHR ECX, 1
        JZ expdone
        XCHG EAX, EBX
        MUL EAX
        TEST EDX, EDX
        XCHG EAX, EBX
        JZ exploop
        JMP fault_intoverflow
expdone:
        PUSH EAX
        JMP mainloop

        ; ************** MOD 1000 (8): Modulus: (Find the second-to-top number modulo the top one)
op_modulus:
        POP ECX
        TEST ECX, ECX
        POP EAX
        JZ fault_dividebyzero
        XOR EDX, EDX
        IDIV ECX
        PUSH EDX
        JMP mainloop

        ; ************** ROR 1001 (9): Rotate Right (Shift the stack down one. The number on the bottom is now on the top)
op_rotright:
        MOV EAX, [EBP - 4]
        LEA ECX, [EBP - 4]
        SUB ECX, ESP
        MOV EDX, ESI
        SHR ECX, 2
        LEA EDI, [EBP - 4]
        LEA ESI, [EBP - 8]
        STD
        REP MOVSD
        MOV [ESP], EAX
        CLD
        MOV ESI, EDX
        JMP mainloop

        ; ************** ROL 1010 (A): Rotate Left (Shift the stack up one. The number on the top is now on the bottom)
op_rotleft:
        MOV EAX, [ESP]
        LEA ECX, [EBP - 4]
        SUB ECX, ESP
        MOV EDX, ESI
        SHR ECX, 2
        LEA ESI, [ESP + 4]
        MOV EDI, ESP
        REP MOVSD
        MOV [EBP - 4], EAX
        MOV ESI, EDX
        JMP mainloop

        ; ************** DUP 1011 (B): Duplicate (Copy the top number so that it appears twice. ex: 4,1 becomes 4,1,1)
op_duplicate:
        PUSH DWORD [ESP]
        JMP mainloop

        ; ************** DU2 1100 (C): Double Duplicate (Copy the top two numbers on the stack. ex: 4,1,2 becomes 4,1,2,1,2)
op_dblduplicate:
        PUSH DWORD [ESP+4]
        PUSH DWORD [ESP+4]
        JMP mainloop

        ; ************** SWP 1101 (D): Swap (Swap the top two numbers on the stack. ex: 4,1,2 becomes 4,2,1)
op_swap:
        POP EAX
        POP EDX
        PUSH EAX
        PUSH EDX
        JMP mainloop

        ; ************** SW2 1110 (E): Double Swap (Swap the top two numbers with two below them.ex: 1,2,3,4,5 becomes 1,4,5,2,3)
op_dblswap:
        POP EAX
        POP EBX
        POP ECX
        POP EDX
        PUSH EBX
        PUSH EAX
        PUSH EDX
        PUSH ECX
        JMP mainloop

        ; ************** POP 1111 (F): Delete/Pop (Remove the number at the top of the stack)
op_pop:
        POP EAX
        JMP mainloop


; ---------------------------------------------------------------------------------------
; End of the program: print out the resulting stack and exit
; ---------------------------------------------------------------------------------------

endloop:
        MOV ESI, ESP

printloop:
        CMP ESI, EBP
        JNB exit
        MOV EAX, [ESI]
        MOV EBX, ESI
        PUSH EBX
        CALL printnum
        POP EBX
        LEA ESI, [EBX + 4]
        JMP printloop

exit:
        MOV ESP, EBP
        ;POP EAX
        XOR EAX, EAX
        RET


; ---------------------------------------------------------------------------------------
; Faults
; ---------------------------------------------------------------------------------------

fault_invalidopcode:
        MOV EAX, err_invalidopcode
        JMP fault

fault_stackunderflow:
        MOV EAX, err_stackunderflow
        JMP fault

fault_dividebyzero:
        MOV EAX, err_dividebyzero
        JMP fault

fault_intoverflow:
        MOV EAX, err_intoverflow
        JMP fault

fault:
        CALL print
        MOV EAX, crlf
        CALL print

        MOV ESP, EBP
        MOV EAX, 1
        RET


missingparam:
        MOV EAX, err_missingparameter
        JMP fault

cannotopenfile:
        MOV EAX, err_cannotopenfile
        JMP fault

outofmemory:
        MOV EAX, err_outofmemory
        JMP fault

; ---------------------------------------------------------------------------------------
; Helper functions
; ---------------------------------------------------------------------------------------

printnum:
        MOV EBX, 10
        CALL printnumrec
        MOV EAX, crlf
        JMP print

printnumrec:
        PUSH EAX
        PUSH EDX
        XOR EDX, EDX
        DIV EBX
        TEST EAX, EAX
        JZ printnumend
        CALL printnumrec
printnumend:
        MOV EAX, EDX
        CALL printdigit
        POP EDX
        POP EAX
        RET


printdigit:
        ADD EAX, '0'
        MOV [printbuff], EAX
        MOV EAX, printbuff
        JMP print


print:
        MOV  ESI, EAX
        PUSH 0
        PUSH buff
        CALL strlen
        PUSH EAX
        PUSH ESI
        PUSH -11
        CALL _GetStdHandle@4
        PUSH EAX
        CALL _WriteFile@20
        RET

strlen:
        XOR ECX, ECX
strlen_loop:
        CMP BYTE [ESI+ECX], 0
        JE strlen_end
        LEA ECX, [ECX+1]
        JMP strlen_loop
strlen_end:
        MOV EAX, ECX
        RET


