Immagini con tutti i colori


433

Simile alle immagini su allrgb.com , crea immagini in cui ogni pixel ha un colore unico (nessun colore viene usato due volte e nessun colore manca).

Dai un programma che genera tale immagine, insieme a uno screenshot o un file dell'output (carica come PNG).

  • Crea l'immagine puramente algoritmicamente.
  • L'immagine deve essere 256 × 128 (o griglia che può essere schermata e salvata a 256 × 128)
  • Usa tutti i colori a 15 bit *
  • Nessun input esterno consentito (anche nessuna query web, URL o database)
  • Nessuna immagine incorporata consentita (il codice sorgente che è un'immagine va bene, ad esempio Piet )
  • Il dithering è permesso
  • Questo non è un contest di codici brevi, anche se potrebbe farti guadagnare voti.
  • Se sei davvero pronto per una sfida, esegui 512 × 512, 2048 × 1024 o 4096 × 4096 (con incrementi di 3 bit).

Il punteggio è per voto. Vota le immagini più belle realizzate con il codice più elegante e / o algoritmo interessante.

Gli algoritmi in due passaggi, in cui prima generi una bella immagine e poi adatti tutti i pixel a uno dei colori disponibili, sono ovviamente ammessi, ma non ti faranno guadagnare punti eleganza.

* I colori a 15 bit sono i 32768 colori che possono essere creati mescolando 32 rossi, 32 verdi e 32 blu, tutti con passi equidistanti e intervalli uguali. Esempio: nelle immagini a 24 bit (8 bit per canale), l'intervallo per canale è 0..255 (o 0..224), quindi dividerlo in 32 tonalità equidistanti.

Per essere molto chiari, l'array di pixel dell'immagine dovrebbe essere una permutazione, poiché tutte le possibili immagini hanno gli stessi colori, solo in posizioni di pixel differenti. Darò una permutazione banale qui, che non è affatto bella:

Java 7

import java.awt.image.BufferedImage;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import javax.imageio.ImageIO;

public class FifteenBitColors {
    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(256, 128, BufferedImage.TYPE_INT_RGB);

        // Generate algorithmically.
        for (int i = 0; i < 32768; i++) {
            int x = i & 255;
            int y = i / 256;
            int r = i << 3 & 0xF8;
            int g = i >> 2 & 0xF8;
            int b = i >> 7 & 0xF8;
            img.setRGB(x, y, (r << 8 | g) << 8 | b);
        }

        // Save.
        try (OutputStream out = new BufferedOutputStream(new FileOutputStream("RGB15.png"))) {
            ImageIO.write(img, "png", out);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

inserisci qui la descrizione dell'immagine

Vincitore

Perché i 7 giorni sono finiti, sto dichiarando un vincitore

Tuttavia, non pensare affatto che sia finita. Io e tutti i lettori, accolgo sempre con favore disegni più fantastici. Non smettere di creare.

Vincitore: fejesjoco con 231 voti


8
Quando dici "Il dithering è permesso", cosa intendi? È un'eccezione alla regola "ogni pixel è un colore unico"? In caso contrario, cosa stai permettendo che era altrimenti proibito?
Peter Taylor,

1
Significa che puoi posizionare i colori in un motivo, quindi, se visti con l'occhio, si fondono in un colore diverso. Ad esempio, vedi l'immagine "chiaramente tutto RGB" sulla pagina allRGB, e molti altri lì.
Mark Jeronimus,

8
In realtà trovo che il tuo banale esempio di permutazione sia abbastanza piacevole per gli occhi.
Jason C,

2
@ Zom-B Man, mi piace moltissimo questo post. Grazie!
Jason C,

7
Bellissimi risultati / risposte!
Ethan,

Risposte:


534

C #

Metto un pixel casuale nel mezzo, quindi inizio a posizionare pixel casuali in un quartiere che assomiglia di più a loro. Sono supportate due modalità: con una selezione minima, viene considerato solo un pixel adiacente alla volta; con una selezione media, tutti (1..8) sono mediati. La selezione minima è piuttosto rumorosa, la selezione media è ovviamente più sfocata, ma in realtà entrambi sembrano quadri. Dopo alcune modifiche, ecco la versione corrente, in qualche modo ottimizzata (usa persino l'elaborazione parallela!):

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Drawing;
using System.Drawing.Imaging;
using System.Diagnostics;
using System.IO;

class Program
{
    // algorithm settings, feel free to mess with it
    const bool AVERAGE = false;
    const int NUMCOLORS = 32;
    const int WIDTH = 256;
    const int HEIGHT = 128;
    const int STARTX = 128;
    const int STARTY = 64;

    // represent a coordinate
    struct XY
    {
        public int x, y;
        public XY(int x, int y)
        {
            this.x = x;
            this.y = y;
        }
        public override int GetHashCode()
        {
            return x ^ y;
        }
        public override bool Equals(object obj)
        {
            var that = (XY)obj;
            return this.x == that.x && this.y == that.y;
        }
    }

    // gets the difference between two colors
    static int coldiff(Color c1, Color c2)
    {
        var r = c1.R - c2.R;
        var g = c1.G - c2.G;
        var b = c1.B - c2.B;
        return r * r + g * g + b * b;
    }

    // gets the neighbors (3..8) of the given coordinate
    static List<XY> getneighbors(XY xy)
    {
        var ret = new List<XY>(8);
        for (var dy = -1; dy <= 1; dy++)
        {
            if (xy.y + dy == -1 || xy.y + dy == HEIGHT)
                continue;
            for (var dx = -1; dx <= 1; dx++)
            {
                if (xy.x + dx == -1 || xy.x + dx == WIDTH)
                    continue;
                ret.Add(new XY(xy.x + dx, xy.y + dy));
            }
        }
        return ret;
    }

    // calculates how well a color fits at the given coordinates
    static int calcdiff(Color[,] pixels, XY xy, Color c)
    {
        // get the diffs for each neighbor separately
        var diffs = new List<int>(8);
        foreach (var nxy in getneighbors(xy))
        {
            var nc = pixels[nxy.y, nxy.x];
            if (!nc.IsEmpty)
                diffs.Add(coldiff(nc, c));
        }

        // average or minimum selection
        if (AVERAGE)
            return (int)diffs.Average();
        else
            return diffs.Min();
    }

    static void Main(string[] args)
    {
        // create every color once and randomize the order
        var colors = new List<Color>();
        for (var r = 0; r < NUMCOLORS; r++)
            for (var g = 0; g < NUMCOLORS; g++)
                for (var b = 0; b < NUMCOLORS; b++)
                    colors.Add(Color.FromArgb(r * 255 / (NUMCOLORS - 1), g * 255 / (NUMCOLORS - 1), b * 255 / (NUMCOLORS - 1)));
        var rnd = new Random();
        colors.Sort(new Comparison<Color>((c1, c2) => rnd.Next(3) - 1));

        // temporary place where we work (faster than all that many GetPixel calls)
        var pixels = new Color[HEIGHT, WIDTH];
        Trace.Assert(pixels.Length == colors.Count);

        // constantly changing list of available coordinates (empty pixels which have non-empty neighbors)
        var available = new HashSet<XY>();

        // calculate the checkpoints in advance
        var checkpoints = Enumerable.Range(1, 10).ToDictionary(i => i * colors.Count / 10 - 1, i => i - 1);

        // loop through all colors that we want to place
        for (var i = 0; i < colors.Count; i++)
        {
            if (i % 256 == 0)
                Console.WriteLine("{0:P}, queue size {1}", (double)i / WIDTH / HEIGHT, available.Count);

            XY bestxy;
            if (available.Count == 0)
            {
                // use the starting point
                bestxy = new XY(STARTX, STARTY);
            }
            else
            {
                // find the best place from the list of available coordinates
                // uses parallel processing, this is the most expensive step
                bestxy = available.AsParallel().OrderBy(xy => calcdiff(pixels, xy, colors[i])).First();
            }

            // put the pixel where it belongs
            Trace.Assert(pixels[bestxy.y, bestxy.x].IsEmpty);
            pixels[bestxy.y, bestxy.x] = colors[i];

            // adjust the available list
            available.Remove(bestxy);
            foreach (var nxy in getneighbors(bestxy))
                if (pixels[nxy.y, nxy.x].IsEmpty)
                    available.Add(nxy);

            // save a checkpoint
            int chkidx;
            if (checkpoints.TryGetValue(i, out chkidx))
            {
                var img = new Bitmap(WIDTH, HEIGHT, PixelFormat.Format24bppRgb);
                for (var y = 0; y < HEIGHT; y++)
                {
                    for (var x = 0; x < WIDTH; x++)
                    {
                        img.SetPixel(x, y, pixels[y, x]);
                    }
                }
                img.Save("result" + chkidx + ".png");
            }
        }

        Trace.Assert(available.Count == 0);
    }
}

256x128 pixel, a partire dal centro, selezione minima:

256x128 pixel, a partire dall'angolo in alto a sinistra, selezione minima:

256x128 pixel, a partire dal centro, selezione media:

Ecco due animazioni a 10 fotogrammi che mostrano come funziona la selezione minima e media (complimenti al formato gif per poterlo visualizzare solo con 256 colori):

La modalità di selezione mimimum cresce con un piccolo fronte d'onda, come un blob, riempiendo tutti i pixel mentre procede. Nella modalità media, tuttavia, quando due rami di colore diverso iniziano a crescere uno accanto all'altro, ci sarà un piccolo spazio nero perché nulla sarà abbastanza vicino a due colori diversi. A causa di queste lacune, il fronte d'onda sarà un ordine di grandezza più grande, quindi l'algoritmo sarà molto più lento. Ma è bello perché sembra un corallo in crescita. Se abbandonassi la modalità media, potrebbe essere resa un po 'più veloce perché ogni nuovo colore viene confrontato con ciascun pixel esistente circa 2-3 volte. Non vedo altri modi per ottimizzarlo, penso che sia abbastanza buono così com'è.

E la grande attrazione, ecco un rendering di 512x512 pixel, inizio centrale, selezione minima:

Non riesco proprio a smettere di giocare con questo! Nel codice sopra, i colori sono ordinati casualmente. Se non ordiniamo affatto, o ordiniamo per hue ( (c1, c2) => c1.GetHue().CompareTo(c2.GetHue())), otteniamo rispettivamente questi (sia inizio centrale che selezione minima):

Un'altra combinazione, in cui la forma di corallo è mantenuta fino alla fine: tonalità ordinata con selezione media, con un animgif a 30 fotogrammi:

AGGIORNAMENTO: È PRONTO !!!

Volevi hi-res, volevo hi-res, eri impaziente, dormivo a malapena. Ora sono entusiasta di annunciare che è finalmente pronta, la qualità della produzione. E lo sto rilasciando con un big bang, un fantastico video YouTube 1080p! Clicca qui per il video , rendiamolo virale per promuovere lo stile geek. Sto anche pubblicando cose sul mio blog su http://joco.name/ , ci sarà un post tecnico su tutti i dettagli interessanti, le ottimizzazioni, il modo in cui ho realizzato il video, ecc. E infine, sto condividendo la fonte codice sotto GPL. È diventato enorme, quindi un hosting adeguato è il posto migliore per questo, non modificherò più la parte precedente della mia risposta. Assicurati di compilare in modalità di rilascio! Il programma si adatta bene a molti core della CPU. Un rendering 4Kx4K richiede circa 2-3 GB di RAM.

Ora posso eseguire il rendering di immagini enormi in 5-10 ore. Ho già alcuni rendering 4Kx4K, li posterò più tardi. Il programma è molto avanzato, ci sono state innumerevoli ottimizzazioni. L'ho anche reso facile da usare in modo che chiunque possa usarlo facilmente, ha una bella riga di comando. Il programma è anche deterministicamente casuale, il che significa che è possibile utilizzare un seme casuale e genererà sempre la stessa immagine.

Ecco alcuni rendering di grandi dimensioni.

Il mio preferito 512:


(fonte: joco.name )

I 2048 che compaiono nel mio video :


(fonte: joco.name )


(fonte: joco.name )


(fonte: joco.name )


(fonte: joco.name )

I primi 4096 rendering (TODO: vengono caricati e il mio sito Web non è in grado di gestire il grande traffico, quindi vengono temporaneamente trasferiti):


(fonte: joco.name )


(fonte: joco.name )


(fonte: joco.name )


(fonte: joco.name )


25
Questo è fantastico!
Jaa-c,

5
Molto bello MrGreen Ora ne fai alcuni più grandi!
ossifrage schifoso

20
Sei un vero artista! :)
AL

10
Quanto costa una stampa?
primo

16
Sto lavorando su rendering enormi e un video 1080p. Ci vorranno ore o giorni. Spero che qualcuno sarà in grado di creare una stampa da un grande rendering. O anche una maglietta: codice da un lato, immagine dall'altro. Qualcuno può organizzarlo?
fejesjoco,

248

in lavorazione

Aggiornare! 4096x4096 immagini!

Ho unito il mio secondo post in questo combinando i due programmi insieme.

Una raccolta completa di immagini selezionate è disponibile qui, su Dropbox . (Nota: DropBox non può generare anteprime per le immagini 4096x4096; fai clic su di esse, quindi fai clic su "Download").

