Va giù lo scarico


12

Una volta ho incontrato questo (mini) gioco in cui avevi 4 o più tubi verticali collegati da un numero di tubi orizzontali e devi far cadere una palla o acqua nei tubi verticali.
Ci sono 2 tipi che conosco:

  • Metti l'oggetto in un secchio / cestino sotto una delle uscite (indovina quale pipa lanciarlo)
  • Indovina da quale tubo verrà l'oggetto.

Tubi campione:

|       |       |-------|  
|-------|       |-------|  
|       |-------|       |  
|-------|-------|-------|  
|       |-------|       |  
|-------|       |-------|  
|-------|       |-------|  
|       |-------|       |  

Regole di base:

  • Quando si sposta attraverso un tubo orizzontale, l'oggetto scende quando possibile
  • Quando si sposta attraverso un tubo verticale l'oggetto si trasformerà in un tubo orizzontale quando possibile.

Il tuo lavoro

  • Scrivi un programma che creerà una griglia casuale di tubi (vedi esempio di tubi).
  • Dovrebbero esserci almeno 4 tubi verticali e una buona quantità di tubi orizzontali almeno 10.
  • La lunghezza dei tubi verticali dipende da te.
  • Mostra il percorso che l'oggetto ha preso per raggiungere il fondo e mostra quante curve ci sono volute per arrivarci.
  • Ingresso (opzionale) per determinare il punto di partenza, tubi numerati 1..N da sinistra a destra.

Schermo:

 | vertical pipe
 - horizontal pipe
 : vertical pipe used by the object
 = horizontal pipe used by the object
 V Object starting point
 ^ Object ending point

Esempio:

V
:       |       |-------|
:=======:       |-------|
|       :=======:       |
|-----!-:=======:       |
|       :=======:-------|
|-------|       :=======:
|-------|       :=======:
|       :=======:       |
        ^
14 turns were taken to get to the end.

Dettaglio
L'oggetto entra nel tubo 1 e inizia a muoversi verso il basso, va a sinistra nel primo tubo orizzontale.
Torna indietro e nel secondo tubo seguito da un'inversione a U nel terzo tubo.
Alla fine della terza pipe vedi un punto esclamativo,
non dovrebbe essere nel tuo risultato ma l'ho usato per mostrarti che l'oggetto avrebbe potuto andare dritto.
Tuttavia, la regola numero 1 lo impedisce.

Il vincitore sarà determinato dai voti tra 3 settimane a partire dal 24-02-2014 (gg-mm).

Buona codifica ^. ^


7
Cosa succede se l'oggetto cade e c'è un tubo a sinistra e sulla stessa altezza un tubo a destra?
Howard,

2
Inoltre, dato che input e output sono fissi, non penso sia una buona idea renderlo popolare .
Howard,

@Howard - come lo taggeresti allora? "Il vincitore sarà determinato dai voti" mi sembra un contesto di popolarità - non c'è certamente golf o altri criteri di successo qui, e non è un output di stringa fisso
jimbobmcgee

1
@DavidCarraher - che ne dici di un flipper, piuttosto che dell'acqua? Con ogni tubo orizzontale un po 'magnetico? E quel magnetismo si accende quando la palla raggiunge la fine della sezione del tubo di scolo e si spegne quando entra nel tubo orizzontale! Tramite laser-tripwire. :-) (magneti, come funzionano ?!) (Laser-tripwires, come essi funzionano !!?)
jimbobmcgee

1
@Fabinout: è meglio non fare i compiti di sangue! Ho sprecato troppo di un giorno feriale perfettamente funzionante a eliminare la mia risposta a questo!
jimbobmcgee,

Risposte:


24

matematica

Il codice 2D genera un grafico che mostra il percorso dell'acqua. Ho visualizzato i numeri dei vertici per un comodo controllo incrociato con il display 3D. Normalmente i numeri dei vertici sarebbero nascosti.

Ingresso:

r=10;c=7;
result=flow2D[{r,c},3]

In realtà, il risultato contiene più oggetti. Il primo oggetto, result[[1]]è il grafico 2D mostrato qui.

2D


I tubi tridimensionali sono Tube(linee 3D) tracciati in 3 spazi. Le coordinate calcolate in base ai vertici del grafico 2D lungo una terza coordinata che è stata generata casualmente (Ciò consente ai tubi di assumere posizioni diverse lungo y ogni volta che il codice viene eseguito).

Gli assi vengono visualizzati per aiutare il lettore a convincersi che il rendering 3D si basa effettivamente sul rendering 2D.

L'input 3D di interesse qui è:

Graphics3D[{CapForm[None],verticalPipes,allRungs,Darker@Red,connections},
ImageSize->600,Axes-> True,Ticks->{Range[1,2 r,2],Range[c],Range[10]},ViewPoint->{0,-2,1.5}]

Il numero o le righe, le colonne e la colonna di immissione sono tratte dal codice 2D. Non devono essere reinseriti.

3D

Codice 2D

Nei prossimi giorni documenterò e riordinerò il codice per 2D e 3D.

flow2D[{rows_,columns_},startColumn_]:=
Module[{r=rows,c=columns,g,j,h,ends,middle,midcuts,direction="down",turns=0,path,rungs},

   (*complete gridgraph*)
g=GridGraph[{r,c},VertexSize-> Medium,GraphStyle->"Prototype",EdgeStyle->"Thick",
  VertexLabels->"Name",ImagePadding-> 30,ImageSize->470];

(*horizontal pipes that must be removed*)
ends=Table[r(c1-1)+r1\[UndirectedEdge] r(c1)+r1,{c1,1,c-1},{r1,{1,r}}];

(*horizontal pipes to consider removing *)
middle=Table[r(c1-1)+r1\[UndirectedEdge] r(c1)+r1,{c1,1,c-1},{r1,2,r-1}];
midcuts=RandomSample[#,RandomInteger[Round[{r/15,2r/5}]]]&/@middle;

rungs=Flatten[midcuts(*Join[ends,midcuts]*)];

j=EdgeDelete[g,Flatten[Join[ends,midcuts]]];

h[path_]:= Module[{start=path[[-1]],right,left,up,down,newnodes}, 
     {v=NeighborhoodGraph[j,start,1,(*VertexLabels\[Rule]"Name",*)ImagePadding->25],
     VertexList[v]};newnodes=Complement[VertexList[v],path];
     If[newnodes=={},path,  
     h[Append[path,
  Switch[direction,
   "down",Which[
     MemberQ[newnodes,start+r],(turns++;direction="right";start+r),
     MemberQ[newnodes,start-r],(turns++;direction="left";start-r),
     MemberQ[newnodes,start-1],start-1],
   "right",Which[
     MemberQ[newnodes,start-1],(turns++;direction="down";start-1),
     MemberQ[newnodes,start+r],start+r],  
   "left",Which[
     MemberQ[newnodes,start-1],(turns++;direction="down";start-1),
     MemberQ[newnodes,start-r],start-r]
    ]]]]];
{HighlightGraph[j,path=h[{r*startColumn}],ImageSize->300],path,rungs,ends,midcuts}]

convert[node_,r_,c_]:=Append[footing[[Quotient[node-1,r]+1]],Mod[node-1,r]+1(*Mod[node,r]*)]
connect[a_\[UndirectedEdge]b_,r_,c_]:=Tube[Line[{convert[a,r,c],convert[b,r,c]}],0.2]