; ---------------------------------------------------------------------------------------
; Data
; ---------------------------------------------------------------------------------------

section .data

; Table of opcode handlers and required stack space (in bytes, i.e. 4*operands)
opcodetable:
        DD op_concatenate, 8
        DD op_increment, 4
        DD op_decrement, 4
        DD op_multiply, 8
        DD op_divide, 8
        DD op_add, 8
        DD op_subtract, 8
        DD op_exponent, 8
        DD op_modulus, 8
        DD op_rotright, 0
        DD op_rotleft, 0
        DD op_duplicate, 4
        DD op_dblduplicate, 8
        DD op_swap, 8
        DD op_dblswap, 16
        DD op_pop, 4
maxop:

crlf                    DB 13, 10, 0
err_invalidopcode       DB "Invalid opcode", 0
err_stackunderflow      DB "Stack underflow", 0
err_dividebyzero        DB "Division by zero", 0
err_intoverflow         DB "Integer overflow", 0

err_missingparameter:   DB "Missing parameter: Use nexlang file.bin", 0
err_cannotopenfile:     DB "Unable to open input file", 0
err_outofmemory:        DB "Not enough memory", 0

section .bss

programend      RESD 1
printbuff       RESD 1
buff            RESD 1

Per compilare questo, usa qualcosa di simile

nasm.exe -fwin32 nexlang.asm
ld -o nexlang.exe -e _start nexlang.obj -s -lkernel32

Il programma riceve il nome del file binario contenente il programma sulla riga di comando (ad es nexlang.exe testprg.bin.). Al termine, stampa il contenuto finale della pila sullo standard output in un formato leggibile dall'uomo.

Per facilitare il test, salvare quanto segue in nex.def:

%define CAT DB 00h
%define INC DB 01h
%define DEC DB 02h
%define MUL DB 03h
%define DIV DB 04h
%define ADD DB 05h
%define SUB DB 06h
%define EXP DB 07h
%define MOD DB 08h
%define ROR DB 09h
%define ROL DB 0Ah
%define DUP DB 0Bh
%define DU2 DB 0Ch
%define SWP DB 0Dh
%define SW2 DB 0Eh
%define POP DB 0Fh

E poi scrivi i tuoi programmi NEX ("inesistenti", come indicato nel titolo della domanda) usando la mnemonica sopra definita, e compila con qualcosa di simile

nasm.exe -p nex.def -o prg.bin prg.nex

Ad esempio per il caso di test originale, utilizzare quanto segue prg.nex:

INC     ; 1
INC     ; 2
INC     ; 3
INC     ; 4
DUP     ; 4 4
DU2     ; 4 4 4 4
ADD     ; 8 4 4
DU2     ; 8 4 8 4 4
ADD     ; 12 8 4 4
DUP     ; 12 12 8 4 4
ROR     ; 4 12 12 8 4
ADD     ; 16 12 8 4

Infine, per la sfida "2014", utilizzare il seguente programma NEX a 14 byte:

DUP     ; 0 0
DUP     ; 0 0 0
INC     ; 1 0 0
INC     ; 2 0 0
SWP     ; 0 2 0
CAT     ; 20 0
SWP     ; 0 20
INC     ; 1 20
DUP     ; 1 1 20
INC     ; 2 1 20
INC     ; 3 1 20
INC     ; 4 1 20
CAT     ; 14 20
CAT     ; 2014

Perché LEA ESI, [ESI+1]piuttosto che INC ESI?
Score_Under

In realtà, nel risultato finale, nessuna vera ragione; in generale, velocità / dimensioni / flag interessati potrebbero essere importanti. Ma non ho davvero ottimizzato il risultato, è fondamentalmente solo un primo tentativo.
Mormegil,

1
Questo è sicuramente il più bello. Mi sono divertito molto a giocarci :).
Taconut,

9

GolfScript, 64 caratteri

OK, quindi ho deciso di provare a giocare a golf. E quale linguaggio migliore per giocare a golf di GolfScript?

Convenientemente, GolfScript stesso è già un linguaggio basato su stack con comandi a byte singolo e, come accade, 11 dei 16 comandi mappano direttamente i comandi GolfScript incorporati. Quindi tutto ciò che devo fare per interpretare il tuo linguaggio è implementare i restanti cinque comandi in GolfScript e creare una tabella di traduzione:

0\{'`+~
)
(
*
/
+
-
?
%
](+~
])\~
.
1$1$
\
[@]\+~\
;'n%=~}/]-1%`

Il codice sembra un po 'diffuso, perché sto usando newline come delimitatori per la tabella di traduzione. L'iniziale 0\inserisce uno zero nello stack e lo sposta sotto il programma di input. Il { }/loop, che comprende la maggior parte del codice, toglie il programma di input dallo stack e scorre il corpo del loop su ciascuno dei suoi caratteri, e il finale ]-1%`raccoglie lo stack in un array, lo inverte (perché l'output del campione inizia dalla parte superiore del stack) e lo stringe.

Il corpo del loop inizia con una stringa a virgoletta singola a 16 righe. n%divide questa stringa a interruzioni di riga, =cerca la sottostringa corrispondente al carattere di input e ~valuta la sottostringa come codice GolfScript.

Infine, ecco le implementazioni GolfScript dei 16 comandi:

  • 0 = `+~: concatena due numeri come stringhe
  • 1 = ): incremento
  • 2 = (: decremento
  • 3 = *: moltiplica
  • 4 = /: divide
  • 5 = +: aggiungi
  • 6 = -: sottrai
  • 7 = ?: aumenta al potere
  • 8 = %: modulo
  • 9 = ](+~: ruota la pila a destra
  • A = ])\~: ruota la pila a sinistra
  • B = .: duplicato
  • C = 1$1$: doppio duplicato
  • D = \: scambio
  • E = [@]\+~\: double swap
  • F = ;: pop

Sono un po 'scontento del doppio scambio: è brutto e molto più lungo di qualsiasi altro comando. Sembra che ci dovrebbe essere un modo migliore, ma in tal caso, non l'ho ancora trovato. Comunque, almeno funziona.

Ad esempio, eseguendo il programma sopra sull'input (dato come una stringa tra virgolette GolfScript / Ruby / Perl / Python / ecc.):

"\x01\x01\x0B\x0C\x05\x0C\x05\x0B\x09\x05"

produce l'output:

[8 6 4 2]

Modifica: sono riuscito a salvare altri due caratteri, per un totale di 62 caratteri , utilizzando una codifica più compatta della tabella di traduzione. Tuttavia, in qualche modo sacrifica la leggibilità:

0\{(')(*/+-?%'1/'](+~
])\~
.
1$1$
\
[@]\+~\
;
`+~'n/+=~}/]-1%`

Le caratteristiche notevoli di questa versione includono (all'inizio del ciclo, che sposta gli indici dei comandi da 0..15 a -1..14 in modo da poter mettere la lunga sequenza di comandi a carattere singolo da 1 a 8 all'inizio del tavolo. Questo mi permette di memorizzarli in una stringa separata ed eliminare le otto nuove righe che li delimitano; ahimè, la complessità extra mi costa sei personaggi altrove.