Se guardi solo uno sguardo a questo (piastrellabile)! Qui è ridimensionato (e molti altri di seguito), originale 2048x1024:

inserisci qui la descrizione dell'immagine

Questo programma funziona percorrendo percorsi da punti selezionati casualmente nel cubo di colore, quindi disegnandoli in percorsi selezionati casualmente nell'immagine. Ci sono molte possibilità. Le opzioni configurabili sono:

  • Lunghezza massima del percorso del cubo di colore.
  • Passaggio massimo per passare attraverso il cubo di colore (valori più grandi causano una varianza maggiore ma riducono al minimo il numero di piccoli percorsi verso la fine quando le cose si restringono).
  • Piastrellatura dell'immagine.
  • Esistono attualmente due modalità del percorso dell'immagine:
    • Modalità 1 (la modalità di questo post originale): trova un blocco di pixel non utilizzati nell'immagine e esegue il rendering su quel blocco. I blocchi possono essere posizionati casualmente o ordinati da sinistra a destra.
    • Modalità 2 (la modalità del mio secondo post che ho unito in questo): seleziona un punto di partenza casuale nell'immagine e cammina lungo un percorso attraverso pixel inutilizzati; può aggirare pixel usati. Opzioni per questa modalità:
      • Set di indicazioni per camminare (ortogonale, diagonale o entrambi).
      • Se cambiare o meno la direzione (attualmente in senso orario ma il codice è flessibile) dopo ogni passaggio o cambiare direzione solo quando si incontra un pixel occupato.
      • Opzione per mescolare l'ordine dei cambi di direzione (anziché in senso orario).

Funziona con tutte le dimensioni fino a 4096x4096.

Lo schizzo di elaborazione completo è disponibile qui: Tracer.zip

Ho incollato tutti i file nello stesso blocco di codice qui sotto solo per risparmiare spazio (anche tutti in un file, è ancora uno schizzo valido). Se si desidera utilizzare una delle preimpostazioni, modificare l'indice nell'assegnazione gPreset. Se lo esegui in Elaborazione, puoi premere rmentre è in esecuzione per generare una nuova immagine.

  • Aggiornamento 1: codice ottimizzato per tracciare i primi colori / pixel non utilizzati e non cercare su pixel noti; tempo di generazione 2048x1024 ridotto da 10-30 minuti a circa 15 secondi e 4096x4096 da 1-3 ore a circa 1 minuto. Sorgente drop box e sorgente sotto aggiornate.
  • Aggiornamento 2: corretto bug che impediva la generazione di immagini 4096x4096.
final int BITS = 5; // Set to 5, 6, 7, or 8!

// Preset (String name, int colorBits, int maxCubePath, int maxCubeStep, int imageMode, int imageOpts)
final Preset[] PRESETS = new Preset[] {
  // 0
  new Preset("flowers",      BITS, 8*32*32, 2, ImageRect.MODE2, ImageRect.ALL_CW | ImageRect.CHANGE_DIRS),
  new Preset("diamonds",     BITS, 2*32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS),
  new Preset("diamondtile",  BITS, 2*32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS | ImageRect.WRAP),
  new Preset("shards",       BITS, 2*32*32, 2, ImageRect.MODE2, ImageRect.ALL_CW | ImageRect.CHANGE_DIRS | ImageRect.SHUFFLE_DIRS),
  new Preset("bigdiamonds",  BITS,  100000, 6, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS),
  // 5
  new Preset("bigtile",      BITS,  100000, 6, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.CHANGE_DIRS | ImageRect.WRAP),
  new Preset("boxes",        BITS,   32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW),
  new Preset("giftwrap",     BITS,   32*32, 2, ImageRect.MODE2, ImageRect.ORTHO_CW | ImageRect.WRAP),
  new Preset("diagover",     BITS,   32*32, 2, ImageRect.MODE2, ImageRect.DIAG_CW),
  new Preset("boxfade",      BITS,   32*32, 2, ImageRect.MODE2, ImageRect.DIAG_CW | ImageRect.CHANGE_DIRS),
  // 10
  new Preset("randlimit",    BITS,     512, 2, ImageRect.MODE1, ImageRect.RANDOM_BLOCKS),
  new Preset("ordlimit",     BITS,      64, 2, ImageRect.MODE1, 0),
  new Preset("randtile",     BITS,    2048, 3, ImageRect.MODE1, ImageRect.RANDOM_BLOCKS | ImageRect.WRAP),
  new Preset("randnolimit",  BITS, 1000000, 1, ImageRect.MODE1, ImageRect.RANDOM_BLOCKS),
  new Preset("ordnolimit",   BITS, 1000000, 1, ImageRect.MODE1, 0)
};


PGraphics gFrameBuffer;
Preset gPreset = PRESETS[2];

void generate () {
  ColorCube cube = gPreset.createCube();
  ImageRect image = gPreset.createImage();
  gFrameBuffer = createGraphics(gPreset.getWidth(), gPreset.getHeight(), JAVA2D);
  gFrameBuffer.noSmooth();
  gFrameBuffer.beginDraw();
  while (!cube.isExhausted())
    image.drawPath(cube.nextPath(), gFrameBuffer);
  gFrameBuffer.endDraw();
  if (gPreset.getName() != null)
    gFrameBuffer.save(gPreset.getName() + "_" + gPreset.getCubeSize() + ".png");
  //image.verifyExhausted();
  //cube.verifyExhausted();
}

void setup () {
  size(gPreset.getDisplayWidth(), gPreset.getDisplayHeight());
  noSmooth();
  generate();
}

void keyPressed () {
  if (key == 'r' || key == 'R')
    generate();
}

boolean autogen = false;
int autop = 0;
int autob = 5;

void draw () {
  if (autogen) {
    gPreset = new Preset(PRESETS[autop], autob);
    generate();
    if ((++ autop) >= PRESETS.length) {
      autop = 0;
      if ((++ autob) > 8)
        autogen = false;
    }
  }
  if (gPreset.isWrapped()) {
    int hw = width/2;
    int hh = height/2;
    image(gFrameBuffer, 0, 0, hw, hh);
    image(gFrameBuffer, hw, 0, hw, hh);
    image(gFrameBuffer, 0, hh, hw, hh);
    image(gFrameBuffer, hw, hh, hw, hh);
  } else {
    image(gFrameBuffer, 0, 0, width, height);
  }
}

static class ColorStep {
  final int r, g, b;
  ColorStep (int rr, int gg, int bb) { r=rr; g=gg; b=bb; }
}

class ColorCube {

  final boolean[] used;
  final int size; 
  final int maxPathLength;
  final ArrayList<ColorStep> allowedSteps = new ArrayList<ColorStep>();

  int remaining;
  int pathr = -1, pathg, pathb;
  int firstUnused = 0;

  ColorCube (int size, int maxPathLength, int maxStep) {
    this.used = new boolean[size*size*size];
    this.remaining = size * size * size;
    this.size = size;
    this.maxPathLength = maxPathLength;
    for (int r = -maxStep; r <= maxStep; ++ r)
      for (int g = -maxStep; g <= maxStep; ++ g)
        for (int b = -maxStep; b <= maxStep; ++ b)
          if (r != 0 && g != 0 && b != 0)
            allowedSteps.add(new ColorStep(r, g, b));
  }

  boolean isExhausted () {
    println(remaining);
    return remaining <= 0;
  }

  boolean isUsed (int r, int g, int b) {
    if (r < 0 || r >= size || g < 0 || g >= size || b < 0 || b >= size)
      return true;
    else
      return used[(r*size+g)*size+b];
  }

  void setUsed (int r, int g, int b) {
    used[(r*size+g)*size+b] = true;
  }

  int nextColor () {

    if (pathr == -1) { // Need to start a new path.

      // Limit to 50 attempts at random picks; things get tight near end.
      for (int n = 0; n < 50 && pathr == -1; ++ n) {
        int r = (int)random(size);
        int g = (int)random(size);
        int b = (int)random(size);
        if (!isUsed(r, g, b)) {
          pathr = r;
          pathg = g;
          pathb = b;
        }
      }
      // If we didn't find one randomly, just search for one.
      if (pathr == -1) {
        final int sizesq = size*size;
        final int sizemask = size - 1;
        for (int rgb = firstUnused; rgb < size*size*size; ++ rgb) {
          pathr = (rgb/sizesq)&sizemask;//(rgb >> 10) & 31;
          pathg = (rgb/size)&sizemask;//(rgb >> 5) & 31;
          pathb = rgb&sizemask;//rgb & 31;
          if (!used[rgb]) {
            firstUnused = rgb;
            break;
          }
        }
      }

      assert(pathr != -1);

    } else { // Continue moving on existing path.

      // Find valid next path steps.
      ArrayList<ColorStep> possibleSteps = new ArrayList<ColorStep>();
      for (ColorStep step:allowedSteps)
        if (!isUsed(pathr+step.r, pathg+step.g, pathb+step.b))
          possibleSteps.add(step);

      // If there are none end this path.
      if (possibleSteps.isEmpty()) {
        pathr = -1;
        return -1;
      }

      // Otherwise pick a random step and move there.
      ColorStep s = possibleSteps.get((int)random(possibleSteps.size()));
      pathr += s.r;
      pathg += s.g;
      pathb += s.b;

    }

    setUsed(pathr, pathg, pathb);  
    return 0x00FFFFFF & color(pathr * (256/size), pathg * (256/size), pathb * (256/size));

  } 

  ArrayList<Integer> nextPath () {

    ArrayList<Integer> path = new ArrayList<Integer>(); 
    int rgb;

    while ((rgb = nextColor()) != -1) {
      path.add(0xFF000000 | rgb);
      if (path.size() >= maxPathLength) {
        pathr = -1;
        break;
      }
    }

    remaining -= path.size();

    //assert(!path.isEmpty());
    if (path.isEmpty()) {
      println("ERROR: empty path.");
      verifyExhausted();
    }
    return path;

  }

  void verifyExhausted () {
    final int sizesq = size*size;
    final int sizemask = size - 1;
    for (int rgb = 0; rgb < size*size*size; ++ rgb) {
      if (!used[rgb]) {
        int r = (rgb/sizesq)&sizemask;
        int g = (rgb/size)&sizemask;
        int b = rgb&sizemask;
        println("UNUSED COLOR: " + r + " " + g + " " + b);
      }
    }
    if (remaining != 0)
      println("REMAINING COLOR COUNT IS OFF: " + remaining);
  }

}


static class ImageStep {
  final int x;
  final int y;
  ImageStep (int xx, int yy) { x=xx; y=yy; }
}

static int nmod (int a, int b) {
  return (a % b + b) % b;
}

class ImageRect {

  // for mode 1:
  //   one of ORTHO_CW, DIAG_CW, ALL_CW
  //   or'd with flags CHANGE_DIRS
  static final int ORTHO_CW = 0;
  static final int DIAG_CW = 1;
  static final int ALL_CW = 2;
  static final int DIR_MASK = 0x03;
  static final int CHANGE_DIRS = (1<<5);
  static final int SHUFFLE_DIRS = (1<<6);

  // for mode 2:
  static final int RANDOM_BLOCKS = (1<<0);

  // for both modes:
  static final int WRAP = (1<<16);

  static final int MODE1 = 0;
  static final int MODE2 = 1;

  final boolean[] used;
  final int width;
  final int height;
  final boolean changeDir;
  final int drawMode;
  final boolean randomBlocks;
  final boolean wrap;
  final ArrayList<ImageStep> allowedSteps = new ArrayList<ImageStep>();

  // X/Y are tracked instead of index to preserve original unoptimized mode 1 behavior
  // which does column-major searches instead of row-major.
  int firstUnusedX = 0;
  int firstUnusedY = 0;

  ImageRect (int width, int height, int drawMode, int drawOpts) {
    boolean myRandomBlocks = false, myChangeDir = false;
    this.used = new boolean[width*height];
    this.width = width;
    this.height = height;
    this.drawMode = drawMode;
    this.wrap = (drawOpts & WRAP) != 0;
    if (drawMode == MODE1) {
      myRandomBlocks = (drawOpts & RANDOM_BLOCKS) != 0;
    } else if (drawMode == MODE2) {
      myChangeDir = (drawOpts & CHANGE_DIRS) != 0;
      switch (drawOpts & DIR_MASK) {
      case ORTHO_CW:
        allowedSteps.add(new ImageStep(1, 0));
        allowedSteps.add(new ImageStep(0, -1));
        allowedSteps.add(new ImageStep(-1, 0));
        allowedSteps.add(new ImageStep(0, 1));
        break;
      case DIAG_CW:
        allowedSteps.add(new ImageStep(1, -1));
        allowedSteps.add(new ImageStep(-1, -1));
        allowedSteps.add(new ImageStep(-1, 1));
        allowedSteps.add(new ImageStep(1, 1));
        break;
      case ALL_CW:
        allowedSteps.add(new ImageStep(1, 0));
        allowedSteps.add(new ImageStep(1, -1));
        allowedSteps.add(new ImageStep(0, -1));
        allowedSteps.add(new ImageStep(-1, -1));
        allowedSteps.add(new ImageStep(-1, 0));
        allowedSteps.add(new ImageStep(-1, 1));
        allowedSteps.add(new ImageStep(0, 1));
        allowedSteps.add(new ImageStep(1, 1));
        break;
      }
      if ((drawOpts & SHUFFLE_DIRS) != 0)
        java.util.Collections.shuffle(allowedSteps);
    }
    this.randomBlocks = myRandomBlocks;
    this.changeDir = myChangeDir;
  }

  boolean isUsed (int x, int y) {
    if (wrap) {
      x = nmod(x, width);
      y = nmod(y, height);
    }
    if (x < 0 || x >= width || y < 0 || y >= height)
      return true;
    else
      return used[y*width+x];
  }

  boolean isUsed (int x, int y, ImageStep d) {
    return isUsed(x + d.x, y + d.y);
  }

  void setUsed (int x, int y) {
    if (wrap) {
      x = nmod(x, width);
      y = nmod(y, height);
    }
    used[y*width+x] = true;
  }

  boolean isBlockFree (int x, int y, int w, int h) {
    for (int yy = y; yy < y + h; ++ yy)
      for (int xx = x; xx < x + w; ++ xx)
        if (isUsed(xx, yy))
          return false;
    return true;
  }

  void drawPath (ArrayList<Integer> path, PGraphics buffer) {
    if (drawMode == MODE1)
      drawPath1(path, buffer);
    else if (drawMode == MODE2)
      drawPath2(path, buffer);
  }

  void drawPath1 (ArrayList<Integer> path, PGraphics buffer) {

    int w = (int)(sqrt(path.size()) + 0.5);
    if (w < 1) w = 1; else if (w > width) w = width;
    int h = (path.size() + w - 1) / w; 
    int x = -1, y = -1;

    int woff = wrap ? 0 : (1 - w);
    int hoff = wrap ? 0 : (1 - h);