Codice 3D e risultati

r=10;c=7;
result=flow2D[{r,c},3];
g2D=result[[1]];
path2D=result[[2]];
\[AliasDelimiter]
xScale=2;
footing = {#, RandomInteger[{1, 6}]} & /@ Range[1,xScale c, xScale];
verticalPipes=Tube[Line[{Append[#,1],Append[#,r]}],.19]&/@footing;
Graphics3D[{CapForm[None],verticalPipes},ImageSize->600,Axes->True,AxesEdge->Automatic,ViewPoint->{0,-2,1.5},
Ticks->{Range[1,2 r,2],Range[c],Range[10]}];

path3D=UndirectedEdge@@@Partition[Riffle[stops=path2D,Rest@stops],2];
allRungs=connect[#,r,c]&/@rungs;
connections=connect[#,r,c]&/@path3D;

path2D;
g2D
Graphics3D[{CapForm[None],verticalPipes,allRungs,Darker@Red,connections},
ImageSize->600,Axes-> True,Ticks->{Range[1,2 r,2],Range[c],Range[10]},ViewPoint->{0,-2,1.5}]

2
Se riesci a rendere il percorso, questo sicuramente vincerà a mani basse! Puoi modificare il colore dei tubi, in base al fatto che i vertici siano "toccati"?
jimbobmcgee,

1
Penso di poter modificare il colore del tubo per mostrare il percorso intrapreso. Non sono sicuro di come decidere quali tubi di collegamento (orizzontali) dovrebbero essere "presi" e quali dovrebbero essere evitati. Attualmente tutti i tubi di collegamento sono "aperti".
DavidC,

Scegline uno a caso o rendilo definibile come ho fatto nel mio? Vincerò ancora - l'output è troppo bello per non farlo !!
jimbobmcgee,

1
In questo momento, sembra che tu prenda diversi tubi orizzontali sullo stesso livello. Credo che ciò violi la regola di base n. 1.
Timwi,

Timwi, grazie. Tale svista è stata corretta.
DavidC,

12

C #

(tramite LINQPad, in modalità "Programma C #";)

Dovremo applicare l'Equitable Stroke Control, per quanto riguarda qualsiasi golf, ma questo è il mio approccio in C # (beh, LINQPad, ma chi vuole tutto il boilerplate che fa funzionare un'app C # completa?) .

Le definizioni della griglia sono variabili, con un numero di tubi verticali e altezza della struttura complessiva, e sono ripetibilmente casuali passando un seme (vedi il PipeGridcostruttore).

In assenza di una risposta definitiva sul modo in cui l'oggetto fluirebbe se una delle due direzioni fosse possibile, ti ho permesso di specificare un comportamento da una serie di opzioni (vedi SolveBehaviorenumerazione / PipeSolvercostruttore).

L'avvio verticale è definibile (vedi PipeSolver.Solve).

Ho ipotizzato che i tubi orizzontali siano sempre tra due tubi verticali adiacenti , vale a dire che nessun orizzontale può bypassare un tubo orizzontale.

///<summary>Entry point</summary>
void Main()
{
    var grid = new PipeGrid(vertical:10, height:10, seed:5);
    var solver = new PipeSolver(grid, SolveBehavior.FlipFlop);
    solver.Solve(start:2);
}

///<summary>Represents the direction the object is travelling</summary>
enum Direction
{
    Down = 0,
    Left = 1,
    Right = 2
}

///<summary>Determines the route to take if a junction yields both horizontal directions</summary>
enum SolveBehavior
{
    ///<summary>Throws an <see cref="InvalidOperationException" /></summary>
    Fail = 0,

    ///<summary>Prefers the left-most direction (screen-relative)</summary>
    FavorLeft = 1,

    ///<summary>Prefers the right-most direction (screen-relative)</summary>
    FavorRight = 2,

    ///<summary>Alternates preferred direction, based on the number of turns</summary>
    FlipFlop = 3,

    ///<summary>Prefers the same direction the object travelled, on its last horizontal movement</summary>
    SameDirection = 4,

    ///<summary>Prefers the opposite direction the object travelled, on its last horizontal movement</summary>
    Uturn = 5
}

///<summary>Provides the logic for solving a <see cref="PipeGrid" /></summmary>
class PipeSolver
{
    ///<summary>Creates a new <see cref="PipeSolver" /> for the supplied <paramref name="grid" />,
    ///with the given <paramref name="behavior" /> used to resolve junctions with both horizontal 
    ///paths</summary>
    public PipeSolver(PipeGrid grid, SolveBehavior behavior = SolveBehavior.FlipFlop)
    {       
        if (grid == null) throw new ArgumentNullException("grid");
        _grid = grid;
        _behavior = behavior;
    }

    private readonly PipeGrid _grid;
    private readonly SolveBehavior _behavior;

    ///<summary>Simulate the dropping of an object to run through the grid, at the top of a
    ///given <paramref name="start" /> vertical pipe</summary>
    public void Solve(int start = 1, bool dumpFrames = false, string tag = "Result")
    {
        if (start < 1) start = 1;
        if (start > _grid.Verticals) start = _grid.Verticals;

        int x, y;

        Direction?[,] path = new Direction?[_grid.Width, _grid.Height];

        x = (start - 1) * 2;
        y = 0;
        Direction dir = Direction.Down, lastDir = Direction.Down;

        int turns = 0;      
        do
        {
            path[x, y] = dir;       // we moved through this pipe

            // rule 1: when moving through horizontal pipe, object will go down when possible
            if ((dir == Direction.Left || dir == Direction.Right) && (x % 2 == 0))
            {
                lastDir = dir;
                dir = Direction.Down;
                ++turns;
            }
            // rule 2: when moving through start pipe, object will turn into horizontal pipe when possible
            else if (dir == Direction.Down)
            {
                bool hasLeft  = (x > 0 && _grid[x - 1, y]);
                bool hasRight = (x < _grid.Width - 1 && _grid[x + 1, y]);

                if (hasLeft && hasRight)
                {
                    switch (_behavior)
                    {
                        case SolveBehavior.FavorLeft: 
                            hasRight = false;       // "forget" about right pipe
                            break;
                        case SolveBehavior.FavorRight:
                            hasLeft = false;        // "forget" about left pipe
                            break;
                        case SolveBehavior.FlipFlop:
                            if (turns % 2 == 0) hasLeft = false;
                            else hasRight = false;  // "forget" about left on the even moves, or right on the odd moves
                            break;
                        case SolveBehavior.SameDirection:   // force staying in the same direction
                            if (lastDir == Direction.Left)       hasRight = false;
                            else if (lastDir == Direction.Right) hasLeft = false;
                            else goto case SolveBehavior.FlipFlop;  // use the flip-flop behaviour to determine first turn
                            break;
                        case SolveBehavior.Uturn:   // force turning back on itself
                            if (lastDir == Direction.Left)       hasLeft = false;
                            else if (lastDir == Direction.Right) hasRight = false;
                            else goto case SolveBehavior.FlipFlop;  // use the flip-flop behaviour to determine first turn
                            break;
                        default: throw new InvalidOperationException(
                            "Failed to find distinct path, with no resolving behavior defined"
                        );
                    }
                }

                if (hasLeft)        dir = Direction.Left;
                else if (hasRight)  dir = Direction.Right;

                if (hasLeft || hasRight) ++turns;
            }

            switch (dir)    // update position, based on current direction
            {
                case Direction.Left:  if (x > 0) --x; break;
                case Direction.Right: if (x < _grid.Width - 1) ++x; break;
                default: ++y; break;
            }
            if (dumpFrames) 
            {
                DumpFrame(path, start, tag:string.Concat("Frame #", turns, " (", _grid.Seed, ")"));
                DrawFrame(path, start, tag:string.Concat("Frame #", turns));
            }
        } 
        while (y < _grid.Height);

        int end = (x / 2) + 1;
        DumpFrame(path, start, end, turns, tag);
        DrawFrame(path, start, end, turns, tag);
    }