Si potrebbe cadere +in])\+~
John Dvorak

@JanDvorak: Ah, sì, avrebbe dovuto essere ovvio. Grazie!
Ilmari Karonen,

8

Haskell

Solo per divertimento, ho creato una soluzione che non utilizza alcuna variabile , combina solo funzioni insieme.

import Control.Applicative
import Control.Monad
import Control.Monad.State
import Data.Function

type SM = State [Int]

pop :: SM Int
pop = state ((,) <$> head <*> tail)

push :: Int -> SM ()
push = modify . (:)

popN :: Int -> SM [Int]
popN = sequence . flip replicate pop

pushN :: [Int] -> SM ()
pushN = mapM_ push

rotL, rotR :: Int -> [a] -> [a]
rotL = (uncurry (flip (++)) .) . splitAt
rotR = (reverse .) . flip (flip rotL . reverse)

step :: Int -> SM ()
step 0x00 = push =<< ((read .) . on (++) show) <$> pop <*> pop
step 0x01 = push . (+ 1) =<< pop
step 0x02 = push . subtract 1 =<< pop
step 0x03 = push =<< (*) <$> pop <*> pop
step 0x04 = push =<< flip div <$> pop <*> pop
step 0x05 = push =<< (+) <$> pop <*> pop
step 0x06 = push =<< flip (-) <$> pop <*> pop
step 0x07 = push =<< flip (^) <$> pop <*> pop
step 0x08 = push =<< flip mod <$> pop <*> pop
step 0x09 = modify $ (:) <$> last <*> init
step 0x0A = modify $ rotL 1
step 0x0B = pop >>= pushN . replicate 2
step 0x0C = popN 2 >>= pushN . concat . replicate 2
step 0x0D = popN 2 >>= pushN . rotL 1
step 0x0E = popN 4 >>= pushN . rotL 2
step 0x0F = void pop

run :: [Int] -> [Int]
run = flip execState [0] . mapM_ step

6

Rubino, 330 316 caratteri

Ho deciso di giocare a golf. (Perché è sempre divertente.)

s=[0]
o=->c{t=s.pop;s.push s.pop.send(c,t)}
gets.chop.each_char{|c|eval %w[t=s.pop;s.push"#{s.pop}#{t}".to_i s[-1]+=1 s[-1]-=1 o[:*] o[:/] o[:+] o[:-] o[:**] o[:%] s.rotate! s.rotate!(-1) s.push(s[-1]) s.concat(s[-2..-1]) s[-1],s[-2]=s[-2],s[-1] s[-1],s[-2],s[-3],s[-4]=s[-4],s[-3],s[-1],s[-2] s.pop][c.to_i 16]}
p s

La parte principale è questa:

gets.chop.each_char{|c|eval [(huge array of strings)][c.to_i 16]}

Traduce ogni cifra esadecimale in un numero intero di base 10, quindi usa il [(huge array of strings)]per trovare la stringa giusta che rappresenta quel comando. Quindi è evalquella stringa.

Si noti che %w[x y z]equivale a ['x','y','z'].

Mi piace anche come puoi trovare faccine in quella linea! Alcuni di loro sono

  • :*
  • :/
  • :-]
  • :%

Esecuzione di esempio:

c:\a\ruby>random_cg_lang
11BC5C5B95
[2, 4, 6, 8]

4

C - 642 634 caratteri

Solo per il $iv*/+-^%><dtsz.dialetto (aggiunge qcome carattere finale, insieme a 0):

#define P s=*t;a=realloc(a,--w<<2);t=a+w-1;
#define H(n)a=realloc(a,(w+=n)<<2);
#define B(n)break;case n:
*a,*t,s,w=1,i;main(){t=a=calloc(4,1);while((i=getchar())&&i^'q')switch(i){B(36)P*t*=pow(10,((
int)log10(s))+1);*t+=s;B(105)++*t;B(118)--*t;B(42)P*t*=s;B(47)P*t/=s;B(43)P*t+=s;B(45)P*t-=s;
B(94)P*t=pow(*t,s);B(37)P*t%=s;B(62)s=*a;memcpy(a,a+1,(w-1)<<2);*t=s;B(60)s=*t;memcpy(a+1,a,(
w-1)<<2);*a=s;B(100)H(1)t=a+w-2;s=*t;t++;*t=s;B(116)H(2)t=a+w-1;t[-1]=t[-3];*t=t[-2];B(115)s=
*t;*t=t[-1];t[-1]=s;B(122)s=*t;*t=t[-2];t[-2]=s;s=t[-1];t[-1]=t[-3];t[-3]=s;B(46)P}putchar('[
');putchar(32);while(w)printf("%i ",a[--w]);putchar(']');}

Soluzione per la sfida 2014: dididiizs>.


Penso che tu possa perdere free(a);. E non dovrebbe essere <<2nelle reallocchiamate?
Luser droog

@luserdroog Vero, grazie. Sono solo abituato alla free()memoria: P
Oberon,

3

k, 228

(,0){({(-7h$,/$2#x),2_x};@[;0;+;1];@[;0;-;1];{.[*;|2#x],2_x};{.[%;|2#x],2_x};
{.[+;|2#x],2_x};{.[-;|2#x],2_x};{.[xexp;|2#x],2_x};{.[mod;|2#x],2_x};{(*|x),-1_x};
{(1_x),*x};{(*x),x};{(2#x),x};{(|2#x),2_x};{,/(|2 2#x),4_x};1_)[y]x}/
0x01010b0c050c050b0905

8 4 6 2

C'è una buona dose di ripetizione nell'implementazione di istruzioni simili, che possono essere probabilmente progettate in una certa misura.