    // Try up to 50 times to find a random location for block.
    if (randomBlocks) {
      for (int n = 0; n < 50 && x == -1; ++ n) {
        int xx = (int)random(width + woff);
        int yy = (int)random(height + hoff);
        if (isBlockFree(xx, yy, w, h)) {
          x = xx;
          y = yy;
        }
      }
    }

    // If random choice failed just search for one.
    int starty = firstUnusedY;
    for (int xx = firstUnusedX; xx < width + woff && x == -1; ++ xx) {
      for (int yy = starty; yy < height + hoff && x == -1; ++ yy) {
        if (isBlockFree(xx, yy, w, h)) {
          firstUnusedX = x = xx;
          firstUnusedY = y = yy;
        }  
      }
      starty = 0;
    }

    if (x != -1) {
      for (int xx = x, pathn = 0; xx < x + w && pathn < path.size(); ++ xx)
        for (int yy = y; yy < y + h && pathn < path.size(); ++ yy, ++ pathn) {
          buffer.set(nmod(xx, width), nmod(yy, height), path.get(pathn));
          setUsed(xx, yy);
        }
    } else {
      for (int yy = 0, pathn = 0; yy < height && pathn < path.size(); ++ yy)
        for (int xx = 0; xx < width && pathn < path.size(); ++ xx)
          if (!isUsed(xx, yy)) {
            buffer.set(nmod(xx, width), nmod(yy, height), path.get(pathn));
            setUsed(xx, yy);
            ++ pathn;
          }
    }

  }

  void drawPath2 (ArrayList<Integer> path, PGraphics buffer) {

    int pathn = 0;

    while (pathn < path.size()) {

      int x = -1, y = -1;

      // pick a random location in the image (try up to 100 times before falling back on search)

      for (int n = 0; n < 100 && x == -1; ++ n) {
        int xx = (int)random(width);
        int yy = (int)random(height);
        if (!isUsed(xx, yy)) {
          x = xx;
          y = yy;
        }
      }  

      // original:
      //for (int yy = 0; yy < height && x == -1; ++ yy)
      //  for (int xx = 0; xx < width && x == -1; ++ xx)
      //    if (!isUsed(xx, yy)) {
      //      x = xx;
      //      y = yy;
      //    }
      // optimized:
      if (x == -1) {
        for (int n = firstUnusedY * width + firstUnusedX; n < used.length; ++ n) {
          if (!used[n]) {
            firstUnusedX = x = (n % width);
            firstUnusedY = y = (n / width);
            break;
          }     
        }
      }

      // start drawing

      int dir = 0;

      while (pathn < path.size()) {

        buffer.set(nmod(x, width), nmod(y, height), path.get(pathn ++));
        setUsed(x, y);

        int diro;
        for (diro = 0; diro < allowedSteps.size(); ++ diro) {
          int diri = (dir + diro) % allowedSteps.size();
          ImageStep step = allowedSteps.get(diri);
          if (!isUsed(x, y, step)) {
            dir = diri;
            x += step.x;
            y += step.y;
            break;
          }
        }

        if (diro == allowedSteps.size())
          break;

        if (changeDir) 
          ++ dir;

      }    

    }

  }

  void verifyExhausted () {
    for (int n = 0; n < used.length; ++ n)
      if (!used[n])
        println("UNUSED IMAGE PIXEL: " + (n%width) + " " + (n/width));
  }

}


class Preset {

  final String name;
  final int cubeSize;
  final int maxCubePath;
  final int maxCubeStep;
  final int imageWidth;
  final int imageHeight;
  final int imageMode;
  final int imageOpts;
  final int displayScale;

  Preset (Preset p, int colorBits) {
    this(p.name, colorBits, p.maxCubePath, p.maxCubeStep, p.imageMode, p.imageOpts);
  }

  Preset (String name, int colorBits, int maxCubePath, int maxCubeStep, int imageMode, int imageOpts) {
    final int csize[] = new int[]{ 32, 64, 128, 256 };
    final int iwidth[] = new int[]{ 256, 512, 2048, 4096 };
    final int iheight[] = new int[]{ 128, 512, 1024, 4096 };
    final int dscale[] = new int[]{ 2, 1, 1, 1 };
    this.name = name; 
    this.cubeSize = csize[colorBits - 5];
    this.maxCubePath = maxCubePath;
    this.maxCubeStep = maxCubeStep;
    this.imageWidth = iwidth[colorBits - 5];
    this.imageHeight = iheight[colorBits - 5];
    this.imageMode = imageMode;
    this.imageOpts = imageOpts;
    this.displayScale = dscale[colorBits - 5];
  }

  ColorCube createCube () {
    return new ColorCube(cubeSize, maxCubePath, maxCubeStep);
  }

  ImageRect createImage () {
    return new ImageRect(imageWidth, imageHeight, imageMode, imageOpts);
  }

  int getWidth () {
    return imageWidth;
  }

  int getHeight () {
    return imageHeight;
  }

  int getDisplayWidth () {
    return imageWidth * displayScale * (isWrapped() ? 2 : 1);
  }

  int getDisplayHeight () {
    return imageHeight * displayScale * (isWrapped() ? 2 : 1);
  }

  String getName () {
    return name;
  }

  int getCubeSize () {
    return cubeSize;
  }

  boolean isWrapped () {
    return (imageOpts & ImageRect.WRAP) != 0;
  }

}

Ecco un set completo di immagini 256x128 che mi piacciono:

Modalità 1:

Il mio preferito dal set originale (max_path_length = 512, path_step = 2, casuale, visualizzato 2x, collegamento 256x128 ):

inserisci qui la descrizione dell'immagine

Altri (a sinistra due ordinati, a destra due casuali, in alto due percorsi di lunghezza limitata, in basso due senza limiti):

ordlimit randlimit ordnolimit randnolimit

Questo può essere piastrellato:

randtile

Modalità 2:

quadri fiori boxfade diagover bigdiamonds boxes2 cocci

Questi possono essere piastrellati:

bigtile diamondtile giftwrap

Selezioni 512x512:

Diamanti piastrellabili, i miei preferiti dalla modalità 2; puoi vedere in questo come i percorsi percorrono oggetti esistenti:

inserisci qui la descrizione dell'immagine

Passo percorso più grande e lunghezza percorso max, piastrellabile:

inserisci qui la descrizione dell'immagine

Modalità casuale 1, piastrellabile:

inserisci qui la descrizione dell'immagine

Altre selezioni:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Tutti i rendering 512x512 sono disponibili nella cartella dropbox (* _64.png).

2048x1024 e 4096x4096:

Sono troppo grandi per essere incorporati e tutti gli host di immagini che ho trovato li riducono a 1600x1200. Attualmente sto eseguendo il rendering di un set di immagini 4096x4096, quindi presto ne saranno disponibili altre. Invece di includere tutti i link qui, vai a dare un'occhiata nella cartella dropbox (* _128.png e * _256.png, nota: quelli 4096x4096 sono troppo grandi per l'anteprima di dropbox, fai clic su "download"). Ecco alcuni dei miei preferiti, però:

Grandi diamanti piastrellabili 2048x1024 (lo stesso a cui ho collegato all'inizio di questo post)

2048x1024 diamanti (lo adoro!), Ridimensionati:

inserisci qui la descrizione dell'immagine

Diamanti piastrellabili grandi 4096x4096 (Finalmente! Fai clic su 'download' nel link Dropbox; è troppo grande per il loro anteprima), ridimensionato:

Grandi diamanti piastrellabili 4096x4096

4096x4096 modalità casuale 1 : inserisci qui la descrizione dell'immagine

4096x4096 un altro figo

Aggiornamento: il set di immagini preimpostate 2048x1024 è terminato e nel menu a discesa. Il set 4096x4096 dovrebbe essere eseguito entro un'ora.

Ce ne sono un sacco di buoni, sto facendo davvero fatica a scegliere quali pubblicare, quindi per favore controlla il link della cartella!


6
Mi ricorda le viste ravvicinate di alcuni minerali.
Morwenn,

3
Non fa parte del concorso, ma ho pensato che fosse un po 'figo ; Ho applicato una grande sfocatura gaussiana e il miglioramento del contrasto automatico a una delle foto in modalità casuale 1 in Photoshop e ha reso una sorta di piacevole sfondo del desktop-una sorta di cosa.
Jason C,

2
whoa, queste sono belle foto!
sevenseacat,

2
Mi ricorda le trame di Gustav Klimt.
Kim,

2
Sapevi che puoi inserire immagini hotlink in Dropbox? Basta copiare l'URL di download, rimuovere la dl=1e la token_hash=<something>parte e fare un link alla vostra immagine in questo modo: [![Alt text of my small preview image](https://i.stack.imgur.com/smallpreview.png)](https://dl.dropbox.com/linktoyourfullsiz‌​eimage.png). Un altro consiglio: puoi comprimere le tue immagini (ottengo buoni risultati con TruePNG ( Download )). Sono stato in grado di salvare il 28,1% delle dimensioni del file su questa immagine .
user2428118

219

Python con PIL

Questo si basa su un frattale newtoniano , in particolare per z → z 5 - 1 . Poiché ci sono cinque radici, e quindi cinque punti di convergenza, lo spazio colore disponibile viene suddiviso in cinque regioni, in base alla tonalità. I singoli punti vengono ordinati prima in base al numero di iterazioni richieste per raggiungere il loro punto di convergenza, quindi in base alla distanza a quel punto, con i valori precedenti assegnati a un colore più luminoso.

Aggiornamento: rendering di grandi dimensioni 4096x4096, ospitati su allrgb.com .

Originale (33.7 MB)

Un primo piano del centro (dimensioni effettive):

Un punto di vista diverso utilizzando questi valori:

xstart = 0
ystart = 0

xd = 1 / dim[0]
yd = 1 / dim[1]

Originale (32.2 MB)

E un altro che usa questi:

xstart = 0.5
ystart = 0.5

xd = 0.001 / dim[0]
yd = 0.001 / dim[1]

Originale (27.2 MB)


Animazione

Su richiesta, ho compilato un'animazione zoom.

Punto focale: ( 0,50051 , -0,50051 )
Fattore di zoom: 2 1/5

Il punto focale ha un valore leggermente strano, perché non volevo ingrandire un punto nero. Il fattore di zoom è scelto in modo tale da raddoppiare ogni 5 fotogrammi.

Un teaser 32x32:

Una versione 256x256 può essere vista qui:
http://www.pictureshack.org/images/66172_frac.gif (5.4MB)

Ci possono essere punti che ingrandiscono matematicamente "su se stessi", il che consentirebbe un'animazione infinita. Se riesco a identificarne qualcuno, li aggiungerò qui.


fonte

from __future__ import division
from PIL import Image, ImageDraw
from cmath import phase
from sys import maxint

dim  = (4096, 4096)
bits = 8

def RGBtoHSV(R, G, B):
  R /= 255
  G /= 255
  B /= 255

  cmin = min(R, G, B)
  cmax = max(R, G, B)
  dmax = cmax - cmin

  V = cmax

  if dmax == 0:
    H = 0
    S = 0

  else:
    S = dmax/cmax

    dR = ((cmax - R)/6 + dmax/2)/dmax
    dG = ((cmax - G)/6 + dmax/2)/dmax
    dB = ((cmax - B)/6 + dmax/2)/dmax

    if   R == cmax: H = (dB - dG)%1
    elif G == cmax: H = (1/3 + dR - dB)%1
    elif B == cmax: H = (2/3 + dG - dR)%1

  return (H, S, V)

cmax = (1<<bits)-1
cfac = 255/cmax

img  = Image.new('RGB', dim)
draw = ImageDraw.Draw(img)

xstart = -2
ystart = -2

xd = 4 / dim[0]
yd = 4 / dim[1]

tol = 1e-12

a = [[], [], [], [], []]

for x in range(dim[0]):
  print x, "\r",
  for y in range(dim[1]):
    z = d = complex(xstart + x*xd, ystart + y*yd)
    c = 0
    l = 1
    while abs(l-z) > tol and abs(z) > tol:
      l = z
      z -= (z**5-1)/(5*z**4)
      c += 1
    if z == 0: c = maxint
    p = int(phase(z))

    a[p] += (c,abs(d-z), x, y),

for i in range(5):
  a[i].sort(reverse = False)

pnum = [len(a[i]) for i in range(5)]
ptot = dim[0]*dim[1]

bounds = []
lbound = 0
for i in range(4):
  nbound = lbound + pnum[i]/ptot
  bounds += nbound,
  lbound = nbound

t = [[], [], [], [], []]
for i in range(ptot-1, -1, -1):
  r = (i>>bits*2)*cfac
  g = (cmax&i>>bits)*cfac
  b = (cmax&i)*cfac
  (h, s, v) = RGBtoHSV(r, g, b)
  h = (h+0.1)%1
  if   h < bounds[0] and len(t[0]) < pnum[0]: p=0
  elif h < bounds[1] and len(t[1]) < pnum[1]: p=1
  elif h < bounds[2] and len(t[2]) < pnum[2]: p=2
  elif h < bounds[3] and len(t[3]) < pnum[3]: p=3
  else: p=4
  t[p] += (int(r), int(g), int(b)),

for i in range(5):
  t[i].sort(key = lambda c: c[0]*2126 + c[1]*7152 + c[2]*722, reverse = True)

r = [0, 0, 0, 0, 0]
for p in range(5):
  for c,d,x,y in a[p]:
    draw.point((x,y), t[p][r[p]])
    r[p] += 1

img.save("out.png")

6
Finalmente un frattale :) Adoro quelli. Inoltre, quel verde a 144 gradi è il mio colore preferito (al contrario del verde puro a 120 gradi che è solo noioso).
Mark Jeronimus

2
Non so, in realtà mi piacciono le versioni di AllRGB; la necessità di utilizzare l'intero spazio di luminanza enfatizza bene i gradienti.
Ilmari Karonen,

2
+1 Finalmente alcuni buoni frattali! L'ultimo è il mio preferito. Dovresti fare uno zoom in video! (@Quincunx: Ho visto anche il tuo; ha avuto il mio voto dal primo giorno!)
Jason C

1
@JasonC Ho aggiunto un'animazione;)
primo

2
@primo So di essere in ritardo, ma volevo solo dire che queste immagini sono spettacolari.
Ashwin Gupta,

130

Ho avuto questa idea dall'algoritmo dell'utente fejesjoco e volevo giocare un po ', quindi ho iniziato a scrivere il mio algoritmo da zero.