    ///<summary>Internal method for drawing a given frame</summary>
    private void DumpFrame(Direction?[,] path, int start, int? end = null, int? turns = null, string tag = null)
    {
        var builder = new StringBuilder();

        builder.Append(' ', --start * 5).AppendLine("v");
        for (int y = 0; y < _grid.Height; y++)
        {
            for (int x = 0; x < _grid.Width; x++)
            {
                builder.Append(
                    (x % 2 == 0) 
                        ? path[x, y].HasValue ? ":"    : _grid[x, y] ? "|"    : " "
                        : path[x, y].HasValue ? "====" : _grid[x, y] ? "----" : "    "
                );
            }
            builder.AppendLine();
        }
        if (end.HasValue)   builder.Append(' ', (end.Value - 1) * 5).AppendLine("^");

        if (turns.HasValue) builder.Append(turns.Value)
                                   .Append(" turns were taken to get to ")
                                   .AppendLine(end.HasValue ? "the end." : "this point.");

        builder.ToString().Dump(string.IsNullOrWhiteSpace(tag) ? "Frame" : tag);
    }

    ///<summary>Internal method for rendering a frame as a bitmap</summary>
    private void DrawFrame(Direction?[,] path, int start, int? end = null, int? turns = null, string tag = null)
    {
        using (var sprites = new Sprites())
        using (var canvas = new Bitmap(16 * _grid.Width, 16 * (_grid.Height + 3)))
        using (var graphics = Graphics.FromImage(canvas))
        {
            graphics.FillRectangle(Brushes.Green, 0, 16, 16 * _grid.Width, 16 * _grid.Height);
            _grid.Draw(graphics, sprites, offsetX:0, offsetY:16);

            // draw the start position
            start = (start - 1) * 32;
            graphics.DrawImageUnscaled(sprites.RoadVertical, start, 0);
            graphics.DrawImageUnscaled(sprites.CarVertical,  start, 0);
            graphics.DrawImageUnscaled(sprites.StartFlag,    start, 0);

            // draw the path
            for (int y = 0; y < _grid.Height; y++)
            for (int x = 0; x < _grid.Width;  x++)
            {
                if (path[x, y].HasValue)
                {
                    Image car;

                    switch (path[x, y])
                    {
                        case Direction.Left:
                            // if even, then on a vertical, so turning left; otherwise travelling left
                            car = (x % 2 == 0) ? sprites.CarTurnLeft : sprites.CarLeft;
                            break;
                        case Direction.Right:
                            // if even, then on a vertical, so turning right; otherwise travelling right
                            car = (x % 2 == 0) ? sprites.CarTurnRight: sprites.CarRight;
                            break;
                        default:
                            car = sprites.CarVertical;
                            if (x == 0 && path[x + 1, y].HasValue)                            // far-left and will move right = turn-right
                                car = sprites.CarTurnRight;
                            else if (x == _grid.Width - 1 && path[x - 1, y].HasValue)         // far-right and will move left = turn-left
                                car = sprites.CarTurnLeft;
                            else if (x > 0 && x < _grid.Width - 1)
                            {
                                car = sprites.CarVertical;                                    // if not right or left, then down
                                if (path[x + 1, y].HasValue && !path[x - 1, y].HasValue)      // if came from the left, then turn right
                                    car = sprites.CarTurnRight;
                                else if (path[x - 1, y].HasValue && !path[x + 1, y].HasValue) // if came from the right, then turn left
                                    car = sprites.CarTurnLeft;
                            }
                            break;
                    }

                    graphics.DrawImageUnscaled(car, 16 * x, 16 * (y + 1));
                }
            }

            // draw the end position, if we are at the end
            if (end.HasValue)
            {
                end = (end - 1) * 32;
                graphics.DrawImageUnscaled(sprites.RoadVertical, end.Value, 16 * (_grid.Height + 1));
                graphics.DrawImageUnscaled(sprites.CarVertical,  end.Value, 16 * (_grid.Height + 1));
                graphics.DrawImageUnscaled(sprites.EndFlag,      end.Value, 16 * (_grid.Height + 1));
            }

            if (turns.HasValue) 
            {
                string s = string.Concat(turns.Value, " turns were taken to get to ", 
                                         end.HasValue ? "the end." : "this point.");

                graphics.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAliasGridFit;
                graphics.DrawString(s, SystemFonts.DefaultFont, Brushes.Black, 0, 16 * (_grid.Height + 2));
            }

            canvas.Dump(tag ?? "Bonus");
        }       
    }
}

///<summary>Represents a configuration of pipes</summary>
class PipeGrid
{
    ///<summary>Creates a new <see cref="PipeGrid" />, of a given <paramref name="height" />
    ///with the given number of <paramref name="vertical" /> pipes, and randomly distributes 
    ///horizontal pipes between them, based on a repeatable <paramref name="seed" />.</summary>
    public PipeGrid(int vertical = 4, int height = 8, int? seed = null)
    {
        if (vertical < 2) vertical = 2;
        if (height < 2) height = 2;

        Width = (2 * vertical) - 1;
        Height = height;
        Verticals = vertical;

        Seed = seed ?? Environment.TickCount;
        var rnd = new Random(Seed);

        _nodes = new bool[Width,Height];
        for (int x = 0, xw = Width; x < xw; x++) 
        for (int y = 0; y < height; y++)
        {
            // place verticals in every even column, and randomly place horizontals in odd columns
            if (x % 2 == 0 || rnd.Next(0, 2) == 1)
                _nodes[x, y] = true;
        }
    }

    private readonly bool[,] _nodes;

    public int Width { get; private set; }
    public int Height { get; private set; }
    public int Verticals { get; private set; }
    public int Seed { get; private set; }

    public bool this[int x, int y] { get { return _nodes[x, y]; } }

    ///<summary>Renders the grid to the LINQPad results pane, for inspection</summary>
    public PipeGrid Dump(string tag = null)
    {
        var builder = new StringBuilder();

        for (int y = 0; y < Height; y++)
        {
            for (int x = 0; x < Width; x++)
            {
                builder.Append(
                    (x % 2 == 0)
                        ? _nodes[x, y] ? "|"    : " "
                        : _nodes[x, y] ? "----" : "    "
                );
            }
            builder.AppendLine();
        }

        builder.ToString().Dump(string.IsNullOrWhiteSpace(tag) ? "Grid" : tag);
        return this;
    }

    ///<summary>Render the grid as a bitmap image</summary>
    public void Draw(Graphics g, Sprites s, int offsetX = 0, int offsetY = 0)
    {           
        for (int y = 0; y < Height; y++)
        {
            for (int x = 0; x < Width; x++)
            {
                if (_nodes[x, y])
                {   
                    Image sprite = sprite = s.RoadVertical;

                    if (x % 2 != 0) 
                        sprite = s.RoadHorizontal;
                    else if (x == 0 && _nodes[1, y])
                        sprite = s.JunctionTeeRight;
                    else if (x == Width - 1 && _nodes[x - 1, y])
                        sprite = s.JunctionTeeLeft;
                    else if (x > 0 && x < Width - 1)
                    {
                        if (_nodes[x - 1, y] && _nodes[x + 1, y])
                            sprite = s.JunctionCross;
                        else if (_nodes[x + 1, y] && !_nodes[x - 1, y])
                            sprite = s.JunctionTeeRight;
                        else if (_nodes[x - 1, y] && !_nodes[x + 1, y])
                            sprite = s.JunctionTeeLeft;
                    }

                    g.DrawImageUnscaled(sprite, 
                                        x:(16 * x) + offsetX, 
                                        y:(16 * y) + offsetY);
                }
            }
        }
    }