Continuo a trovare la stessa cosa come vera per me.
Luser droog,

3

C 924 882 622 603 587 569 562 caratteri

Con le newline ovvie rimosse (conservate per leggibilità).

#define A sbrk(8);signal(11,S);
#define W(x)write(1,x,1);
#define P (t>s?*--t:0)
#define U *t++
#define B(x,y)else if(b==(w=w+1 x)){w=P;y;U=w;}
*t,*s,w,a,d;char b;S(x){A}
p(x){if(x<0){W("-")x=-x;}if(x>9)p(x/10);b=48+x%10;W(&b)}
main(c){t=s=A U=0;
while(read(0,&b,1))if(!(w=47));
B(,w+=P*pow(10,w?ceil(log10(w)):1))
B(,++w)
B(,--w)
B(,w*=P)
B(,w=P/w)
B(,w+=P)
B(,w=P-w)
B(,w=pow(P,w))
B(,w=P%w)
B(,w=*s;memmove(s,s+1,t-s<<2))
B(+7,memmove(s+1,s,t++-s<<2);*s=w;w=P)
B(,U=w)
B(,a=P;U=a;U=w;U=a)
B(,a=P;U=w;w=a)
B(,a=P;c=P;d=P;U=a;U=w;U=c;w=d)
B(,w=P)
for(W("[")t>s;)p(P),W(" ")
W("]")}

Questo implementa l'interpretazione "underflow push zero" dal commento di Jan Dvorak.

La versione golfizzata in realtà è cambiata sostanzialmente rispetto alla versione non golfata qui, sotto la (benvenuta) pressione della bella risposta di Oberon .

Ho scoperto che la sostituzione switchdell'affermazione a favore di una if... elsecatena mi ha permesso di escludere tutte le cifre dai miei casi . Al contrario, inizializza la wvariabile su 47, quindi un incremento la aumenta a 48 (== ascii '0') quindi ogni caso aumenta wfino a quando non dobbiamo saltare 'A'a quel punto utilizziamo il primo argomento macro per lo più vuoto che aggiunge un ulteriore 7 per alzarsi a "A". La versione ungolfed non mostrare il mio preferito sbrk/ SIGSEGVtrucco per ottenere memoria "libera" senza ulteriori assegnazioni.

#include<math.h>
#include<signal.h>
void S(int x){signal(SIGSEGV,S);sbrk(8*8*8);}
int*s,*t,*i,w,a,c,d;    //stack top index working accumulator count data
u(x){*t++=x;}           //push()
o(){return t>s?*--t:0;} //pop()
#define W(x)write(1,&x,1);  //output a byte
p(x){                   //print()
    if(x<0){    //negative?
        W(*"-") //output '-'
        x=-x;   //negate
    }
    if(x>9)     //more than one digit?
        p(x/10); //recurse after integer-divide
    b=48+x%10;   //isolate and convert single digit to ascii
    W(b)         //output ascii digit
}
main(){
    char b[1];
    signal(SIGSEGV,S);  //auto-allocate memory for stack
    t=s=sbrk(8*8*8);  //get start of memory and allocate
    while(read(0,b,1)){
        write(1,b,1); //for debugging: echo the command being executed
        switch(*b){
            case '0': w=o(); a=o(); for(c=ceil(log10(w));c>0;c--) a*=10; u(a+w); break;
            case '1': u(o()+1); break;
            case '2': u(o()-1); break;
            case '3': w=o(); u(o()*w); break;
            case '4': w=o(); u(o()/w); break;
            case '5': u(o()+o()); break;
            case '6': w=o(); u(o()-w); break;
            case '7': c=o();a=1; for(w=o();c>0;c--) a*=w; u(a); break;
            case '8': w=o(); u(o()%w); break;
            case '9': w=*s; memmove(s,s+1,4*(t-s-1)); t[-1]=w; break;
            case 'A': w=t[-1]; memmove(s+1,s,4*(t-s-1)); *s=w; break;
            case 'B': w=o(); u(w); u(w); break;
            case 'C': w=o(); a=o(); u(a); u(w); u(a); u(w); break;
            case 'D': w=o(); a=o(); u(w); u(a); break;
            case 'E': w=o(); a=o(); c=o(); d=o(); u(a); u(w); u(d); u(c); break;
            case 'F': o(); break;
        }
    }
    write(1,"\n[",2);   //dump the stack
    i=t;
    do {
        p(*--i);
    } while(i>s && write(1,",",1));
    write(1,"]\n",2);
}

una schifezza! Non ho considerato i negativi nella concatenazione. Penso che lognon sia nemmeno definito.
Luser droog

La versione giocata a golf avrà un grande rallentamento una volta raggiunto un limite di pagina, si segfaulterà ripetutamente, allocando 8 byte nel gestore, riprovando l'accesso alla memoria, ripetendo nuovamente il segfault, ripetutamente per ogni intervallo di 8 byte fino a che la memoria diventa valida. Quello non golfizzato usa una costante più grande e non dovrebbe essere così lento, ma l'algoritmo è lo stesso.
Luser droog

1

R, 428 caratteri

f=function(I){s=0;for(i in strsplit(I,"")[[1]]){r=s[-(1:2)];s=switch(i,'0'=c(as.integer(paste0(s[2],s[1])),r),'1'=c(s[1]+1,s[-1]),'2'=c(s[1]-1,s[-1]),'3'=c(s[1]*s[2],r),'4'=c(s[2]%/%s[1],r),'5'=c(s[1]+s[2],r),'6'=c(s[1]-s[2],r),'7'=c(s[2]^s[1],r),'8'=c(s[2]%%s[1],r),'9'=c(s[length(s)],s[-length(s)]),'A'=c(s[-1],s[1]),'B'=c(rep(s[1],2),s[-1]),'C'=c(rep(s[1:2],2),r),'D'=c(s[2:1],r),'E'=c(s[3:4],s[1:2],s[-(1:4)]),'F'=s[-1])};s}