Sto pubblicando questo perché sento che se riesco a fare qualcosa di meglio * del meglio di voi ragazzi, non credo che questa sfida sia ancora finita. Per fare un confronto, ci sono alcuni progetti straordinari su tutti i RGB che considero ben oltre il livello raggiunto qui e non ho idea di come abbiano fatto.

*) sarà comunque deciso con voti

Questo algoritmo:

  1. Inizia con un (pochi) seme (i), con i colori il più vicino possibile al nero.
  2. Mantenere un elenco di tutti i pixel non visitati e collegati a 8 a un punto visitato.
  3. Seleziona un punto ** casuale da quell'elenco
  4. Calcola il colore medio di tutti i pixel calcolati [Modifica ... in un quadrato 9x9 usando un kernel gaussiano] 8-connesso ad esso (questo è il motivo per cui sembra così liscio) Se non ne trovi nessuno, prendi il nero.
  5. in un cubo 3x3x3 attorno a questo colore, cerca un colore inutilizzato.
    • Quando vengono trovati più colori, prendi quello più scuro.
    • Quando vengono trovati più colori ugualmente scuri, prendine uno a caso.
    • Quando non viene trovato nulla, aggiorna l'intervallo di ricerca a 5x5x5, 7x7x7, ecc. Ripeti da 5.
  6. Traccia pixel, aggiorna l'elenco e ripeti da 3

Ho anche sperimentato diverse probabilità di scegliere i punti candidati in base al conteggio del numero di vicini visitati del pixel selezionato, ma ha solo rallentato l'algoritmo senza renderlo più bello. L'attuale algoritmo non utilizza le probabilità e sceglie un punto casuale dall'elenco. Questo fa sì che i punti con molti vicini si riempiano rapidamente, rendendolo solo una palla solida in crescita con un bordo sfocato. Ciò impedisce anche l'indisponibilità di colori vicini se le fessure dovessero essere riempite più avanti nel processo.

L'immagine è toroidale.

Giava

Scarica: com.digitalmodularlibreria

package demos;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.util.Arrays;

import com.digitalmodular.utilities.RandomFunctions;
import com.digitalmodular.utilities.gui.ImageFunctions;
import com.digitalmodular.utilities.swing.window.PixelImage;
import com.digitalmodular.utilities.swing.window.PixelWindow;

/**
 * @author jeronimus
 */
// Date 2014-02-28
public class AllColorDiffusion extends PixelWindow implements Runnable {
    private static final int    CHANNEL_BITS    = 7;

    public static void main(String[] args) {
        int bits = CHANNEL_BITS * 3;
        int heightBits = bits / 2;
        int widthBits = bits - heightBits;

        new AllColorDiffusion(CHANNEL_BITS, 1 << widthBits, 1 << heightBits);
    }

    private final int           width;
    private final int           height;
    private final int           channelBits;
    private final int           channelSize;

    private PixelImage          img;
    private javax.swing.Timer   timer;

    private boolean[]           colorCube;
    private long[]              foundColors;
    private boolean[]           queued;
    private int[]               queue;
    private int                 queuePointer    = 0;
    private int                 remaining;

    public AllColorDiffusion(int channelBits, int width, int height) {
        super(1024, 1024 * height / width);

        RandomFunctions.RND.setSeed(0);

        this.width = width;
        this.height = height;
        this.channelBits = channelBits;
        channelSize = 1 << channelBits;
    }

    @Override
    public void initialized() {
        img = new PixelImage(width, height);

        colorCube = new boolean[channelSize * channelSize * channelSize];
        foundColors = new long[channelSize * channelSize * channelSize];
        queued = new boolean[width * height];
        queue = new int[width * height];
        for (int i = 0; i < queue.length; i++)
            queue[i] = i;

        new Thread(this).start();
    }

    @Override
    public void resized() {}

    @Override
    public void run() {
        timer = new javax.swing.Timer(500, new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent e) {
                draw();
            }
        });

        while (true) {
            img.clear(0);
            init();
            render();
        }

        // System.exit(0);
    }

    private void init() {
        RandomFunctions.RND.setSeed(0);

        Arrays.fill(colorCube, false);
        Arrays.fill(queued, false);
        remaining = width * height;

        // Initial seeds (need to be the darkest colors, because of the darkest
        // neighbor color search algorithm.)
        setPixel(width / 2 + height / 2 * width, 0);
        remaining--;
    }

    private void render() {
        timer.start();

        for (; remaining > 0; remaining--) {
            int point = findPoint();
            int color = findColor(point);
            setPixel(point, color);
        }

        timer.stop();
        draw();

        try {
            ImageFunctions.savePNG(System.currentTimeMillis() + ".png", img.image);
        }
        catch (IOException e1) {
            e1.printStackTrace();
        }
    }

    void draw() {
        g.drawImage(img.image, 0, 0, getWidth(), getHeight(), 0, 0, width, height, null);
        repaintNow();
    }

    private int findPoint() {
        while (true) {
            // Time to reshuffle?
            if (queuePointer == 0) {
                for (int i = queue.length - 1; i > 0; i--) {
                    int j = RandomFunctions.RND.nextInt(i);
                    int temp = queue[i];
                    queue[i] = queue[j];
                    queue[j] = temp;
                    queuePointer = queue.length;
                }
            }

            if (queued[queue[--queuePointer]])
                return queue[queuePointer];
        }
    }

    private int findColor(int point) {
        int x = point & width - 1;
        int y = point / width;

        // Calculate the reference color as the average of all 8-connected
        // colors.
        int r = 0;
        int g = 0;
        int b = 0;
        int n = 0;
        for (int j = -1; j <= 1; j++) {
            for (int i = -1; i <= 1; i++) {
                point = (x + i & width - 1) + width * (y + j & height - 1);
                if (img.pixels[point] != 0) {
                    int pixel = img.pixels[point];

                    r += pixel >> 24 - channelBits & channelSize - 1;
                    g += pixel >> 16 - channelBits & channelSize - 1;
                    b += pixel >> 8 - channelBits & channelSize - 1;
                    n++;
                }
            }
        }
        r /= n;
        g /= n;
        b /= n;

        // Find a color that is preferably darker but not too far from the
        // original. This algorithm might fail to take some darker colors at the
        // start, and when the image is almost done the size will become really
        // huge because only bright reference pixels are being searched for.
        // This happens with a probability of 50% with 6 channelBits, and more
        // with higher channelBits values.
        //
        // Try incrementally larger distances from reference color.
        for (int size = 2; size <= channelSize; size *= 2) {
            n = 0;

            // Find all colors in a neighborhood from the reference color (-1 if
            // already taken).
            for (int ri = r - size; ri <= r + size; ri++) {
                if (ri < 0 || ri >= channelSize)
                    continue;
                int plane = ri * channelSize * channelSize;
                int dr = Math.abs(ri - r);
                for (int gi = g - size; gi <= g + size; gi++) {
                    if (gi < 0 || gi >= channelSize)
                        continue;
                    int slice = plane + gi * channelSize;
                    int drg = Math.max(dr, Math.abs(gi - g));
                    int mrg = Math.min(ri, gi);
                    for (int bi = b - size; bi <= b + size; bi++) {
                        if (bi < 0 || bi >= channelSize)
                            continue;
                        if (Math.max(drg, Math.abs(bi - b)) > size)
                            continue;
                        if (!colorCube[slice + bi])
                            foundColors[n++] = Math.min(mrg, bi) << channelBits * 3 | slice + bi;
                    }
                }
            }

            if (n > 0) {
                // Sort by distance from origin.
                Arrays.sort(foundColors, 0, n);

                // Find a random color amongst all colors equally distant from
                // the origin.
                int lowest = (int)(foundColors[0] >> channelBits * 3);
                for (int i = 1; i < n; i++) {
                    if (foundColors[i] >> channelBits * 3 > lowest) {
                        n = i;
                        break;
                    }
                }

                int nextInt = RandomFunctions.RND.nextInt(n);
                return (int)(foundColors[nextInt] & (1 << channelBits * 3) - 1);
            }
        }

        return -1;
    }

    private void setPixel(int point, int color) {
        int b = color & channelSize - 1;
        int g = color >> channelBits & channelSize - 1;
        int r = color >> channelBits * 2 & channelSize - 1;
        img.pixels[point] = 0xFF000000 | ((r << 8 | g) << 8 | b) << 8 - channelBits;

        colorCube[color] = true;

        int x = point & width - 1;
        int y = point / width;
        queued[point] = false;
        for (int j = -1; j <= 1; j++) {
            for (int i = -1; i <= 1; i++) {
                point = (x + i & width - 1) + width * (y + j & height - 1);
                if (img.pixels[point] == 0) {
                    queued[point] = true;
                }
            }
        }
    }
}
  • 512 × 512
  • 1 seme originale
  • 1 secondo

inserisci qui la descrizione dell'immagine

  • 2048 × 1024
  • leggermente piastrellato su desktop 1920 × 1080
  • 30 secondi
  • negativo in Photoshop

inserisci qui la descrizione dell'immagine

  • 2048 × 1024
  • 8 semi
  • 27 secondi

inserisci qui la descrizione dell'immagine

  • 512 × 512
  • 40 semi casuali
  • 6 secondi

inserisci qui la descrizione dell'immagine

  • 4096 × 4096
  • 1 seme
  • Le strisce diventano notevolmente più nitide (poiché sembrano che potrebbero tagliare un pesce nel sashimi)
  • Sembra che sia finito in 20 minuti, ma ... non è riuscito a finire per qualche motivo, quindi ora eseguo 7 istanze in parallelo durante la notte.

[Vedi sotto]

[Modifica]
** Ho scoperto che il mio metodo di scelta dei pixel non era del tutto casuale. Pensavo che avere una permutazione casuale dello spazio di ricerca fosse casuale e più veloce del vero casuale (perché un punto non verrà scelto due volte per caso. Tuttavia, in qualche modo, sostituendolo con un vero casuale, ottengo costantemente più chiazze di rumore nella mia immagine.

[codice versione 2 rimosso perché avevo superato il limite di 30.000 caratteri]

inserisci qui la descrizione dell'immagine

  • Aumentato il cubo di ricerca iniziale a 5x5x5

inserisci qui la descrizione dell'immagine

  • Ancora più grande, 9x9x9

inserisci qui la descrizione dell'immagine

  • Incidente 1. Disabilitato la permutazione in modo che lo spazio di ricerca sia sempre lineare.

inserisci qui la descrizione dell'immagine

  • Incidente 2. Ho provato una nuova tecnica di ricerca usando una coda di quindici. Devo ancora analizzarlo, ma ho pensato che valesse la pena condividerlo.

inserisci qui la descrizione dell'immagine

  • Scegli sempre tra X pixel inutilizzati dal centro
  • X varia da 0 a 8192 con incrementi di 256

L'immagine non può essere caricata: "Oops! Qualcosa di brutto è successo! Non sei tu, siamo noi. Questa è colpa nostra." L'immagine è troppo grande per imgur. Cercando altrove ...

inserisci qui la descrizione dell'immagine

Sperimentando un pacchetto di pianificazione ho trovato nella digitalmodularlibreria per determinare l'ordine in cui vengono gestiti i pixel (anziché la diffusione).

package demos;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.IOException;
import java.util.Arrays;

import com.digitalmodular.utilities.RandomFunctions;
import com.digitalmodular.utilities.gui.ImageFunctions;
import com.digitalmodular.utilities.gui.schedulers.ScheduledPoint;
import com.digitalmodular.utilities.gui.schedulers.Scheduler;
import com.digitalmodular.utilities.gui.schedulers.XorScheduler;
import com.digitalmodular.utilities.swing.window.PixelImage;
import com.digitalmodular.utilities.swing.window.PixelWindow;

/**
 * @author jeronimus
 */
// Date 2014-02-28
public class AllColorDiffusion3 extends PixelWindow implements Runnable {
    private static final int    CHANNEL_BITS    = 7;

    public static void main(String[] args) {

        int bits = CHANNEL_BITS * 3;
        int heightBits = bits / 2;
        int widthBits = bits - heightBits;

        new AllColorDiffusion3(CHANNEL_BITS, 1 << widthBits, 1 << heightBits);
    }

    private final int           width;
    private final int           height;
    private final int           channelBits;
    private final int           channelSize;

    private PixelImage          img;
    private javax.swing.Timer   timer;
    private Scheduler           scheduler   = new XorScheduler();

    private boolean[]           colorCube;
    private long[]              foundColors;

    public AllColorDiffusion3(int channelBits, int width, int height) {
        super(1024, 1024 * height / width);

        this.width = width;
        this.height = height;
        this.channelBits = channelBits;
        channelSize = 1 << channelBits;
    }