    ///<summary>Creates a <see cref="PipeGrid" /> with horizontal pipes at all possible positions</summary>
    public static PipeGrid CreateAllOpen(int verticals = 4, int height = 8)
    {
        var grid = new PipeGrid(verticals, height, 0);
        for (int y = 0; y < height; y++)
        for (int x = 0, xw = grid.Width; x < xw; x++)
            grid._nodes[x, y] = true;

        return grid;
    }
}

///<summary>Store tile sprites, to be used in the graphical rendering of the result</summary>
class Sprites : IDisposable
{
    public Sprites()
    {
        byte[,] car = new byte[,] {
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 0, 0, 0 },
            { 0, 0, 0, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 0, 0, 0 },
            { 0, 0, 0, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 0, 0, 0 },
            { 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 0, 0, 0 },
            { 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 3, 3, 1, 0, 0, 0 },
            { 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0 },
            { 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
        };
        byte[,] road = new byte[,] {
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 6, 6, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
        };
        byte[,] roadNESW = new byte[,] {
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
            { 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 },
            { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
            { 2, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 2, 2, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 2, 2, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 2, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 2, 2, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 2, 2, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 2, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 2, 2, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 2, 2, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 2, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
            { 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
        };
        byte[,] roadNES = new byte[,] {
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
            { 0, 6, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 0, 6, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 0, 6, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 0, 6, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 0, 6, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 0, 6, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 0, 6, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 0, 6, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 0, 6, 2, 2, 5, 5, 2, 5, 5, 2, 5, 5, 2, 2, 2, 2 },
            { 0, 6, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6 },
            { 0, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 0 },
        };
        byte[,] start = new byte[,] {
            { 0, 0, 1, 1, 1, 0, 4, 4, 4, 0, 0, 0, 4, 0, 0, 0 },
            { 0, 0, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0 },
            { 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0 },
            { 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0 },
            { 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0 },
            { 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0 },
            { 0, 0, 1, 4, 4, 4, 0, 0, 0, 4, 4, 4, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
        };
        byte[,] end = new byte[,] {
            { 0, 0, 1, 1, 1, 0, 1, 1, 6, 0, 0, 0, 6, 0, 0, 0 },
            { 0, 0, 1, 6, 6, 6, 1, 1, 6, 6, 1, 1, 6, 0, 0, 0 },
            { 0, 0, 1, 1, 6, 6, 6, 6, 1, 6, 1, 1, 1, 0, 0, 0 },
            { 0, 0, 1, 1, 1, 1, 6, 6, 1, 1, 6, 6, 1, 0, 0, 0 },
            { 0, 0, 1, 1, 1, 1, 1, 1, 6, 1, 6, 6, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 6, 6, 1, 1, 6, 6, 1, 1, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 6, 6, 6, 6, 1, 6, 1, 1, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 1, 1, 6, 6, 1, 1, 6, 6, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 6, 6, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
            { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
        };

        RoadVertical     = Sprite(road);
        RoadHorizontal   = RotateSprite(RoadVertical, 90);
        JunctionCross    = Sprite(roadNESW);
        JunctionTeeRight = Sprite(roadNES);
        JunctionTeeLeft  = FlipSprite(JunctionTeeRight, horizontal:true);
        CarVertical      = Sprite(car);
        CarLeft          = RotateSprite(CarVertical,  90);
        CarRight         = FlipSprite(CarLeft, horizontal:true);
        CarTurnLeft      = RotateSprite(CarVertical,  45);
        CarTurnRight     = FlipSprite(CarTurnLeft, horizontal:true);
        StartFlag        = Sprite(start);
        EndFlag          = Sprite(end);
    }

    public Image RoadVertical     { get; private set; }
    public Image RoadHorizontal   { get; private set; }
    public Image JunctionCross    { get; private set; }
    public Image JunctionTeeLeft  { get; private set; }
    public Image JunctionTeeRight { get; private set; }
    public Image CarVertical      { get; private set; }
    public Image CarLeft          { get; private set; }
    public Image CarRight         { get; private set; }
    public Image CarTurnLeft      { get; private set; }
    public Image CarTurnRight     { get; private set; }
    public Image StartFlag        { get; private set; }
    public Image EndFlag          { get; private set; }

    ///<summary>Create a sprite from the byte data</summary>
    private Image Sprite(byte[,] data) 
    {
        int width = data.GetLength(0);
        int height = data.GetLength(1);

        var image = new Bitmap(width, height);

        for (int y = 0; y < height; y++)
        for (int x = 0; x < width; x++)
        {
            Color c;
            switch (data[y,x])
            {
                case 1: c = Color.Black; break;
                case 2: c = Color.DarkGray; break;
                case 3: c = Color.Red; break;
                case 4: c = Color.LimeGreen; break;
                case 5: c = Color.Yellow; break;
                case 6: c = Color.White; break;
                default: continue;
            }

            image.SetPixel(x, y, c);
        }

        return image;
    }

    ///<summary>Rotate an image by a number of <paramref name="degrees" /> around the centre</summary>
    private Image RotateSprite(Image source, float deg)
    {
        var b = new Bitmap(source.Width, source.Height);

        using (var g = Graphics.FromImage(b))
        {
            float tx = (float)source.Width / 2.0f;
            float ty = (float)source.Height / 2.0f;

            g.TranslateTransform(tx, ty);
            g.RotateTransform(deg);
            g.TranslateTransform(-tx, -ty);
            g.DrawImageUnscaled(source, 0, 0);
        }

        return b;
    }

    ///<summary>Flip an image about its centre</summary>
    private Image FlipSprite(Image source, bool horizontal = false, bool vertical = false)
    {
        var b = new Bitmap(source);

        RotateFlipType rft = ( horizontal &&  vertical) ? RotateFlipType.RotateNoneFlipXY
                           : ( horizontal && !vertical) ? RotateFlipType.RotateNoneFlipX
                           : (!horizontal &&  vertical) ? RotateFlipType.RotateNoneFlipY
                           : RotateFlipType.RotateNoneFlipNone;

        b.RotateFlip(rft);
        return b;
    }

    #region IDisposable implementation
    public void Dispose() { Dispose(true); }
    ~Sprites() { Dispose(false); }
    protected void Dispose(bool disposing)
    {
        if (disposing)
        {
            GC.SuppressFinalize(this);
            using (RoadVertical) { }    
            using (RoadHorizontal) { }
            using (JunctionCross) { }
            using (JunctionTeeLeft) { }
            using (JunctionTeeRight) { }
            using (CarVertical) { }
            using (CarLeft) { }
            using (CarRight) { }
            using (CarTurnLeft) { }
            using (CarTurnRight) { }
            using (StartFlag) { }
            using (EndFlag) { };
        }
        RoadVertical = null;
        RoadHorizontal = null;
        JunctionCross = null;
        JunctionTeeLeft = null;
        JunctionTeeRight = null;
        CarVertical = null;
        CarLeft = null;
        CarRight = null;
        CarTurnLeft = null;
        CarTurnRight = null;
        StartFlag = null;
        EndFlag = null;
    }
    #endregion
}

Aggiornare:

Temendo che il mio semplice vecchio output di testo possa essere un po 'triste per questo contesto di popolarità, offro una versione estesa che disegna anche il percorso preso come immagine. L'ho modellato come un'auto, guidando attraverso un'orribile rete stradale, cercando di arrivare in fondo, ma con il GPS peggiore del mondo che ti costringe a fare una svolta ad ogni incrocio.