Con rientri:

f=function(I){
    s=0
    for(i in strsplit(I,"")[[1]]){
        r=s[-(1:2)]
        s=switch(i,
                '0'=c(as.integer(paste0(s[2],s[1])),r),
                '1'=c(s[1]+1,s[-1]),
                '2'=c(s[1]-1,s[-1]),
                '3'=c(s[1]*s[2],r),
                '4'=c(s[2]%/%s[1],r),
                '5'=c(s[1]+s[2],r),
                '6'=c(s[1]-s[2],r),
                '7'=c(s[2]^s[1],r),
                '8'=c(s[2]%%s[1],r),
                '9'=c(s[length(s)],s[-length(s)]),
                'A'=c(s[-1],s[1]),
                'B'=c(rep(s[1],2),s[-1]),
                'C'=c(rep(s[1:2],2),r),
                'D'=c(s[2:1],r),
                'E'=c(s[3:4],s[1:2],s[-(1:4)]),
                'F'=s[-1])
        }
    s
    }

In azione:

> f('11BC5C5B95')
[1] 8 6 4 2

1

JavaScript, 685

Versione non giocata a golf ( sostanza ):

var Token = {
  Concatenate: '0',
  Increment: '1',
  Decrement: '2',
  Multiply: '3',
  Divide: '4',
  Add: '5',
  Subtract: '6',
  Exponent: '7',
  Modulus: '8',
  RotateRight: '9',
  RotateLeft: 'A',
  Duplicate: 'B',
  DoubleDuplicate: 'C',
  Swap: 'D',
  DoubleSwap: 'E',
  Delete: 'F'
};

function parse(input, mem) {
  var a, b, c, d;
  var stack = mem ? mem.slice() : [0];
  for (var i = 0, n = input.length; i < n; i++) {
    switch (input[i]) {
      case Token.Concatenate:
        a = stack.pop();
        b = stack.pop();
        stack.push(parseInt([b] + a));
        break;

      case Token.Increment:
        a = stack.pop();
        stack.push(a + 1);
        break;

      case Token.Decrement:
        a = stack.pop();
        stack.push(a - 1);
        break;

      case Token.Multiply:
        a = stack.pop();
        b = stack.pop();
        stack.push(b * a);
        break;

      case Token.Divide:
        a = stack.pop();
        b = stack.pop();
        stack.push(b / a | 0);
        break;

      case Token.Add:
        a = stack.pop();
        b = stack.pop();
        stack.push(b + a);
        break;

      case Token.Subtract:
        a = stack.pop();
        b = stack.pop();
        stack.push(b - a);
        break;

      case Token.Exponent:
        a = stack.pop();
        b = stack.pop();
        stack.push(Math.pow(b, a));
        break;

      case Token.Modulus:
        a = stack.pop();
        b = stack.pop();
        stack.push(b % a);
        break;

      case Token.RotateRight:
        a = stack.shift();
        stack.push(a);
        break;

      case Token.RotateLeft:
        a = stack.pop();
        stack.unshift(a);
        break;

      case Token.Duplicate:
        a = stack[stack.length - 1];
        stack.push(a);
        break;

      case Token.DoubleDuplicate:
        a = stack[stack.length - 1];
        b = stack[stack.length - 2];
        stack.push(b, a);
        break;

      case Token.Swap:
        a = stack.pop();
        b = stack.pop();
        stack.push(a, b);
        break;

      case Token.DoubleSwap:
        a = stack.pop();
        b = stack.pop();
        c = stack.pop();
        d = stack.pop();
        stack.push(b, a, d, c);
        break;

      case Token.Delete:
        stack.pop();
        break;

      default:
        throw new SynxtaxError('Invalid token "' + input[i] + '"');
    }
  }

  return stack.reverse();
}

exports.Token = Token;
exports.parse = parse;

Versione golfizzata:

function f(c){var b,d,e,f,a=[i=0],g=c.length;a.a=a.pop;for(a.b=a.push;i<g;i++)switch(c[i])
{case"0":b=a.a();a.b(parseInt([a.a()]+b));break;case"1":a[a.length-1]++;break;case"2":
a[a.length-1]--;break;case"3":a.b(a.a()*a.a());break;case"4":b=a.a();a.b(a.a()/b|0);break;
case"5":a.b(a.a()+a.a());break;case"6":b=a.a();a.b(a.a()-b);break;case"7":b=a.a();
a.b(Math.pow(a.a(),b));break;case"8":b=a.a();a.b(a.a()%b);break;case"9":a.b(a.shift());break;
case"A":a.a();a.unshift(a.a());break;case"B":a.b(a[a.length-1]);break;case"C":
a.b(a[a.length-2],a[a.length-1]);break;case"D":b=a.a();a.b(b,a.a());break;case"E":b=a.a();
d=a.a();e=a.a();f=a.a();a.b(d,b,f,e);break;case"F":a.a()}return a.reverse()}

Esempio:

> f('11BC5C5B95')
[ 8, 6, 4, 2]

1

Haskell

import Data.List (elemIndex)

type Stack = [Integer]

u :: (Integer -> Integer) -> Stack -> Stack
u p (x:t) = p x : t -- unary operation

b :: (Integer -> Integer -> Integer) -> Stack -> Stack
b p (x:y:t) = p x y : t -- binary operation

encoding :: String
encoding = "$iv*/+-^%><dtsz."
-- encoding = "0123456789ABCDEF"

-- list of operations
ops :: [Stack -> Stack]
ops = [
 b (\x y -> read (show x ++ show y)),-- concatenation
 u (+1), -- increment
 u (subtract 1), -- decrement
 b (*), -- multiplication
 b div, -- division
 b (+), -- addition
 b (-), -- subtraction
 b (^), -- exponent
 b mod, -- modulus
 (\s -> last s : init s), -- rotate right
 (\(x:t) -> t ++ [x]), -- rotate left
 (\(x:t) -> x:x:t), -- duplicate
 (\(x:y:t) -> x:y:x:y:t), -- double duplicate
 (\(x:y:t) -> y:x:t), -- swap
 (\(x:y:x':y':t) -> x':y':x:y:t), -- double swap
 tail] -- pop

run :: String -> Maybe Stack
run code = run' code [0] where
  run' [] stack = Just stack
  run' (x:t) stack = elemIndex x encoding >>= run' t . ($stack) . (ops!!)