    @Override
    public void initialized() {
        img = new PixelImage(width, height);

        colorCube = new boolean[channelSize * channelSize * channelSize];
        foundColors = new long[channelSize * channelSize * channelSize];

        new Thread(this).start();
    }

    @Override
    public void resized() {}

    @Override
    public void run() {
        timer = new javax.swing.Timer(500, new ActionListener() {
            @Override
            public void actionPerformed(ActionEvent e) {
                draw();
            }
        });

        // for (double d = 0.2; d < 200; d *= 1.2)
        {
            img.clear(0);
            init(0);
            render();
        }

        // System.exit(0);
    }

    private void init(double param) {
        // RandomFunctions.RND.setSeed(0);

        Arrays.fill(colorCube, false);

        // scheduler = new SpiralScheduler(param);
        scheduler.init(width, height);
    }

    private void render() {
        timer.start();

        while (scheduler.getProgress() != 1) {
            int point = findPoint();
            int color = findColor(point);
            setPixel(point, color);
        }

        timer.stop();
        draw();

        try {
            ImageFunctions.savePNG(System.currentTimeMillis() + ".png", img.image);
        }
        catch (IOException e1) {
            e1.printStackTrace();
        }
    }

    void draw() {
        g.drawImage(img.image, 0, 0, getWidth(), getHeight(), 0, 0, width, height, null);
        repaintNow();
        setTitle(Double.toString(scheduler.getProgress()));
    }

    private int findPoint() {
        ScheduledPoint p = scheduler.poll();

        // try {
        // Thread.sleep(1);
        // }
        // catch (InterruptedException e) {
        // }

        return p.x + width * p.y;
    }

    private int findColor(int point) {
        // int z = 0;
        // for (int i = 0; i < colorCube.length; i++)
        // if (!colorCube[i])
        // System.out.println(i);

        int x = point & width - 1;
        int y = point / width;

        // Calculate the reference color as the average of all 8-connected
        // colors.
        int r = 0;
        int g = 0;
        int b = 0;
        int n = 0;
        for (int j = -3; j <= 3; j++) {
            for (int i = -3; i <= 3; i++) {
                point = (x + i & width - 1) + width * (y + j & height - 1);
                int f = (int)Math.round(10000 * Math.exp((i * i + j * j) * -0.4));
                if (img.pixels[point] != 0) {
                    int pixel = img.pixels[point];

                    r += (pixel >> 24 - channelBits & channelSize - 1) * f;
                    g += (pixel >> 16 - channelBits & channelSize - 1) * f;
                    b += (pixel >> 8 - channelBits & channelSize - 1) * f;
                    n += f;
                }
                // System.out.print(f + "\t");
            }
            // System.out.println();
        }
        if (n > 0) {
            r /= n;
            g /= n;
            b /= n;
        }

        // Find a color that is preferably darker but not too far from the
        // original. This algorithm might fail to take some darker colors at the
        // start, and when the image is almost done the size will become really
        // huge because only bright reference pixels are being searched for.
        // This happens with a probability of 50% with 6 channelBits, and more
        // with higher channelBits values.
        //
        // Try incrementally larger distances from reference color.
        for (int size = 2; size <= channelSize; size *= 2) {
            n = 0;

            // Find all colors in a neighborhood from the reference color (-1 if
            // already taken).
            for (int ri = r - size; ri <= r + size; ri++) {
                if (ri < 0 || ri >= channelSize)
                    continue;
                int plane = ri * channelSize * channelSize;
                int dr = Math.abs(ri - r);
                for (int gi = g - size; gi <= g + size; gi++) {
                    if (gi < 0 || gi >= channelSize)
                        continue;
                    int slice = plane + gi * channelSize;
                    int drg = Math.max(dr, Math.abs(gi - g));
                    // int mrg = Math.min(ri, gi);
                    long srg = ri * 299L + gi * 436L;
                    for (int bi = b - size; bi <= b + size; bi++) {
                        if (bi < 0 || bi >= channelSize)
                            continue;
                        if (Math.max(drg, Math.abs(bi - b)) > size)
                            continue;
                        if (!colorCube[slice + bi])
                            // foundColors[n++] = Math.min(mrg, bi) <<
                            // channelBits * 3 | slice + bi;
                            foundColors[n++] = srg + bi * 114L << channelBits * 3 | slice + bi;
                    }
                }
            }

            if (n > 0) {
                // Sort by distance from origin.
                Arrays.sort(foundColors, 0, n);

                // Find a random color amongst all colors equally distant from
                // the origin.
                int lowest = (int)(foundColors[0] >> channelBits * 3);
                for (int i = 1; i < n; i++) {
                    if (foundColors[i] >> channelBits * 3 > lowest) {
                        n = i;
                        break;
                    }
                }

                int nextInt = RandomFunctions.RND.nextInt(n);
                return (int)(foundColors[nextInt] & (1 << channelBits * 3) - 1);
            }
        }

        return -1;
    }

    private void setPixel(int point, int color) {
        int b = color & channelSize - 1;
        int g = color >> channelBits & channelSize - 1;
        int r = color >> channelBits * 2 & channelSize - 1;
        img.pixels[point] = 0xFF000000 | ((r << 8 | g) << 8 | b) << 8 - channelBits;

        colorCube[color] = true;
    }
}
  • Angolare (8)

inserisci qui la descrizione dell'immagine

  • Angolare (64)

inserisci qui la descrizione dell'immagine

  • CRT

inserisci qui la descrizione dell'immagine

  • oscillare

inserisci qui la descrizione dell'immagine

  • Fiore (5, X), dove X varia da 0,5 a 20 a passi di X = X × 1,2

inserisci qui la descrizione dell'immagine

  • mod

inserisci qui la descrizione dell'immagine

  • Pitagora

inserisci qui la descrizione dell'immagine

  • Radiale

inserisci qui la descrizione dell'immagine

  • Casuale

inserisci qui la descrizione dell'immagine

  • scanline

inserisci qui la descrizione dell'immagine

  • Spirale (X), dove X varia da 0,1 a 200 con incrementi di X = X × 1,2
  • Puoi vederlo tra Radiale e Angolare (5)

inserisci qui la descrizione dell'immagine

  • Diviso

inserisci qui la descrizione dell'immagine

  • SquareSpiral

inserisci qui la descrizione dell'immagine

  • XOR

inserisci qui la descrizione dell'immagine

Nuovo cibo per gli occhi

  • Effetto della selezione del colore di max(r, g, b)

inserisci qui la descrizione dell'immagine

  • Effetto della selezione del colore di min(r, g, b)
  • Si noti che questo ha esattamente le stesse caratteristiche / dettagli di quello sopra, solo con colori diversi! (stesso seme casuale)

inserisci qui la descrizione dell'immagine

  • Effetto della selezione del colore di max(r, min(g, b))

inserisci qui la descrizione dell'immagine

  • Effetto della selezione del colore in base al valore di grigio 299*r + 436*g + 114*b

inserisci qui la descrizione dell'immagine

  • Effetto della selezione del colore di 1*r + 10*g + 100*b

inserisci qui la descrizione dell'immagine

  • Effetto della selezione del colore di 100*r + 10*g + 1*b

inserisci qui la descrizione dell'immagine

  • Incidenti felici quando 299*r + 436*g + 114*btraboccano in un numero intero a 32 bit

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

  • Variante 3, con valore di grigio e scheduler radiale

inserisci qui la descrizione dell'immagine

  • Ho dimenticato come l'ho creato

inserisci qui la descrizione dell'immagine

  • Lo Scheduler CRT aveva anche un felice bug di overflow di interi (aggiornato lo ZIP), questo lo faceva iniziare a metà strada, con immagini 512 × 512, anziché al centro. Ecco come dovrebbe apparire:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

  • InverseSpiralScheduler(64) (nuovo)

inserisci qui la descrizione dell'immagine

  • Un altro XOR

inserisci qui la descrizione dell'immagine

  • Primo rendering 4096 eseguito correttamente dopo la correzione. Penso che questa fosse la versione 3 SpiralScheduler(1)o qualcosa del genere

inserisci qui la descrizione dell'immagine (50MB !!)

  • Versione 1 4096, ma ho accidentalmente lasciato attivo il criterio colore max()

inserisci qui la descrizione dell'immagine (50MB !!)

  • 4096, ora con min()
  • Si noti che questo ha esattamente le stesse caratteristiche / dettagli di quello sopra, solo con colori diversi! (stesso seme casuale)
  • Tempo: dimenticato di registrarlo, ma il timestamp del file è 3 minuti dopo l'immagine prima

inserisci qui la descrizione dell'immagine (50MB !!)


Freddo. La tua immagine finale è simile a una seconda idea che ho gettato in giro, anche se ho la sensazione che la mia non sarà così bella. A proposito, ce n'è uno simile su allrgb.com/diffusive .
Jason C

Doveva essere solo un teaser, ma l'ho modificato per paura di essere contrassegnato, cosa che apparentemente è accaduta :)
Mark Jeronimus

2
Anche gli incidenti sembrano belli :). Il cubo di colore sembra un'ottima idea e la tua velocità di rendering è sorprendente, rispetto alla mia. Alcuni disegni su allrgb hanno una buona descrizione, ad esempio allrgb.com/dla. Vorrei avere più tempo per fare più esperimenti, ci sono così tante possibilità ...
fejesjoco

Ho quasi dimenticato, ho appena caricato alcuni dei miei rendering di grandi dimensioni. Penso che uno di loro, il fumo arcobaleno / inchiostro rovesciato, sia meglio di qualsiasi cosa su allrgb :). Sono d'accordo, gli altri non sono così straordinari, ecco perché ho realizzato un video per farne qualcosa di più :).
fejesjoco,

Aggiunto il codice sorgente e il collegamento alla libreria Digisoft, in modo che tu possa effettivamente compilare il mio codice
Mark Jeronimus

72

C ++ con Qt

Vedo la tua versione:

inserisci qui la descrizione dell'immagine

usando la distribuzione normale per i colori:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

o prima ordinati per rosso / tonalità (con una deviazione minore):

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

o alcune altre distribuzioni:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Distribuzione di Cauchy (hsl / rosso):

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

ordinati per leggerezza (hsl):

inserisci qui la descrizione dell'immagine

codice sorgente aggiornato - produce la sesta immagine:

int main() {
    const int c = 256*128;
    std::vector<QRgb> data(c);
    QImage image(256, 128, QImage::Format_RGB32);

    std::default_random_engine gen;
    std::normal_distribution<float> dx(0, 2);
    std::normal_distribution<float> dy(0, 1);

    for(int i = 0; i < c; ++i) {
        data[i] = qRgb(i << 3 & 0xF8, i >> 2 & 0xF8, i >> 7 & 0xF8);
    }
    std::sort(data.begin(), data.end(), [] (QRgb a, QRgb b) -> bool {
        return QColor(a).hsvHue() < QColor(b).hsvHue();
    });

    int i = 0;
    while(true) {
        if(i % 10 == 0) { //no need on every iteration
            dx = std::normal_distribution<float>(0, 8 + 3 * i/1000.f);
            dy = std::normal_distribution<float>(0, 4 + 3 * i/1000.f);
        }
        int x = (int) dx(gen);
        int y = (int) dy(gen);
        if(x < 256 && x >= 0 && y >= 0 && y < 128) {
            if(!image.pixel(x, y)) {
                image.setPixel(x, y, data[i]);
                if(i % (c/100) == 1) {
                    std::cout << (int) (100.f*i/c) << "%\n";
                }
                if(++i == c) break;
            }
        }
    }
    image.save("tmp.png");
    return 0;
}

Ben fatto. Tuttavia, potrebbe non image.pixel(x, y) == 0fallire e sovrascrivere il primo pixel posizionato?
Mark Jeronimus,

@ Zom-B: può, ma poi l'ultimo sarà nero, quindi è all'interno delle regole ..
Jaa-c,

Nessun problema di regola però. Pensavo solo che potresti esserti perso. Potrebbe contare anche da 1 allora. Adoro i tuoi altri!
Mark Jeronimus,

@ Zom-B: grazie, potrei aggiungere qualche altro, mi piace un po ': P
Jaa-c,

Quello con due cerchi e quello sotto di esso sembrano un po 'una faccia da scimmia.
Jason C,

64

In Java:

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Collections;
import java.util.LinkedList;

import javax.imageio.ImageIO;

public class ImgColor {

    private static class Point {
        public int x, y;
        public color c;

        public Point(int x, int y, color c) {
            this.x = x;
            this.y = y;
            this.c = c;
        }
    }

    private static class color {
        char r, g, b;

        public color(int i, int j, int k) {
            r = (char) i;
            g = (char) j;
            b = (char) k;
        }
    }

    public static LinkedList<Point> listFromImg(String path) {
        LinkedList<Point> ret = new LinkedList<>();
        BufferedImage bi = null;
        try {
            bi = ImageIO.read(new File(path));
        } catch (IOException e) {
            e.printStackTrace();
        }
        for (int x = 0; x < 4096; x++) {
            for (int y = 0; y < 4096; y++) {
                Color c = new Color(bi.getRGB(x, y));
                ret.add(new Point(x, y, new color(c.getRed(), c.getGreen(), c.getBlue())));
            }
        }
        Collections.shuffle(ret);
        return ret;
    }

    public static LinkedList<color> allColors() {
        LinkedList<color> colors = new LinkedList<>();
        for (int r = 0; r < 256; r++) {
            for (int g = 0; g < 256; g++) {
                for (int b = 0; b < 256; b++) {
                    colors.add(new color(r, g, b));
                }
            }
        }
        Collections.shuffle(colors);
        return colors;
    }

    public static Double cDelta(color a, color b) {
        return Math.pow(a.r - b.r, 2) + Math.pow(a.g - b.g, 2) + Math.pow(a.b - b.b, 2);
    }

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        LinkedList<Point> orig = listFromImg(args[0]);
        LinkedList<color> toDo = allColors();

        Point p = null;
        while (orig.size() > 0 && (p = orig.pop()) != null) {
            color chosen = toDo.pop();
            for (int i = 0; i < Math.min(100, toDo.size()); i++) {
                color c = toDo.pop();
                if (cDelta(c, p.c) < cDelta(chosen, p.c)) {
                    toDo.add(chosen);
                    chosen = c;
                } else {
                    toDo.add(c);
                }
            }
            img.setRGB(p.x, p.y, new Color(chosen.r, chosen.g, chosen.b).getRGB());
        }
        try {
            ImageIO.write(img, "PNG", new File(args[1]));
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

}

e un'immagine di input:

lemure

Genero qualcosa del genere:

acidLemur

versione non compressa qui: https://www.mediafire.com/?7g3fetvaqhoqgh8

Il mio computer impiega circa 30 minuti a fare un'immagine 4096 ^ 2, il che è un enorme miglioramento rispetto ai 32 giorni che la mia prima implementazione avrebbe richiesto.