Come bonus, questo rende anche più chiaro vedere i "turni".

Divertiti - vroom vroom !!

Risultati di esempio:

(verticali: 10, altezza: 10, seed casuale: 5, start pipe: 2, risoluzione del comportamento: FlipFlop}) Risultati di esempio, come mostrato nella pagina dei risultati di LINQPad, per {verticale: 10, altezza: 10, seme: 5, inizio: 2, comportamento: FlipFlop}


8

C #

Momenti divertenti! :-)

Questo codice garantisce che vi sia almeno un tubo diritto su entrambe le estremità di ciascun tubo. Assicura inoltre che non ci siano svolte ambigue.

using System;

namespace Experiment.DownTheDrain
{
    class Program
    {
        static void Main(string[] args)
        {
            var program = new Program();
            program.Width = 19;
            program.Height = 17;
            program.SpanCount = program.Width * program.Height / 4;
            program.Spacing = 3;
            program.Run();
        }

        public int Width { get; set; }
        public int Height { get; set; }
        public int SpanCount { get; set; }
        public int Spacing { get; set; }
        public bool[,] Spans { get; private set; }

        public void Run()
        {
            GenerateSpans();
            DrawPipes();
            var pipe = ReadStartPipe();
            var turns = DrawPath(pipe);
            WriteTurns(turns);
            Console.ReadLine();
        }

        private void GenerateSpans()
        {
            Random random = new Random();
            Spans = new bool[Width, Height];

            int x, y;
            for (int i = 0; i < SpanCount; i++)
            {
                do
                {
                    x = random.Next(Width);
                    y = random.Next(Height);
                }
                while (SpanAt(x - 1, y) || SpanAt(x, y) || SpanAt(x + 1, y));
                Spans[x, y] = true;
            }
        }

        private void DrawPipes()
        {
            const string Junction = "│┤├┼";

            Console.CursorLeft = 0;
            Console.CursorTop = 0;
            DrawLabels();
            for (int y = -1; y <= Height; y++)
            {
                for (int x = 0; x <= Width; x++)
                {
                    Console.Write(Junction[(SpanAt(x-1,y) ? 1 : 0) + (SpanAt(x,y) ? 2 : 0)]);
                    Console.Write(x == Width ? Environment.NewLine : new string(SpanAt(x, y) ? '─' : ' ', Spacing));
                }
            }
            DrawLabels();
        }

        private void DrawLabels()
        {
            for (int x = 0; x <= Width; x++)
                Console.Write("{0}{1}",
                    (char)(x + 65),
                    x == Width ? Environment.NewLine : new string(' ', Spacing)
                );
        }

        private int ReadStartPipe()
        {
            Console.WriteLine();
            Console.Write("Please select a start pipe: ");
            int pipe;
            do
            {
                var key = Console.ReadKey(true);
                pipe = (int)char.ToUpper(key.KeyChar) - 65;
            }
            while (pipe < 0 || pipe > Width);
            Console.WriteLine((char)(pipe + 65));
            return pipe;
        }

        private int DrawPath(int x)
        {
            int turns = 0;
            Console.CursorTop = 1;
            for (int y = -1; y <= Height; y++)
            {
                if (SpanAt(x - 1, y))
                {
                    x--;
                    Console.CursorLeft = x * (Spacing + 1);
                    Console.WriteLine("╔{0}╝", new string('═', Spacing));
                    turns += 2;
                }
                else if (SpanAt(x, y))
                {
                    Console.CursorLeft = x * (Spacing + 1);
                    Console.WriteLine("╚{0}╗", new string('═', Spacing));
                    x++;
                    turns += 2;
                }
                else
                {
                    Console.CursorLeft = x * (Spacing + 1);
                    Console.WriteLine("║");
                }
            }

            return turns;
        }

        private void WriteTurns(int turns)
        {
            Console.WriteLine();
            Console.WriteLine();
            Console.WriteLine();
            Console.WriteLine("{0} turns taken to reach the bottom.", turns);
        }

        private bool SpanAt(int x, int y)
        {
            return x >= 0
                && x < Width
                && y >= 0
                && y < Height
                && Spans[x, y];
        }
    }
}

Produzione:

Giù per lo scarico


1
Accidenti, ho anche avuto l'idea di usare i personaggi del box-drawing, mi hai battuto :)
Timwi

Inoltre, mi piace l'idea di assicurarmi di non generare pipe con curve ambigue. Non ci avevo pensato!
Timwi,

8

funciton

Come se Funciton non fosse già tra le lingue più inutili al mondo, questo è sicuramente il programma più inutile che abbia scritto finora.

Poiché questo sembra brutto in StackExchange a causa della spaziatura di riga aggiuntiva, considera di eseguire quanto segue nella console JavaScript del tuo browser per risolvere il problema:

$('pre').each(function(){$(this).css('line-height',1)})

Dato che Funciton non ha un generatore di numeri casuali, ho deciso di lasciarti entrare nel modello di pipe. Dal momento che la codifica del modello è invisibile, battere i tasti numerici sulla tastiera in modo casuale è buono come un generatore di numeri casuali.

Si prevede che l'input sia composto da tre numeri decimali separati da spazi. Il primo numero è la larghezza (uno in meno del numero di tubi verticali); il secondo è l'indice del tubo di partenza e l'ultimo è qualsiasi numero che codifica il modello di tubo orizzontale; puoi renderlo grande quanto vuoi. Se la larghezza è negativa o l'indice del tubo non è compreso nell'intervallo, l'uscita èImpossiburu.

Il programma garantisce automaticamente che non ci siano mai due tubi orizzontali uno accanto all'altro, il che potrebbe causare curve ambigue.