In esecuzione

λ: run "diidt^svz"
Just [2,0,1,4]

"Per quanto riguarda la sfida del 2014 è ovviamente impossibile in quanto possiamo ottenere solo copie di zero in pila con operazioni AF" - WAT? Incrementare uno zero produce ... un diverso da zero, no?
John Dvorak,

@JanDvorak Ma dobbiamo scrivere '1' per l'incremento, le cifre sono vietate, giusto?
Swish

Questa è la tragedia di quella scelta di codifica. Se si mappa il set di punteggiatura (forse con tr?), Allora diventa possibile.
Luser droog

1

Lisp comune - 589

Accetta input esadecimali senza spazi.

(setf w'(0))(defmacro u(&rest b)`(let((a(pop w))(b(pop w))),@b))(defmacro v(s)`(u(push(funcall ,s b a)w)))(setf i(list'(u(push(parse-integer(append(write-to-string b)(write-to-string a)))w))'(incf(car w))'(decf(car w))'(v #'*)'(v #'/)'(v #'+)'(v #'-)'(v #'expt)'(v #'%)'(let((a (car(last w))))(nbutlast w)(push a w))'(let((a(pop w)))(nconc w(list a)))'(push(car w)w)'(progn(push(cadr w)w)(push(cadr w)w))'(u(push a w)(push b w))'(u(push a(cdr(nthcdr 2 w)))(push b(cdr(nthcdr 2 w))))'(pop w)))(mapcar(coerce(read-line)'list)(lambda(a)(eval(nth(parse-integer(string a):radix 16)i)))(print w)

Ungolfed:

(defparameter *stack* '(0))

(defmacro topvalues (&rest body)
    `(let ((top1 (pop *stack*))
           (top2 (pop *stack*))) ,@body))

(defmacro simple-op (opsym &rest body)
    `(topvalues 
        (push (funcall ,opsym top2 top1) *stack* )))

(defparameter *ops*
    (list
        ;concatenate
        '(topvalues
            (push 
                (parse-integer (append (write-to-string b) (write-to-string a)))
                *stack*))

        ;increment
        '(incf (first *stack*)) 

        ;decrement
        '(decf (first *stack*)) 

        ;multiply
        '(simple-op #'*)

        ;divide
        '(simple-op #'/)

        ;add
        '(simple-op #'+)

        ;subtract 
        '(simple-op #'-)

        ;exponent
        '(simple-op #'expt)

        ;modulus
        '(simple-op #'%)

        ;rotate right
        '(let ((a (car (last *stack*))))
            (nbutlast *stack*)
            (push a *stack*))

        ;rotate left
        '(let ((a (pop *stack*)))
            (nconc *stack* (list a)))

        ;duplicate
        '(push (first *stack*) *stack*)

        ;double duplicate
        '(progn 
            (push (second *stack*) *stack*)
            (push (second *stack*) *stack*))

        ;swap
        '(topvalues
            (push top1 *stack*)
            (push top2 *stack*))

        ;double swap
        '(topvalues 
            (push top1 (cdr (nthcdr 2 *stack*)))
            (push top2 (cdr (nthcdr 2 *stack*))))

        ;delete/pop
        '(pop *stack*)))

(mapcar 
(lambda (a)
    (eval (nth (parse-integer (string a) :radix 16) *ops*)))
(coerce (read-line) 'list))

1

PHP

non è il più bello, ma funziona.

viene eseguito dalla shell, si aspetta un nome file come primo argomento. accetta uno dei 3 dialetti (anche misto)

comportamento non definito per negativi o indice mancante

<?php
$f[0] = $f[48] = $f[36] = function(&$s){$v=array_shift($s);$s[0] .= $v;};
$f[1] = $f[49] = $f[105] = function(&$s){$s[0]++;};
$f[2] = $f[50] = $f[118] = function(&$s){$s[0]--;};
$f[3] = $f[51] = $f[42] = function(&$s){$v = array_shift($s); $s[0] *= $v;};
$f[4] = $f[52] = $f[47] = function(&$s){$v = array_shift($s); $s[0] = intval(floor($s[0] / $v));};
$f[5] = $f[53] = $f[43] = function(&$s){$v = array_shift($s); $s[0] += $v;};
$f[6] = $f[54] = $f[45] = function(&$s){$v = array_shift($s); $s[0] -= $v;};
$f[7] = $f[55] = $f[94] = function(&$s){$v = array_shift($s); $s[0] = pow($s[0], $v);};
$f[8] = $f[56] = $f[37] = function(&$s){$v = array_shift($s); $s[0] %= $v;};
$f[9] = $f[57] = $f[62] = function(&$s){$v = array_pop($s); array_unshift($s, $v);};
$f[10] = $f[65] = $f[60] = function(&$s){$v = array_shift($s); array_push($s, $v);};
$f[11] = $f[66] = $f[100] = function(&$s){array_unshift($s, $s[0]);};
$f[12] = $f[67] = $f[116] = function(&$s){$v = [$s[0], $s[1]]; array_unshift($s, $v[0], $v[1]);};
$f[13] = $f[68] = $f[115] = function(&$s){$v = $s[0]; $s[0] = $s[1]; $s[1] = $v;};
$f[14] = $f[69] = $f[122] = function(&$s){$v = $s[0]; $s[0] = $s[2]; $s[2] = $v; $v = $s[1]; $s[1] = $s[3]; $s[3] = $v;};
$f[15] = $f[70] = $f[46] = function(&$s){array_unshift($s);};

$stack = [0];
$file = fopen($argv[1], 'rb');
$size = filesize($argv[1]);
while($size--){
    $f[ord(fread($file, 1))]($stack);
}
fclose($file);
echo '['.implode(',',$stack)."]\n";

1

PureBasic - 2821 891 caratteri

Questo è un interprete interattivo - nessun file, basta inserire i codici dati 0-9, AF, ed eseguirà quel comando, e verrà visualizzato come il post di esempio lo visualizza.

Usa "X" o "Q" per uscire.