1
Ahia; 32 giorni non sembravano divertenti ..... l'algoritmo medio in risposta fejesjocos su 4k prima che l'ottimizzazione avrebbe richiesto probabilmente più mesi
masterX244

5
Adoro le sue sopracciglia punk!
Level River St

45

Java con BubbleSort

(di solito a Bubblesort non è piaciuto così tanto, ma per questa sfida ha finalmente avuto un uso :) ha generato una linea con tutti gli elementi a 4096 passi l'uno e poi mescolato; l'ordinamento è passato attraverso e ognuno ha ottenuto 1 aggiunto al proprio valore durante l'ordinamento in modo da ottenere i valori ordinati e tutti i colori

Aggiornato il Sourcecode per rimuovere quelle grandi strisce
(serviva un po 'di magia bit a bit: P)

class Pix
{
    public static void main(String[] devnull) throws Exception
    {
        int chbits=8;
        int colorsperchannel=1<<chbits;
        int xsize=4096,ysize=4096;
        System.out.println(colorsperchannel);
        int[] x = new int[xsize*ysize];//colorstream

        BufferedImage i = new BufferedImage(xsize,ysize, BufferedImage.TYPE_INT_RGB);
        List<Integer> temp = new ArrayList<>();
        for (int j = 0; j < 4096; j++)
        {
            temp.add(4096*j);
        }
        int[] temp2=new int[4096];

        Collections.shuffle(temp,new Random(9263));//intended :P looked for good one
        for (int j = 0; j < temp.size(); j++)
        {
            temp2[j]=(int)(temp.get(j));
        }
        x = spezbubblesort(temp2, 4096);
        int b=-1;
        int b2=-1;
        for (int j = 0; j < x.length; j++)
        {
            if(j%(4096*16)==0)b++;
            if(j%(4096)==0)b2++;
            int h=j/xsize;
            int w=j%xsize;
            i.setRGB(w, h, x[j]&0xFFF000|(b|(b2%16)<<8));
            x[j]=x[j]&0xFFF000|(b|(b2%16)<<8);
        }  

        //validator sorting and checking that all values only have 1 difference
        Arrays.sort(x);
        int diff=0;
        for (int j = 1; j < x.length; j++)
        {
            int ndiff=x[j]-x[j-1];
            if(ndiff!=diff)
            {
                System.out.println(ndiff);
            }
            diff=ndiff;

        }
        OutputStream out = new BufferedOutputStream(new FileOutputStream("RGB24.bmp"));
        ImageIO.write(i, "bmp", out);

    }
    public static int[] spezbubblesort(int[] vals,int lines)
    {
        int[] retval=new int[vals.length*lines];
        for (int i = 0; i < lines; i++)
        {
            retval[(i<<12)]=vals[0];
            for (int j = 1; j < vals.length; j++)
            {
                retval[(i<<12)+j]=vals[j];
                if(vals[j]<vals[j-1])
                {

                    int temp=vals[j-1];
                    vals[j-1]=vals[j];
                    vals[j]=temp;
                }
                vals[j-1]=vals[j-1]+1;
            }
            vals[lines-1]=vals[lines-1]+1;
        }
        return retval;
    }
}

Risultato:

Vecchia versione

class Pix
{
    public static void main(String[] devnull) throws Exception
    {
        int[] x = new int[4096*4096];//colorstream
        int idx=0;
        BufferedImage i = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        //GENCODE
        List<Integer> temp = new ArrayList<>();
        for (int j = 0; j < 4096; j++)
        {
            temp.add(4096*j);
        }
        int[] temp2=new int[4096];

        Collections.shuffle(temp,new Random(9263));//intended :P looked for good one
        for (int j = 0; j < temp.size(); j++)
        {
            temp2[j]=(int)(temp.get(j));
        }
        x = spezbubblesort(temp2, 4096);
        for (int j = 0; j < x.length; j++)
        {
            int h=j/4096;
            int w=j%4096;
            i.setRGB(w, h, x[j]);
        }
        //validator sorting and checking that all values only have 1 difference
        Arrays.sort(x);
        int diff=0;
        for (int j = 1; j < x.length; j++)
        {
            int ndiff=x[j]-x[j-1];
            if(ndiff!=diff)
            {
                System.out.println(ndiff);
            }
            diff=ndiff;

        }
        OutputStream out = new BufferedOutputStream(new FileOutputStream("RGB24.bmp"));
        ImageIO.write(i, "bmp", out);
    }
    public static int[] spezbubblesort(int[] vals,int lines)
    {
        int[] retval=new int[vals.length*lines];
        for (int i = 0; i < lines; i++)
        {
            retval[(i<<12)]=vals[0];
            for (int j = 1; j < vals.length; j++)
            {
                retval[(i<<12)+j]=vals[j];
                if(vals[j]<vals[j-1])
                {

                    int temp=vals[j-1];
                    vals[j-1]=vals[j];
                    vals[j]=temp;
                }
                vals[j-1]=vals[j-1]+1;
            }
            vals[lines-1]=vals[lines-1]+1;
        }
        return retval;
    }
}

anteprima di output


Esiste già una versione di QuickSort nella pagina allRGB.
Mark Jeronimus,

1
@ Zom-B Quicksort è un algoritmo diverso da Bubblesort
masterX244,

43

C

Crea un vortice, per motivi che non capisco, con frame pari e dispari contenenti vortici completamente diversi.

Questa è un'anteprima dei primi 50 fotogrammi dispari:

anteprima vortice

Immagine di esempio convertita da PPM in demo completa copertura del colore:

immagine di esempio

Più tardi, quando tutto è sfumato nel grigio, puoi ancora vederlo girare: sequenza più lunga .

Codice come segue. Per eseguire, includere il numero di frame, ad esempio:

./vortex 35 > 35.ppm

L'ho usato per ottenere una GIF animata:

converti -delay 10 `ls * .ppm | ordina -n | xargs` -loop 0 vortex.gif
#include <stdlib.h>
#include <stdio.h>

#define W 256
#define H 128

typedef struct {unsigned char r, g, b;} RGB;

int S1(const void *a, const void *b)
{
    const RGB *p = a, *q = b;
    int result = 0;

    if (!result)
        result = (p->b + p->g * 6 + p->r * 3) - (q->b + q->g * 6 + q->r * 3);

    return result;
}

int S2(const void *a, const void *b)
{
    const RGB *p = a, *q = b;
    int result = 0;

    if (!result)
        result = p->b * 6 - p->g;
    if (!result)
        result = p->r - q->r;
    if (!result)
        result = p->g - q->b * 6;

    return result;
}

int main(int argc, char *argv[])
{
    int i, j, n;
    RGB *rgb = malloc(sizeof(RGB) * W * H);
    RGB c[H];

    for (i = 0; i < W * H; i++)
    {
        rgb[i].b = (i & 0x1f) << 3;
        rgb[i].g = ((i >> 5) & 0x1f) << 3;
        rgb[i].r = ((i >> 10) & 0x1f) << 3;
    }

    qsort(rgb, H * W, sizeof(RGB), S1);

    for (n = 0; n < atoi(argv[1]); n++)
    {
        for (i = 0; i < W; i++)
        {
            for (j = 0; j < H; j++)
                c[j] = rgb[j * W + i];
            qsort(c, H, sizeof(RGB), S2);
            for (j = 0; j < H; j++)
                rgb[j * W + i] = c[j];
        }

        for (i = 0; i < W * H; i += W)
            qsort(rgb + i, W, sizeof(RGB), S2);
    }

    printf("P6 %d %d 255\n", W, H);
    fwrite(rgb, sizeof(RGB), W * H, stdout);

    free(rgb);

    return 0;
}

53
Sai che è C quando succede qualcosa per "motivi che non capisco".
Nit

2
Sì, di solito so cosa aspettarmi, ma qui stavo solo giocando per vedere quali schemi potevo ottenere, e questa sequenza di ordine nel caos senza fine è venuta fuori.

8
Vortica perché la tua funzione di confronto non segue la disuguaglianza del triangolo. Ad esempio, r> b, b> g, g> r. Non riesco nemmeno a portarlo su Java perché si fonde proprio su questa proprietà, quindi ottengo l'eccezione "Il metodo di confronto viola il suo contratto generale!"
Mark Jeronimus,

2
Ci proverò p->b * 6 - q->g;ma se distrugge il vortice, non lo riparerà!

4
+1 per motivi che non capisco.
Jason C,

40

Giava

Variazioni di un selettore di colori in 512x512. Il codice elegante non lo è , ma mi piacciono le belle immagini:

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;

import javax.imageio.ImageIO;

public class EighteenBitColors {

    static boolean shuffle_block = false;
    static int shuffle_radius = 0;

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(512, 512, BufferedImage.TYPE_INT_RGB);
        for(int r=0;r<64;r++)
            for(int g=0;g<64;g++)
                for(int b=0;b<64;b++)
                    img.setRGB((r * 8) + (b / 8), (g * 8) + (b % 8), ((r * 4) << 8 | (g * 4)) << 8 | (b * 4));

        if(shuffle_block)
            blockShuffle(img);
        else
            shuffle(img, shuffle_radius);

        try {           
            ImageIO.write(img, "png", new File(getFileName()));
        } catch(IOException e){
            System.out.println("suck it");
        }
    }

    public static void shuffle(BufferedImage img, int radius){
        if(radius < 1)
            return;
        int width = img.getWidth();
        int height = img.getHeight();
        Random rand = new Random();
        for(int x=0;x<512;x++){
            for(int y=0;y<512;y++){
                int xx = -1;
                int yy = -1;
                while(xx < 0 || xx >= width){
                    xx = x + rand.nextInt(radius*2+1) - radius;
                }
                while(yy < 0 || yy >= height){
                    yy = y + rand.nextInt(radius*2+1) - radius;
                }
                int tmp = img.getRGB(xx, yy);
                img.setRGB(xx, yy, img.getRGB(x, y));
                img.setRGB(x,y,tmp);
            }
        }
    }

    public static void blockShuffle(BufferedImage img){
        int tmp;
        Random rand = new Random();
        for(int bx=0;bx<8;bx++){
            for(int by=0;by<8;by++){
                for(int x=0;x<64;x++){
                    for(int y=0;y<64;y++){
                        int xx = bx*64+x;
                        int yy = by*64+y;
                        int xxx = bx*64+rand.nextInt(64);
                        int yyy = by*64+rand.nextInt(64);
                        tmp = img.getRGB(xxx, yyy);
                        img.setRGB(xxx, yyy, img.getRGB(xx, yy));
                        img.setRGB(xx,yy,tmp);
                    }
                }
            }
        }
    }

    public static String getFileName(){
        String fileName = "allrgb_";
        if(shuffle_block){
            fileName += "block";
        } else if(shuffle_radius > 0){
            fileName += "radius_" + shuffle_radius;
        } else {
            fileName += "no_shuffle";
        }
        return fileName + ".png";
    }
}

Come scritto, produce:

nessuna riproduzione casuale

Se lo esegui shuffle_block = true, mescola i colori in ogni blocco 64x64:

blocca shuffle

Altrimenti, se lo esegui shuffle_radius > 0, mescola ogni pixel con un pixel casuale all'interno shuffle_radiusin x / y. Dopo aver giocato con varie dimensioni, mi piace un raggio di 32 pixel, poiché sfuma le linee senza spostare troppo le cose:

inserisci qui la descrizione dell'immagine


3
ooh queste immagini sono le più belle
sevenseacat,

Sono davvero fantastici 😍
Matthew

37

in lavorazione

Ho appena iniziato con C (avendo programmato in altre lingue) ma ho trovato difficile seguire la grafica in Visual C, quindi ho scaricato questo programma di elaborazione utilizzato da @ace.