                            ┌───╖
               ┌────────────┤ ♯ ╟───────────┬───────────────┐
     ╔════╗  ┌─┴─╖  ┌────╖  ╘═══╝  ╔═══╗  ┌─┴─╖  ╔════╗     │
     ║ 21 ║  │ × ╟──┤ >> ╟─────────╢   ╟──┤ ʘ ╟──╢ 32 ║     │
     ╚═╤══╝  ╘═╤═╝  ╘═╤══╝         ╚═══╝  ╘═══╝  ╚════╝     │
       └───────┘  ┌───┴───┐                                 │
   ╔════╗  ┌───╖  │   ┌───┴──────────────────┐              │
   ║ 32 ╟──┤ ʘ ╟──┘   │          ╔═══╗       │              │
   ╚════╝  ╘═╤═╝    ┌─┴─╖        ║ 0 ╟───┐   │              │
     ┌───────┴──────┤ · ╟────┐   ╚═══╝ ┌─┴─╖ │              │
     │              ╘═╤═╝    └─────────┤ ʃ ╟─┘              │
     │     ┌──────────┘                ╘═╤═╝                │
   ┌─┴─╖ ┌─┴──╖  ┌─────────╖        ┌────┴────╖             │
   │ ♯ ║ │ >> ╟──┤ str→int ╟────┐   │ str→int ║             │
   ╘═╤═╝ ╘═╤══╝  ╘═════════╝  ┌─┴─╖ ╘════╤════╝           ┌─┴─╖
     │   ┌─┴─╖ ╔════╗         │ ░ ║   ┌──┴────────────────┤ · ╟────────────┐
     └───┤ × ╟─╢ 21 ║         ╘═╤═╝ ┌─┴─╖                 ╘═╤═╝            │
         ╘═══╝ ╚════╝┌─────┐    └───┤ ▒ ╟───┐ ┌─────────╖ ┌─┴─╖            │
      ┌─────────╖  ┌─┴─╖   │        ╘═╤═╝   ├─┤ str→int ╟─┤ ʃ ╟─┐          │
   ┌──┤ int→str ╟──┤ · ╟─┐ └──────────┘     │ ╘═════════╝ ╘═╤═╝ │          │
   │  ╘═════════╝  ╘═╤═╝ │ ╔══════════════╗ │ ╔═══╗  ┌──────┘   │          │
   │ ╔══════════╗  ┌─┴─╖ │ ║ 158740358500 ║ │ ║   ╟──┘ ┌───╖  ╔═╧═╗  ┌───╖ │
   │ ║ 20971533 ╟──┤   ╟─┘ ║ 305622435610 ║ │ ╚═══╝  ┌─┤ ≤ ╟──╢ 0 ╟──┤ ≥ ╟─┴─┐
   │ ╚════╤═════╝  └─┬─╜   ║ 491689778976 ║ └────────┤ ╘═╤═╝  ╚═══╝  ╘═╤═╝   │
   │    ┌─┴─╖  ┌───╖ │     ║ 886507240727 ║          │   └──────┬──────┘     │
   │    │ ‼ ╟──┤ ‼ ╟─┘     ║ 896192890374 ║          │         ┌┴┐           │
   │    ╘═╤═╝  ╘═╤═╝       ║ 899130957897 ╟───┐      │         └┬┘           │
   └──────┘    ┌─┴─╖       ╚══════════════╝ ┌─┴─╖  ┌─┴─╖        │            │
               │ ‼ ╟────────────────────────┤ ? ╟──┤ · ╟────────┤            │
               ╘═╤═╝                        ╘═╤═╝  ╘═╤═╝      ┌─┴─╖          │
 ╔═══════════════╧════════════════════════╗   │      └────────┤ ≥ ╟──────────┘
 ║ 83139057126481738391428729850811584337 ║       ┌────╖      ╘═══╝
 ║ 75842912478026089564602018574355013746 ║  ┌────┤ >> ╟──┐
 ║ 85373033606532129933858395805642598753 ║  │    ╘══╤═╝  │
 ║ 19381927245726769973108298347355345088 ║  │     ┌─┴─╖  │       ╓───╖
 ║ 84932603219463911206052446527634696060 ║  │     │ ░ ║  │       ║ ░ ║
 ║ 230797436494578049782495796264992      ║  │     ╘═╤═╝  │       ╙─┬─╜
 ╚════════════════════════════════════════╝  │    ┌──┴──┐ └─────────┴────────┐
                                             │    │   ┌─┴──╖ ┌┐   ┌┐         │
                                             │    │   │ << ╟─┤├─┬─┤├─────┐   │
   ┌────╖  ╔═══╗                             │    │   ╘═╤══╝ └┘ │ └┘   ╔═╧═╗ │
 ┌─┤ << ╟──╢ 1 ║                             │    │   ╔═╧═╗     │      ║ 1 ║ │
 │ ╘═╤══╝  ╚═══╝      ┌───────────────────┐  │    │   ║ 2 ║     │      ╚═╤═╝ │
 │   └─────┬──────────┴─────────┐         │  │ ┌──┴─╖ ╚═══╝   ┌─┴─╖ ┌┐   │   │
 │         │           ┌───┐  ┌─┴─╖       │  │ │ << ╟─────────┤ ? ╟─┤├───┤   │
 │         │           │   ├──┤ · ╟─┐     │  │ ╘══╤═╝         ╘═╤═╝ └┘   ├───┘
 │ ┌───┐ ┌─┴─╖ ┌───╖   └─┬─┘  ╘═╤═╝ ├───┐ │  │  ╔═╧═╗  ╔═══╗  ┌─┴─╖      │
 ├─┤   ├─┤ · ╟─┤ ♯ ╟─────┘    ┌─┴─╖ │   │ │  └──╢ 1 ║  ║ 0 ╟──┤ ? ╟──────┘
 │ └───┘ ╘═╤═╝ ╘═══╝  ┌───────┤ · ╟─┴─┐ │ │     ╚═══╝  ╚═══╝  ╘═╤═╝
 │       ┌─┴─╖      ┌─┴─╖     ╘═╤═╝   │ │ └─────────────────┐   │
 │  ┌────┤ · ╟──────┤ · ╟──┐    │     │ └────────┐          │
 │  │    ╘═╤═╝      ╘═╤═╝  │    │     └────┐     │          │
 │  └───┬──┴──┐       │    │    │        ┌─┴──╖  │          │
 │      │    ┌┴┐      │    │    └─────┬──┤ << ║  │          │
 │      │    └┬┘      │    │         ┌┴┐ ╘═╤══╝  │          │
 │    ┌─┴─╖ ┌─┴─╖   ┌─┴─╖  │         └┬┘ ╔═╧═╗   │          │
 └────┤ · ╟─┤ ? ╟─┐ │ ♯ ║  ├──────────┤  ║ 1 ║   │          │
      ╘═╤═╝ ╘═╤═╝ │ ╘═╤═╝ ┌┴┐         │  ╚═══╝   │          │
        │     │   │ ┌─┴─╖ └┬┘         │          │          │
        │     │   └─┤ ? ╟──┘        ┌─┴─╖        │          │
        │     │     ╘═╤═╝     ┌─────┤ > ╟─────┬──┘          │
        │     │     ┌─┴─╖   ┌─┴─╖   ╘═══╝     ├─────────┐   │
      ┌─┴─╖   └─────┤ · ╟───┤ · ╟─────────────┘         │   │
    ┌─┤ · ╟─────┐   ╘═╤═╝   ╘═╤═╝                       │   │
    │ ╘═╤═╝  ┌──┴─╖ ┌─┴─╖     │                         │   │
    │   │    │ >> ╟─┤ ▒ ╟──┐  ├─────────────┐         ┌─┴─╖ │
    │   │    ╘══╤═╝ ╘═╤═╝  ├──┘             │ ╓───╖ ┌─┤ · ╟─┤
    │   │       │   ┌─┴─╖  │                ├─╢ ▒ ╟─┤ ╘═╤═╝ │
    │   │       └───┤ · ╟──┘                │ ╙─┬─╜ │   │   │
    │   │           ╘═╤═╝                   │   │ ┌─┴─╖ │   │
    │   │           ┌─┴─╖                   │   └─┤ · ╟─┤   │
    │   │        ┌──┤   ╟────────────┐      │     ╘═╤═╝ │   │
    │   │        │  └─┬─╜  ┌───╖   ┌─┴─╖  ┌─┴─╖   ┌─┴─╖ │   │
    │   └──────┐ │    └────┤ ‼ ╟───┤ · ╟──┤ · ╟───┤ ▓ ╟─┘   │
    │          │ │         ╘═╤═╝   ╘═╤═╝  ╘═╤═╝   ╘═╤═╝     │
    │          │ │  ╔═══╗  ┌─┴─╖     │      └───────┘       │
    │          │ └──╢ 0 ╟──┤ ? ╟─┐   │                      │
    │          │    ╚═══╝  ╘═╤═╝ │ ┌─┴─╖                    │
    │ ╔═══╗    │           ┌─┴─╖ ├─┤ · ╟─┐                  │
    │ ║ 2 ║    │      ┌────┤ · ╟─┘ ╘═╤═╝ ├──────────────────┘
    │ ╚═╤═╝    │      │    ╘═╤═╝     │   │
    │ ┌─┴─╖  ┌─┴─╖  ┌─┴─╖  ╔═╧═╕ ┌─┐ │   │
    │ │ + ╟──┤ ? ╟──┤ ? ╟──╢   ├─┴─┘ │   │
    │ ╘═╤═╝  ╘═╤═╝  ╘═╤═╝  ╚═╤═╛     │   │
    │   └──┬───┘    ╔═╧═╗    │       │   │
    │      │        ║ 0 ║            │   │
    │      │        ╚═══╝            │   │
    │      └─────────────────────────┘   │
    └────────────────────────────────────┘        ╓┬──╖
 ┌────────────────────────────────────────────────╫┘▓ ╟────────────┐
 │ ╔═══════════╗        ╔════════════════════╗    ╙─┬─╜            │
 │ ║ 387759291 ║        ║ 385690484238253342 ║      │              │
 │ ║ 565251600 ║    ┌───╢ 839653020379129116 ║      │    ┌────┐    │
 │ ║ 199735775 ║  ┌─┴─╖ ╚════════════════════╝      │    │   ┌┴┐   │
 │ ║ 904933210 ╟──┤ ? ╟────────────────┐            │    │   └┬┘   │
 │ ╚═══════════╝  ╘═╤═╝    ┌──────┐    ├────────────┴────┘  ┌─┴─╖  │
 │ ╔═══════════╗  ┌─┴─╖  ┌─┴─╖  ╔═╧═╗  │  ╔════╗    ╔═══╗   │ ♯ ║  │
 │ ║ 388002680 ╟──┤ ? ╟──┤ ≠ ║  ║ 1 ║  │  ║ 21 ║  ┌─╢ 1 ║   ╘═╤═╝  │
 │ ║ 480495420 ║  ╘═╤═╝  ╘═╤═╝  ╚═══╝  │  ╚═╤══╝  │ ╚═══╝    ┌┴┐   │
 │ ║ 244823142 ║    │      ├───────────┘    │     │          └┬┘   │
 │ ║ 920365396 ║    │    ┌─┴─╖  ┌───╖     ┌─┴──╖  │ ┌────╖  ┌─┴─╖  │
 │ ╚═══════════╝    └────┤ · ╟──┤ ‡ ╟─────┤ >> ║  └─┤ >> ╟──┤ · ╟──┴─┐
 │ ╔═══════════╗ ┌───┐   ╘═╤═╝  ╘═╤═╝     ╘═╤══╝    ╘═╤══╝  ╘═╤═╝    │
 │ ║ 618970314 ╟─┘ ┌─┴─╖ ┌─┘      │         │       ┌─┴─╖     │      │
 │ ║ 790736054 ║ ┌─┤ ? ╟─┴─┐      │         ├───────┤ ▓ ╟─────┘      │
 │ ║ 357861634 ║ │ ╘═╤═╝   │      │     ┌───┘       ╘═╤═╝            │
 │ ╚═══════════╝ │ ┌─┴─╖ ┌─┴─╖  ┌─┴─╖ ┌─┴─╖         ┌─┴─╖     ╔═══╗  │
 │ ╔═══════════╗ │ │ ‼ ╟─┤ · ╟──┤ ? ╟─┤ · ╟─────────┤ · ╟──┐  ║ 1 ║  │
 │ ║ 618970314 ╟─┘ ╘═╤═╝ ╘═╤═╝  ╘═╤═╝ ╘═╤═╝         ╘═╤═╝  │  ╚═╤═╝  │
 │ ║ 790736054 ║     │   ┌─┴─╖  ┌─┴─╖   │   ╓┬──╖    ┌┴┐  ┌┴┐   │    │
 │ ║ 357861713 ║     └───┤ · ╟──┤ · ╟───┘ ┌─╫┘‡ ╟─┐  └┬┘  └┬┘   │    │
 │ ╚═══════════╝         ╘═╤═╝  ╘═╤═╝     │ ╙───╜ │ ┌─┴─╖  └────┤    │
 │ ╔════════════════╗    ┌─┴─╖  ┌─┴─╖     │ ┌───╖ │ │ ♯ ║       └────┘
 │ ║ 43980492383490 ╟────┤ ? ╟──┤ ? ╟───┐ └─┤ ‼ ╟─┘ ╘═╤═╝
 │ ╚════════════════╝    ╘═╤═╝  ╘═╤═╝   │   ╘═╤═╝    ┌┴┐
 │ ╔════════════════╗      │      │     │     │      └┬┘
 │ ║ 43980492383569 ╟──────┘            └──────┬──────┘
 │ ╚════════════════╝                          │
 └─────────────────────────────────────────────┘