È stato davvero divertente :)

Global NewList ProgramStack.q()
Global Num1.q, Num2.q

Macro Push(Value)
  LastElement(ProgramStack())
  AddElement(ProgramStack())
  ProgramStack() = Value
EndMacro

Macro Pop(Variable)
  LastElement(ProgramStack())
  Variable = ProgramStack()
  DeleteElement(ProgramStack())
EndMacro

Macro Peek(Variable)
  LastElement(ProgramStack())
  Variable = ProgramStack()
EndMacro

Push(0)

Procedure Concatenate()
  Pop(Num1)
  Pop(Num2)

  Push(Val( Str(Num2) + Str(Num1) ))
EndProcedure

Procedure Increment()
  LastElement(ProgramStack())
  ProgramStack() + 1
EndProcedure

Procedure Decrement()
  LastElement(ProgramStack())
  ProgramStack() - 1
EndProcedure

Procedure Multiply()
  Pop(Num1)
  Pop(Num2)

  Push( Num2 * Num1 )
EndProcedure

Procedure Divide()
  Pop(Num1)
  Pop(Num2)

  Push( Num2 / Num1 )
EndProcedure

Procedure Add()
  Pop(Num1)
  Pop(Num2)

  Push( Num2 + Num1 )
EndProcedure

Procedure Subtract()
  Pop(Num1)
  Pop(Num2)

  Push( Num2 - Num1 )
EndProcedure

Procedure Exponent()
  Pop(Num1)
  Pop(Num2)

  Push( Pow(Num2, Num1) )
EndProcedure

Procedure Modulus()
  Pop(Num1)
  Pop(Num2)

  Push( Mod(Num2, Num1) )
EndProcedure

Procedure RotateRight()
  FirstElement(ProgramStack())
  Num1 = ProgramStack()
  DeleteElement(ProgramStack(),1)
  Push(Num1)
EndProcedure

Procedure RotateLeft()
  Pop(Num1)
  FirstElement(ProgramStack())
  InsertElement(ProgramStack())
  ProgramStack() = Num1
EndProcedure

Procedure Duplicate()
  Peek(Num1)
  Push(Num1)
EndProcedure

Procedure DoubleDuplicate()
  Pop(Num1)
  Pop(Num2)
  Push(Num2)
  Push(Num1)
  Push(Num2)
  Push(Num1)
EndProcedure

Procedure SingleSwap()
  Pop(Num1)
  Pop(Num2)
  Push(Num1)
  Push(Num2)
EndProcedure

Procedure DoubleSwap()
  Protected Num3.q, Num4.q
  Pop(Num1)
  Pop(Num2)
  Pop(Num3)
  Pop(Num4)
  Push(Num2)
  Push(Num1)
  Push(Num4)
  Push(Num3)
EndProcedure

Procedure Delete()
  Pop(Num1)
EndProcedure

OpenConsole()
EnableGraphicalConsole(1)

Position = 0
Repeat
  ConsoleLocate(Position, 0)

  e.s = UCase( Inkey() )

  Select e
    Case "0"
      Concatenate()
    Case "1"
      Increment()
    Case "2"
      Decrement()
    Case "3"
      Multiply()
    Case "4"
      Divide()
    Case "5"
      Add()
    Case "6"
      Subtract()
    Case "7"
      Exponent()
    Case "8"
      Modulus()
    Case "9"
      RotateRight()
    Case "A"
      RotateLeft()
    Case "B"
      Duplicate()
    Case "C"
      DoubleDuplicate()
    Case "D"
      SingleSwap()
    Case "E"
      DoubleSwap()
    Case "F"
      Delete()
  EndSelect

  If e <> ""
    Print(e)
    ConsoleLocate(Position, 1)
    Print("|")
    yLoc.i = ListSize(ProgramStack()) + 1

    ForEach ProgramStack()
      ConsoleLocate(Position, yLoc)
      Print(Str(ProgramStack()))
      yLoc - 1
    Next

    Position + 2
  EndIf
Until e = "X" Or e = "Q"

modifica: Dopo aver dormito, ho pensato di giocare a golf - ho lasciato la versione leggibile per riferimento.

Tutto funziona allo stesso modo tranne che ho tolto la Q o X per uscire, basta chiudere la finestra per uscire:

NewList S()
Macro P
Print
EndMacro
Macro G
ConsoleLocate
EndMacro
Macro LE
LastElement(S())  
EndMacro
Macro U(V)
LE
AddElement(S())
S()=V
EndMacro
Macro O(V)
LE
V=S()
DeleteElement(S())
EndMacro
U(0)
OpenConsole()
EnableGraphicalConsole(1)
X=0
Repeat
G(X,0)
e.s=UCase(Inkey())
Select e
Case"0"
O(H)
O(J)
U(Val(Str(J)+Str(H)))
Case"1"
LE
S()+1
Case"2"
LE
S()-1
Case"3"
O(H)
O(J)
U(J*H)
Case"4"
O(H)
O(J)
U(J/H)
Case"5"
O(H)
O(J)
U(J+H)
Case"6"
O(H)
O(J)
U(J-H)
Case"7"
O(H)
O(J)
U(Pow(J,H))
Case"8"
O(H)
O(J)
U(Mod(J,H))
Case"9"
FirstElement(S())
H=S()
DeleteElement(S(),1)
U(H)
Case"A"
O(H)
FirstElement(S())
InsertElement(S())
S()=H
Case"B"
O(H)
U(H)
U(H)
Case"C"
O(H)
O(J)
U(J)
U(H)
U(J)
U(H)
Case"D"
O(H)
O(J)
U(H)
U(J)
Case"E"
O(H)
O(J)
O(K)
O(L)
U(J)
U(H)
U(L)
U(K)
Case"F"
O(H)
EndSelect
If e<>""
P(e)
G(X,1)
Y=ListSize(S())+1
ForEach S()
G(X,Y)
P(Str(S()))
Y-1
Next
X+2
EndIf
ForEver