Ecco il mio codice e il mio algoritmo.

void setup(){
  size(256,128);
  background(0);
  frameRate(1000000000);
  noLoop();
 }

int x,y,r,g,b,c;
void draw() {
  for(y=0;y<128;y++)for(x=0;x<128;x++){
    r=(x&3)+(y&3)*4;
    g=x>>2;
    b=y>>2;
    c=0;
    //c=x*x+y*y<10000? 1:0; 
    stroke((r^16*c)<<3,g<<3,b<<3);
    point(x,y);
    stroke((r^16*(1-c))<<3,g<<3,b<<3);
    point(255-x,y);  
  } 
}

Algoritmo

Inizia con quadrati 4x4 di tutte le possibili combinazioni di 32 valori di verde e blu, in x, y. formato, creando un quadrato 128x128 Ogni quadrato 4x4 ha 16 pixel, quindi crea un'immagine speculare accanto per dare 32 pixel di ogni possibile combinazione di verde e blu, per immagine in basso.

(stranamente il verde pieno sembra più luminoso del ciano pieno. Questa deve essere un'illusione ottica. chiarita nei commenti)

Nel riquadro di sinistra, aggiungi i valori rossi 0-15. Per il quadrato di destra, XOR questi valori con 16, per rendere i valori 16-31.

inserisci qui la descrizione dell'immagine

Uscita 256x128

Questo dà l'output nell'immagine in alto di seguito.

Tuttavia, ogni pixel differisce dalla sua immagine speculare solo nel bit più significativo del valore rosso. Quindi, posso applicare una condizione con la variabile cper invertire XOR, che ha lo stesso effetto dello scambio di questi due pixel.

Un esempio di ciò è riportato nell'immagine in basso (se decommentiamo la riga di codice che è attualmente commentata).

inserisci qui la descrizione dell'immagine

512 x 512 - Un omaggio a Marylin di Andy Warhol

Ispirato dalla risposta di Quincunx a questa domanda con un "ghigno malvagio" nei cerchi rossi a mano libera, ecco la mia versione della famosa immagine. L'originale in realtà aveva 25 Marylins colorate e 25 Marylins in bianco e nero ed era l'omaggio di Warhol a Marylin dopo la sua prematura scomparsa. Vedi http://en.wikipedia.org/wiki/Marilyn_Diptych

Sono passato a diverse funzioni dopo aver scoperto che Elaborazione rende quelle che ho usato in 256x128 come semitrasparente. I nuovi sono opachi.

E sebbene l'immagine non sia completamente algoritmica, mi piace piuttosto.

int x,y,r,g,b,c;
PImage img;
color p;
void setup(){
  size(512,512);
  background(0);
  img = loadImage("marylin256.png");
  frameRate(1000000000);
  noLoop();
 }

void draw() {

   image(img,0,0);

   for(y=0;y<256;y++)for(x=0;x<256;x++){
      // Note the multiplication by 0 in the next line. 
      // Replace the 0 with an 8 and the reds are blended checkerboard style
      // This reduces the grain size, but on balance I decided I like the grain.
      r=((x&3)+(y&3)*4)^0*((x&1)^(y&1));
      g=x>>2;
      b=y>>2; 
      c=brightness(get(x,y))>100? 32:0;
      p=color((r^c)<<2,g<<2,b<<2);
      set(x,y,p);
      p=color((r^16^c)<<2,g<<2,b<<2);
      set(256+x,y,p);  
      p=color((r^32^c)<<2,g<<2,b<<2);
      set(x,256+y,p);
      p=color((r^48^c)<<2,g<<2,b<<2);
      set(256+x,256+y,p);  
 } 
 save("warholmarylin.png");

}

inserisci qui la descrizione dell'immagine

512x512 Crepuscolo su un lago con montagne in lontananza

Ecco un quadro completamente algoritmico. Ho provato a cambiare il colore che modulo con la condizione, ma sono appena tornato alla conclusione che il rosso funziona meglio. Simile all'immagine di Marylin, prima disegno le montagne, quindi seleziono la luminosità da quell'immagine per sovrascrivere l'immagine RGB positiva, mentre copio nella metà negativa. Una leggera differenza è che il fondo di molte montagne (perché sono tutte disegnate della stessa dimensione) si estende al di sotto dell'area di lettura, quindi questa area viene semplicemente ritagliata durante il processo di lettura (il che quindi dà l'impressione desiderata di montagne di dimensioni diverse. )

In questo utilizzo una cella 8x4 di 32 rossi per il positivo e i restanti 32 rossi per il negativo.

Nota il comando expicit frameRate (1) alla fine del mio codice. Ho scoperto che senza questo comando, Processing avrebbe usato il 100% di un core della mia CPU, anche se aveva finito di disegnare. Per quanto ne so non esiste alcuna funzione Sleep, tutto ciò che puoi fare è ridurre la frequenza del polling.

int i,j,x,y,r,g,b,c;
PImage img;
color p;
void setup(){
  size(512,512);
  background(255,255,255);
  frameRate(1000000000);
  noLoop();
 }

void draw() {
  for(i=0; i<40; i++){
    x=round(random(512));
    y=round(random(64,256));
    for(j=-256; j<256; j+=12) line(x,y,x+j,y+256);  
  }
  for(y=0;y<256;y++)for(x=0;x<512;x++){
    r=(x&7)+(y&3)*8;
    b=x>>3;
    g=(255-y)>>2;
    c=brightness(get(x,y))>100? 32:0;
    p=color((r^c)<<2,g<<2,b<<2);
    set(x,y,p);
    p=color((r^32^c)<<2,g<<2,b<<2);
    set(x,511-y,p);  
  }
  save("mountainK.png");
  frameRate(1);
}

inserisci qui la descrizione dell'immagine


Perché non è affatto ciano. È (0,217,217). Sono presenti tutte e 32 le combinazioni, ma non allungate [0,255]. Modifica: stai utilizzando i passaggi 7 ma non riesco a trovarlo nel codice. Deve essere una cosa in elaborazione.
Mark Jeronimus,

@steveverrill In Processing, puoi fare save("filename.png")per salvare il frame buffer corrente in un'immagine. Sono supportati anche altri formati di immagine. Ti risparmierà il problema di fare screenshot. L'immagine viene salvata nella cartella dello schizzo.
Jason C,

@Jasonc grazie per il suggerimento, ero sicuro che ci doveva essere un modo, ma non credo che li modificherò. Ho lasciato parzialmente la cornice attorno alle immagini per separarle (2 file per immagini così piccole erano eccessive.) Voglio fare alcune immagini in 512x512 (e ce n'è una in particolare per cui ho un'idea) quindi caricherò quelle sulla strada tu suggerisci.
Level River St,

1
@steveverrill Haha, i Warhols sono un bel tocco.
Jason C,

@ Zom-B L'elaborazione sembra fare molte cose che (fastidiosamente) non sono menzionate nella sua documentazione: non usare tutti i 256 valori del canale di colore logico nel suo output fisico, fondendo i colori quando non si desidera, usando un nucleo completo di la mia CPU anche dopo aver finito di disegnare. Tuttavia è semplice approfondire e puoi aggirare questi problemi una volta che sai che sono lì (tranne il primo, non l'ho ancora risolto ...)
Level River St

35

Ho appena disposto tutti i colori a 16 bit (5r, 6g, 5b) su una curva di Hilbert in JavaScript.

colori della curva di Hilbert

Immagine precedente (non curva di Hilbert):

curva di Hilbert

JSfiddle: jsfiddle.net/LCsLQ/3

JavaScript

// ported code from http://en.wikipedia.org/wiki/Hilbert_curve
function xy2d (n, p) {
    p = {x: p.x, y: p.y};
    var r = {x: 0, y: 0},
        s,
        d=0;
    for (s=(n/2)|0; s>0; s=(s/2)|0) {
        r.x = (p.x & s) > 0 ? 1 : 0;
        r.y = (p.y & s) > 0 ? 1 : 0;
        d += s * s * ((3 * r.x) ^ r.y);
        rot(s, p, r);
    }
    return d;
}

//convert d to (x,y)
function d2xy(n, d) {
    var r = {x: 0, y: 0},
        p = {x: 0, y: 0},
        s,
        t=d;
    for (s=1; s<n; s*=2) {
        r.x = 1 & (t/2);
        r.y = 1 & (t ^ rx);
        rot(s, p, r);
        p.x += s * r.x;
        p.y += s * r.y;
        t /= 4;
    }
    return p;
}

//rotate/flip a quadrant appropriately
function rot(n, p, r) {
    if (r.y === 0) {
        if (r.x === 1) {
            p.x = n-1 - p.x;
            p.y = n-1 - p.y;
        }

        //Swap x and y
        var t  = p.x;
        p.x = p.y;
        p.y = t;
    }
}
function v2rgb(v) {
    return ((v & 0xf800) << 8) | ((v & 0x7e0) << 5) | ((v & 0x1f) << 3); 
}
function putData(arr, size, coord, v) {
    var pos = (coord.x + size * coord.y) * 4,
        rgb = v2rgb(v);

    arr[pos] = (rgb & 0xff0000) >> 16;
    arr[pos + 1] = (rgb & 0xff00) >> 8;
    arr[pos + 2] = rgb & 0xff;
    arr[pos + 3] = 0xff;
}
var size = 256,
    context = a.getContext('2d'),
    data = context.getImageData(0, 0, size, size);

for (var i = 0; i < size; i++) {
    for (var j = 0; j < size; j++) {
        var p = {x: j, y: i};
        putData(data.data, size, p, xy2d(size, p));
    }
}
context.putImageData(data, 0, 0);

Modifica : si è scoperto che c'era un bug nella mia funzione per calcolare la curva di Hilbert ed era errato; vale a dire, r.x = (p.x & s) > 0; r.y = (p.y & s) > 0;cambiato inr.x = (p.x & s) > 0 ? 1 : 0; r.y = (p.y & s) > 0 ? 1 : 0;

Modifica 2: Un altro frattale:

Sierpinsky

http://jsfiddle.net/jej2d/5/


Bello! Benvenuti in PPCG.
Jonathan Van Matre

Che aspetto ha quando la passeggiata attraverso il cubo di colore presenta anche una curva 3D di Hilbert? Modifica nm. qualcuno ha fatto proprio questo.
Mark Jeronimus

35

C #: ottimizzazione iterativa della somiglianza locale

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Drawing.Imaging;

namespace AllColors
{
    class Program
    {
        static Random _random = new Random();

        const int ImageWidth = 256;
        const int ImageHeight = 128;
        const int PixelCount = ImageWidth * ImageHeight;
        const int ValuesPerChannel = 32;
        const int ChannelValueDelta = 256 / ValuesPerChannel;

        static readonly int[,] Kernel;
        static readonly int KernelWidth;
        static readonly int KernelHeight;

        static Program()
        {
            // Version 1
            Kernel = new int[,] { { 0, 1, 0, },
                                  { 1, 0, 1, },
                                  { 0, 1, 0, } };
            // Version 2
            //Kernel = new int[,] { { 0, 0, 1, 0, 0 },
            //                      { 0, 2, 3, 2, 0 },
            //                      { 1, 3, 0, 3, 1 },
            //                      { 0, 2, 3, 2, 0 },
            //                      { 0, 0, 1, 0, 0 } };
            // Version 3
            //Kernel = new int[,] { { 3, 0, 0, 0, 3 },
            //                      { 0, 1, 0, 1, 0 },
            //                      { 0, 0, 0, 0, 0 },
            //                      { 0, 1, 0, 1, 0 },
            //                      { 3, 0, 0, 0, 3 } };
            // Version 4
            //Kernel = new int[,] { { -9, -9, -9, -9, -9 },
            //                      {  1,  2,  3,  2,  1 },
            //                      {  2,  3,  0,  3,  2 },
            //                      {  1,  2,  3,  2,  1 },
            //                      {  0,  0,  0,  0,  0 } };
            // Version 5
            //Kernel = new int[,] { { 0, 0, 1, 0, 0, 0, 0 },
            //                      { 0, 1, 2, 1, 0, 0, 0 },
            //                      { 1, 2, 3, 0, 1, 0, 0 },
            //                      { 0, 1, 2, 0, 0, 0, 0 },
            //                      { 0, 0, 1, 0, 0, 0, 0 } };
            KernelWidth = Kernel.GetLength(1);
            KernelHeight = Kernel.GetLength(0);

            if (KernelWidth % 2 == 0 || KernelHeight % 2 == 0)
            {
                throw new InvalidOperationException("Invalid kernel size");
            }
        }

        private static Color[] CreateAllColors()
        {
            int i = 0;
            Color[] colors = new Color[PixelCount];
            for (int r = 0; r < ValuesPerChannel; r++)
            {
                for (int g = 0; g < ValuesPerChannel; g++)
                {
                    for (int b = 0; b < ValuesPerChannel; b++)
                    {
                        colors[i] = Color.FromArgb(255, r * ChannelValueDelta, g * ChannelValueDelta, b * ChannelValueDelta);
                        i++;
                    }
                }
            }
            return colors;
        }

        private static void Shuffle(Color[] colors)
        {
            // Knuth-Fisher-Yates shuffle
            for (int i = colors.Length - 1; i > 0; i--)
            {
                int n = _random.Next(i + 1);
                Swap(colors, i, n);
            }
        }

        private static void Swap(Color[] colors, int index1, int index2)
        {
            var temp = colors[index1];
            colors[index1] = colors[index2];
            colors[index2] = temp;
        }

        private static Bitmap ToBitmap(Color[] pixels)
        {
            Bitmap bitmap = new Bitmap(ImageWidth, ImageHeight);
            int x = 0;
            int y = 0;
            for (int i = 0; i < PixelCount; i++)
            {
                bitmap.SetPixel(x, y, pixels[i]);
                x++;
                if (x == ImageWidth)
                {
                    x = 0;
                    y++;
                }
            }
            return bitmap;
        }

        private static int GetNeighborDelta(Color[] pixels, int index1, int index2)
        {
            return GetNeighborDelta(pixels, index1) + GetNeighborDelta(pixels, index2);
        }

        private static int GetNeighborDelta(Color[] pixels, int index)
        {
            Color center = pixels[index];
            int sum = 0;
            for (int x = 0; x < KernelWidth; x++)
            {
                for (int y = 0; y < KernelHeight; y++)
                {
                    int weight = Kernel[y, x];
                    if (weight == 0)
                    {
                        continue;
                    }

                    int xOffset = x - (KernelWidth / 2);
                    int yOffset = y - (KernelHeight / 2);
                    int i = index + xOffset + yOffset * ImageWidth;

                    if (i >= 0 && i < PixelCount)
                    {
                        sum += GetDelta(pixels[i], center) * weight;
                    }
                }
            }

            return sum;
        }

        private static int GetDelta(Color c1, Color c2)
        {
            int sum = 0;
            sum += Math.Abs(c1.R - c2.R);
            sum += Math.Abs(c1.G - c2.G);
            sum += Math.Abs(c1.B - c2.B);
            return sum;
        }

        private static bool TryRandomSwap(Color[] pixels)
        {
            int index1 = _random.Next(PixelCount);
            int index2 = _random.Next(PixelCount);

            int delta = GetNeighborDelta(pixels, index1, index2);
            Swap(pixels, index1, index2);
            int newDelta = GetNeighborDelta(pixels, index1, index2);

            if (newDelta < delta)
            {
                return true;
            }
            else
            {
                // Swap back
                Swap(pixels, index1, index2);
                return false;
            }
        }

        static void Main(string[] args)
        {
            string fileNameFormat = "{0:D10}.png";
            var image = CreateAllColors();
            ToBitmap(image).Save("start.png");
            Shuffle(image);
            ToBitmap(image).Save(string.Format(fileNameFormat, 0));

            long generation = 0;
            while (true)
            {
                bool swapped = TryRandomSwap(image);
                if (swapped)
                {
                    generation++;
                    if (generation % 1000 == 0)
                    {
                        ToBitmap(image).Save(string.Format(fileNameFormat, generation));
                    }
                }
            }
        }
    }
}