Spiegazione

  • Il programma principale trova i primi due spazi e divide i numeri. Passa attraverso il terzo (il modello di tubo) e quindi chiama con il risultato, che restituisce l'output e il numero di giri effettuati. Quindi aggiunge il testo n turns were taken to get to the end., dove nè calcolato il numero di svolte .

  • prende un numero e inserisce un 0bit dopo ogni 1bit, assicurando così che non ci siano mai due tubi orizzontali in successione.

  • genera l'output chiamando successivamente e quindi spostando il giusto numero di bit dal modello di pipe fino a quando è zero. Inoltre, incrementa o decrementa il "tubo corrente" in modo appropriato.

  • genera una riga dell'output. In ogni iterazione, si sposta di un bit dal modello di pipe e quindi decide se eseguire l'output (+ 4 spazi), (+ 4 spazi) ├────┤, ╔════╝oppure ╚════╗; negli ultimi tre casi, rimuove il primo carattere dalla successiva iterazione. L'ultima iterazione genera │\r\no ║\r\ncome appropriato.

Esempio di output

Ingresso:

6 3 73497529294753

Produzione:

├────┤    │    ║    │    │    │
├────┤    │    ╚════╗    ├────┤
│    ├────┤    ╔════╝    ├────┤
│    ├────┤    ║    │    │    │
│    │    │    ║    │    ├────┤
│    │    │    ║    ├────┤    │
│    ├────┤    ╚════╗    ├────┤
│    ├────┤    │    ║    │    │
│    ├────┤    ╔════╝    │    │
├────┤    ╔════╝    │    ├────┤
│    │    ║    │    │    ├────┤

10 turns were taken to get to the end.

Ingresso:

3 0 65536

Produzione:

║    │    │    │
║    │    │    │
║    │    ├────┤

0 turns were taken to get to the end.

Ingresso:

3 7 75203587360867 (indice del tubo fuori portata)

Produzione:

Impossiburu.