1

Lisp comune - 586

(defmacro n(s)(with-gensyms($)(labels((?()`(pop,$))(!(x)`(push,x,$))(@(~)(!(list ~(?)(?))))(r@(~)(@`(lambda(x y)(,~ y x)))))`(let((,$`(,0))),@(loop for p below(length s)collect(case(parse-integer s :start p :end(1+ p):radix 16)(0(@'(lambda(a b)(+(* a(expt 10(if(> b 0)(ceiling(log b 10))1)))b))))(1`(incf(car,$)))(2`(decf(car,$)))(3(@'*))(4(@'/)) (5(@'+))(6(@'-))(7(r@'expt))(8(r@'mod))(9`(setf,$(#1=rotate,$)))(10`(setf,$(#1#,$ -1)))(11`(push(car,$),$))(12`(setf,$(nconc(#2=subseq,$ 0 2),$)))(13`(reversef(#2#,$ 0 2)))(14`(setf,$(append(#1#(#2#,$ 0 4)2)(#2#,$ 4))))(15`(pop,$)))),$))))

Ungolfed

Associa in modo lessicale uno stack nuovo nel codice macroespandibile: nessun riferimento a una variabile globale. Inoltre, viene compilato in base al codice macchina.

(ql:quickload :alexandria)
(mapc #'use-package '(cl alexandria))
(defmacro n(s)
  (with-gensyms($)
    (labels ((?()`(pop,$))
             (!(x)`(push,x,$))
             (bop(op)(!(list op(?)(?))))
             (rbop(op)(bop`(lambda(x y)(,op y x)))))
      `(let((,$`(,0)))
         ,@(loop for p below(length s)
                 collect(case(parse-integer s :start p :end(1+ p):radix 16)
                           (#x0(bop'(lambda(a b)(+(* a(expt 10(if(> b 0)(ceiling(log b 10))1)))b))))
                           (#x1`(incf(car,$)))                    
                           (#x2`(decf(car,$)))
                           (#x3(bop'*))                    
                           (#x4(bop'/))
                           (#x5(bop'+))                    
                           (#x6(bop'-))
                           (#x7(rbop'expt))
                           (#x8(rbop'mod))
                           (#x9`(setf,$(rotate,$)))
                           (#xA`(setf,$(rotate,$ -1)))
                           (#xB`(push(car,$),$))
                           (#xC`(setf,$(nconc(subseq,$ 0 2),$)))
                           (#xD`(reversef(subseq ,$ 0 2)))
                           (#xE`(setf,$(append(rotate(subseq,$ 0 4)2)(subseq,$ 4))))
                           (#xF`(pop,$))))
         ,$))))

Esempio

   (n "11bc5c5b95")
   => macroexpands into (8 6 4 2)

1

Python 2, 508 byte

s,d=[0],lambda:s.pop(1)
for C in raw_input():
 D=int(C,16)
 if D<1:s[0]=int(`s[0]`+`d()`)
 if D==1:s[0]+=1
 if D==2:s[0]-=1
 if D==3:s[0]*=d()
 if D==4:s[0]=d()/s[0]
 if D==5:s[0]+=d()
 if D==6:s[0]-=d()
 if D==7:s[0]=d()**s[0]
 if D==8:s[0]=d()%s[0]
 if D==9:s=s[-1:]+s[:-1]
 if D==10:s=s[1:]+s[:1]
 if D==11:s=s[:1]+s
 if D==12:s=s[0:2]+s
 if D==13:s=s[1:2]+s[:1]+s[2:]
 if D==14:s=s[2:4]+s[0:2]+s[4:]
 if D>14:s=s[1:]
print s

Utilizza la codifica "0123456789ABCDEF". Sono davvero orgoglioso di come è venuto fuori questo. Non legge il file, ottiene input da STDIN, ma se è un problema potrebbe essere facilmente modificato.

2 soluzioni per il problema 2014:

B11CB3A1AED0A00( 16 15 byte) - Concatenatore generico.

BB102CD11B513B3622E( 20 19 byte) - Molto più freddo - Valuta (5 * (10-1)) ^ 2-11


0

Python 2, 955 byte

import sys
global s
s=[0]
c=lambda x: x.append(str(x.pop())+str(x.pop()))
i=lambda x: x.append(x.pop()+1)
v=lambda x: x.append(x.pop()-1)
x=lambda x: x.append(x.pop()*x.pop())
q=lambda x: x.append(x.pop(-2)/x.pop())
a=lambda x: x.append(x.pop()+x.pop())
w=lambda x: x.append(x.pop(-2)-x.pop())
e=lambda x: x.append(x.pop(-2)**x.pop())
m=lambda x: x.append(x.pop(-2)%x.pop())
r=lambda x: x.append(x.pop(0))
l=lambda x: x.insert(0,x.pop())
d=lambda x: x.append(x[-1])
t=lambda x: x.extend(x[-2:])
s=lambda x: x.insert(-2,x.pop())
def z(x):
    for y in [0,1]:
        s.insert(-3,s.pop())
k={'$':c,'i':i,'v':v,'*':x,'/':q,'+':a,'-':w,'^':e,'%':m,'>':r,'<':l,'d':d,
   't':t,'s':s,'z':z,'.':lambda x: x.pop()}
if __name__=='__main__':
    with open(sys.argv[1],'r') as f:
        while 1:
            b=f.read(1)
            if not b or b not in k.keys():
                break
            else:
                n=k[b](s)
                for x in s: print s,

Cosa fa ogni funzione

  • c: concatenare ($)
  • i: incremento (i)
  • v: decrement (v)
  • x: moltiplica (*)
  • q: divide (/)
  • a: aggiungi (+)
  • w: sottrarre (-)
  • e: esponente (^)
  • m: modulo (%)
  • r: spostamento a destra (>)
  • l: spostamento a sinistra (<)
  • d: duplicato (d)
  • t: duplica due volte (t)
  • s: scambia i primi 2 valori
  • z: double swap (z)

Dato che questo non è un codice golf (è un concorso di popolarità ) e il tuo codice è a malapena golf, non penso che tu debba includere il conteggio dei byte.
FlipTack

@FlipTack Includo solo il conteggio dei byte perché qualcuno potrebbe voler sapere.
ckjbgames,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.