3

Groovy, 311

t=System.in.text.collect{it.collect{it}};s=t.size();d=0;c=0;y=0;x=t[0].indexOf('|');println' '*x+'V'
while(y<s){t[y][x]=t[y][x]=='|'?':':'='
if(d){x+=d}else y++
if(y<s)if(d){if(t[y][x]=='|'){d=0;c++}}else if(t[y][x+1]=='-'){d=1;c++} else if(t[y][x-1]=='-'){d=-1;c++}}
t.each{println it.join()}println' '*x+'^'+c
  • riga 1: imposta e trova prima |
  • riga 2: sostituzione dello swap: o =
  • riga 3: sposta x / y alla posizione successiva (d = 0 = giù, d = -1 = sinistra, d = 1 = destra)
  • linea 4: trova la direzione successiva
  • riga 5: stampare i risultati

Qui è formattato:

t=System.in.text.split('\n').collect{it.collect{it}}; s=t.size()
d=0; c=0; y=0; x=t[0].indexOf('|')
println ' '*x + 'V'
while (y<s) { 
    t[y][x] = t[y][x] == '|' ? ':' : '='
    if (d) {x += d} else y++
    if (y<s) 
        if (d) {if (t[y][x]=='|') {d = 0; c++}} 
        else if(t[y][x+1]=='-') {d = 1; c++}
        else if(t[y][x-1]=='-') {d = -1; c++}
}
t.each {println it.join()}
println ' '*x + '^'+c

Uscita dal campione:

V
:       |       |-------|  
:=======:       |-------|  
|       :=======:       |  
|-------|-------:=======:  
|       |-------|       :  
|-------|       :=======:  
|-------|       :=======:  
|       |-------|       :
                        ^10

Altro output:

V
:       |       |-------|       |
:=======:       |-------|       |
|       :=======:       |-------|  
|-------|-------:=======:       |
|       |-------|       :=======:
|-------|       |-------|       :
|-------|       |-------|       :
|       |-------|       :=======:
|       |-------|       :       |
|       |       :=======:       |
|-------|       :       |       |
|       :=======:       |       |
|       :       |-------|       |
|       :=======:       |       |
                ^16

(So ​​di aver fatto code-golf invece di popolarità, ma questo è solo il mio stile)


2

JavaScript

La tela HTML ascolta gli eventi clic e trova la fila di pipe più vicina e la utilizza per il punto iniziale. L'output viene disegnato nell'area di disegno e c'è anche un'area di testo contenente l'output ASCII definito dall'OP.

L'algoritmo assicurerà che non ci siano mai due tubi orizzontali di collegamento. A parte tale restrizione, nelle variabili iniziali viene definita una probabilità che viene utilizzata per determinare casualmente se si debba verificare o meno un tubo orizzontale.

JSFIDDLE

<html>
<head>
<script type="text/javascript">
var     WIDTH       = 20,
        HEIGHT      = 15,
        JUNCTIONS   = [],
        PROBABILITY = 0.2,
        COLOR1      = '#00DD00',
        COLOR2      = '#DD0000',
        RADIUS      = 4,
        SPACING     = 20,
        turns       = 0,
        pipe        = 10,
        canvas,
        context;

function Junction( x, y ){
    this.x = x;
    this.y = y;
    this.l = null;
    this.r = null;

    if ( y == 0 )
        JUNCTIONS[x] = [];

    JUNCTIONS[x][y] = this;

    var l = this.left();
    if ( x > 0 && l.l == null && Math.random() <= PROBABILITY )
    {
        this.l = l;
        l.r = this;
    }
}

Junction.prototype.left = function(){
    return this.x == 0?null:JUNCTIONS[this.x-1][this.y];
}
Junction.prototype.right= function(){
    return this.x == WIDTH-1?null:JUNCTIONS[this.x+1][this.y];
}
Junction.prototype.down = function(){
    return this.y == HEIGHT-1?null:JUNCTIONS[this.x][this.y+1];
}
Junction.prototype.reset = function(){
    this.entry = null;
    this.exit = null;
}

Junction.prototype.followPipe = function( prev ){
    this.entry = prev;
    if ( prev === this.l || prev === this.r ) {
        this.exit = this.down() || true;
        turns++;
    } else if ( this.l !== null ) {
        this.exit = this.l;
        turns++;
    } else if ( this.r !== null ) {
        this.exit = this.r;
        turns++;
    } else
        this.exit = this.down() || true;
    console.log( this.exit );
    if ( this.exit !== true )
        this.exit.followPipe( this );
}

Junction.prototype.toString = function(){
    if ( this.entry === null ){
        if ( this.r === null )  return '|  ';
                                        return '|--';
    } else {
        if ( this.r === null )  return ':  ';
                                        return ':==';
    }
}

function init(){
    for ( var x = 0; x < WIDTH; ++x )
        for ( var y = 0; y < HEIGHT; ++y )
            new Junction( x, y );

    canvas  = document.getElementById('canvas');
    context = canvas.getContext('2d');

    canvas.addEventListener('click', draw );

    draw();
}

function draw( evt ){
    for ( var x = 0; x < WIDTH; ++x )
        for ( var y = 0; y < HEIGHT; ++y )
            JUNCTIONS[x][y].reset();

    if ( evt ){ 
        pipe = Math.round((evt.clientX - canvas.getBoundingClientRect().left)/SPACING)-1;
        if ( pipe < 0 )     pipe = 0;
        if ( pipe >= WIDTH )    pipe = WIDTH - 1;
    }

    turns = 0;
    JUNCTIONS[pipe][0].followPipe( true );

    context.clearRect(0, 0, canvas.width, canvas.height);
    context.lineWidth = 2;

    for ( var y = 0; y < HEIGHT; ++y ) {
        for ( var x = 0; x < WIDTH; ++x ) {
            var j = JUNCTIONS[x][y];
                    e = j.entry;

            if ( j.r !== null ){
                context.beginPath();
                context.strokeStyle = e===null?COLOR1:COLOR2;
                context.moveTo(SPACING*(x+1), SPACING*(y+1));
                context.lineTo(SPACING*(x+2), SPACING*(y+1));
                context.stroke();
            }

            if ( y > 0 ){
                context.beginPath();
                context.strokeStyle = (e===JUNCTIONS[x][y-1])?COLOR2:COLOR1;
                context.moveTo(SPACING*(x+1), SPACING*(y));
                context.lineTo(SPACING*(x+1), SPACING*(y+1));
                context.stroke();
            }
        }
    }

    for ( var y = 0; y < HEIGHT; ++y ) {
        for ( var x = 0; x < WIDTH; ++x ) {
            context.beginPath();
            context.arc(SPACING*(x+1), SPACING*(y+1), RADIUS, 0, 2*Math.PI, false);
            context.fillStyle = JUNCTIONS[x][y].entry===null?COLOR1:COLOR2;
            context.fill();
        }
    }

    var h = [];
    for ( var x = 0; x < WIDTH; ++x )
        h.push( x!=pipe?'   ':'v  ' );
    h.push( '\n' );
    for ( var y = 0; y < HEIGHT; ++y ) {
        for ( var x = 0; x < WIDTH; ++x )
            h.push( JUNCTIONS[x][y].toString() )
        h.push( '\n' );
    }
    for ( var x = 0; x < WIDTH; ++x )
        h.push( JUNCTIONS[x][HEIGHT-1].exit!==true?'   ':'^  ' );
    h.push( '\n' );
    h.push( turns + ' turns were taken to get to the end.' );
    document.getElementById( 'output' ).value = h.join( '' );
}

window.onload   = init;
</script>
</head>
<body>
<p>Click on a row to show the path</p>
<canvas id="canvas" width="450" height="350"></canvas>
<textarea id="output" style="width:100%; height:24em;"></textarea>
</body>
</html>

Produzione

http://imageshack.com/a/img600/9241/94wh.png

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.