Idea

Per prima cosa iniziamo con uno shuffle casuale:

inserisci qui la descrizione dell'immagine

Quindi selezioniamo a caso due pixel e li scambiamo. Se ciò non aumenta la somiglianza dei pixel con i loro vicini, ci scambiamo e riproviamo. Ripetiamo ripetutamente questo processo.

Dopo solo poche generazioni (5000) le differenze non sono così evidenti ...

inserisci qui la descrizione dell'immagine

Ma più dura (25000), ...

inserisci qui la descrizione dell'immagine

... più certi schemi iniziano a emergere (100000).

inserisci qui la descrizione dell'immagine

Usando definizioni diverse per vicinato , possiamo influenzare questi schemi e se sono stabili o meno. La Kernelè una matrice simile ai quelli utilizzati per filtri in elaborazione delle immagini . Specifica i pesi di ciascun vicino utilizzato per il calcolo delta RGB.

risultati

Ecco alcuni dei risultati che ho creato. I video mostrano il processo iterativo (1 frame == 1000 generazioni), ma purtroppo la qualità non è la migliore (vimeo, YouTube ecc. Non supportano adeguatamente dimensioni così ridotte). Potrei in seguito provare a creare video di migliore qualità.

0 1 0
1 X 1
0 1 0

185000 generazioni:

inserisci qui la descrizione dell'immagine Video (00:06)


0 0 1 0 0
0 2 3 2 0
1 3 X 3 1
0 2 3 2 0
0 0 1 0 0

243000 generazioni:

inserisci qui la descrizione dell'immagine Video (00:07)


3 0 0 0 3
0 1 0 1 0
0 0 X 0 0
0 1 0 1 0
3 0 0 0 3

230000 generazioni:

inserisci qui la descrizione dell'immagine Video (00:07)


0 0 1 0 0 0 0
0 1 2 1 0 0 0
1 2 3 X 1 0 0
0 1 2 0 0 0 0
0 0 1 0 0 0 0

Questo kernel è interessante perché a causa della sua asimmetria i modelli non sono stabili e l'intera immagine si sposta a destra con il passare delle generazioni.

2331000 generazioni:

inserisci qui la descrizione dell'immagine Video (01:10)


Grandi risultati (512x512)

L'uso dei kernel sopra con una dimensione dell'immagine più grande crea gli stessi schemi locali, estendendo un'area totale più grande. Un'immagine da 512x512 impiega tra 1 e 2 milioni di generazioni per stabilizzarsi.

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine


OK, ora prendiamo sul serio e creiamo modelli più grandi, meno locali con un kernel radiale 15x15:

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 2 2 2 2 2 1 1 0 0 0
0 0 1 2 2 3 3 3 3 3 2 2 1 0 0
0 1 2 2 3 4 4 4 4 4 3 2 2 1 0
0 1 2 3 4 4 5 5 5 4 4 3 2 1 0
1 2 3 4 4 5 6 6 6 5 4 4 3 2 1
1 2 3 4 5 6 7 7 7 6 5 4 3 2 1
1 2 3 4 5 6 7 X 7 6 5 4 3 2 1
1 2 3 4 5 6 7 7 7 6 5 4 3 2 1
1 2 3 4 4 5 6 6 6 5 4 4 3 2 1
0 1 2 3 4 4 5 5 5 4 4 3 2 1 0
0 1 2 2 3 4 4 4 4 4 3 2 2 1 0
0 0 1 2 2 3 3 3 3 3 2 2 1 0 0
0 0 0 1 1 2 2 2 2 2 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

Ciò aumenta drasticamente il tempo di calcolo per generazione. 1,71 milioni di generazioni e 20 ore dopo:

inserisci qui la descrizione dell'immagine


1
Ci vuole un po 'per arrivarci, ma il risultato finale è abbastanza buono.
primo

Interessante coincidenza, ho un articolo su questo stesso argomento: nayuki.io/page/simulated-annealing-demo
Nayuki

30

Giava

Con alcune variazioni sulla mia altra risposta, possiamo ottenere risultati molto interessanti.

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);

        int num = 0;
        ArrayList<Point> points = new ArrayList<>();
        for (int y = 0; y < 4096; y++) {
            for (int x = 0; x < 4096; x++) {
                points.add(new Point(x, y));
            }
        }
        Collections.sort(points, new Comparator<Point>() {

            @Override
            public int compare(Point t, Point t1) {
                int compareVal = (Integer.bitCount(t.x) + Integer.bitCount(t.y))
                        - (Integer.bitCount(t1.x) + Integer.bitCount(t1.y));
                return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
            }

        });
        for (Point p : points) {
            int x = p.x;
            int y = p.y;

            img.setRGB(x, y, num);
            num++;
        }
        try {
            ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

Il codice importante è qui:

Collections.sort(points, new Comparator<Point>() {

    @Override
    public int compare(Point t, Point t1) {
        int compareVal = (Integer.bitCount(t.x) + Integer.bitCount(t.y))
                - (Integer.bitCount(t1.x) + Integer.bitCount(t1.y));
        return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
    }

});

Uscita (screenshot):

inserisci qui la descrizione dell'immagine

Cambia il comparatore in questo:

public int compare(Point t, Point t1) {
    int compareVal = (Integer.bitCount(t.x + t.y))
            - (Integer.bitCount(t1.x + t1.y));
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

E otteniamo questo:

inserisci qui la descrizione dell'immagine

Un'altra variante:

public int compare(Point t, Point t1) {
    int compareVal = (t.x + t.y)
            - (t1.x + t1.y);
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

inserisci qui la descrizione dell'immagine

Ancora un'altra variazione (mi ricorda gli automi cellulari):

public int compare(Point t, Point t1) {
    int compareVal = (t1.x - t.y)
            + (t.x - t1.y);
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

inserisci qui la descrizione dell'immagine

Ancora un'altra variante (nuovo preferito personale):

public int compare(Point t, Point t1) {
    int compareVal = (Integer.bitCount(t.x ^ t.y))
            - (Integer.bitCount(t1.x ^ t1.y));
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

inserisci qui la descrizione dell'immagine

Sembra così frattale. XOR è così bello, in particolare il primo piano:

inserisci qui la descrizione dell'immagine

Un altro primo piano:

inserisci qui la descrizione dell'immagine

E ora il triangolo Sierpinski, inclinato:

public int compare(Point t, Point t1) {
    int compareVal = (Integer.bitCount(t.x | t.y))
            - (Integer.bitCount(t1.x | t1.y));
    return compareVal < 0 ? -1 : compareVal == 0 ? 0 : 1;
}

inserisci qui la descrizione dell'immagine


8
La prima immagine sembra una foto di CPU o memoria
Nick T

@NickT Ecco un dado di memoria (secondo Google Immagini) per contrasto: files.macbidouille.com/mbv2/news/news_05_10/25-nm-die.jpg
Justin

4
Bene, la memoria è così informe ... probabilmente un processore molto multi-core allora: extremetech.com/wp-content/uploads/2012/07/Aubrey_Isle_die.jpg
Nick T

1
Mi piacciono molto questi ultimi. Aspetto molto glitch ma con una struttura organizzativa sottostante. Voglio un tappeto tessuto come quel disegno XOR!
Jonathan Van Matre,

Questi sono davvero fantastici; mi ricordano un gioco arcade rotto o un nes.
Jason C,

29

Giava

In realtà non ero sicuro di come creare colori a 15 o 18 bit, quindi ho semplicemente lasciato fuori il bit meno significativo del byte di ciascun canale per creare 2 ^ 18 colori a 24 bit diversi. La maggior parte del rumore viene rimosso mediante l'ordinamento, ma sembra che un'efficace rimozione del rumore richiederebbe un confronto di più di due soli elementi alla volta di Comparator. Proverò a manipolare usando kernel più grandi, ma nel frattempo, si tratta del meglio che sono stato in grado di fare.

inserisci qui la descrizione dell'immagine

Fare clic per l'immagine HD n. 2

Immagine n. 2 a bassa risoluzione

import java.awt.*;
import java.awt.image.*;
import javax.swing.*;
import java.util.*;

public class ColorSpan extends JFrame{
    private int h, w = h = 512;
    private BufferedImage image = 
            new BufferedImage(w,h,BufferedImage.TYPE_INT_RGB);
    private WritableRaster raster = image.getRaster();
    private DataBufferInt dbInt = (DataBufferInt) 
            (raster.getDataBuffer());
    private int[] data = dbInt.getData();

    private JLabel imageLabel = new JLabel(new ImageIcon(image));
    private JPanel bordered = new JPanel(new BorderLayout());


    public <T> void transpose(ArrayList<T> objects){
        for(int i = 0; i < w; i++){
            for(int j = 0; j < i; j++){
                Collections.swap(objects,i+j*w,j+i*h);
            }
        }
    }

    public <T> void sortByLine(ArrayList<T> objects, Comparator<T> comp){
        for(int i = 0; i < h; i++){
            Collections.sort(objects.subList(i*w, (i+1)*w), comp);
        }
    }

    public void init(){
        ArrayList<Integer> colors = new ArrayList<Integer>();
        for(int i = 0, max = 1<<18; i < max; i++){
            int r = i>>12, g = (i>>6)&63, b = i&63;
            colors.add(((r<<16)+(g<<8)+b)<<2);
        }

        Comparator<Integer> comp1 = new Comparator<Integer>(){
            public int compare(Integer left, Integer right){
                int a = left.intValue(), b = right.intValue();

                int rA = a>>16, rB = b>>16,
                    gA = (a>>8)&255, gB = (b>>8)&255;
                /*double thA = Math.acos(gA*2d/255-1),
                        thB = Math.acos(gB*2d/255-1);*/
                double thA = Math.atan2(rA/255d-.5,gA/255d-.5),
                        thB = Math.atan2(rB/255d-.5,gB/255d-.5);
                return -Double.compare(thA,thB);
            }
        }, comp2 = new Comparator<Integer>(){
            public int compare(Integer left, Integer right){
                int a = left.intValue(), b = right.intValue();

                int rA = a>>16, rB = b>>16,
                    gA = (a>>8)&255, gB = (b>>8)&255,
                    bA = a&255, bB = b&255;
                double dA = Math.hypot(gA-rA,bA-rA),
                        dB = Math.hypot(gB-rB,bB-rB);
                return Double.compare(dA,dB);
            }
        }, comp3 = new Comparator<Integer>(){
            public int compare(Integer left, Integer right){
                int a = left.intValue(), b = right.intValue();

                int rA = a>>16, rB = b>>16,
                    gA = (a>>8)&255, gB = (b>>8)&255,
                    bA = a&255, bB = b&255;

                    return Integer.compare(rA+gA+bA,rB+gB+bB);
            }
        };

        /* Start: Image 1 */
        Collections.sort(colors, comp2);
        transpose(colors);
        sortByLine(colors,comp2);
        transpose(colors);
        sortByLine(colors,comp1);
        transpose(colors);
        sortByLine(colors,comp2);
        sortByLine(colors,comp3);
        /* End: Image 1 */

        /* Start: Image 2 */
        Collections.sort(colors, comp1);
        sortByLine(colors,comp2);

        transpose(colors);
        sortByLine(colors,comp2);
        transpose(colors);
        sortByLine(colors,comp1);
        transpose(colors);
        sortByLine(colors,comp1);
        /* End: Image 2 */

        int index = 0;
        for(Integer color : colors){
            int cInt = color.intValue();
            data[index] = cInt;
            index++;
        }

    }

    public ColorSpan(){
        super("512x512 Unique Colors");
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        init();

        bordered.setBorder(BorderFactory.createEmptyBorder(2,2,2,2));
        bordered.add(imageLabel,BorderLayout.CENTER);
        add(bordered,BorderLayout.CENTER);
        pack();

    }

    public static void main(String[] args){
        new ColorSpan().setVisible(true);
    }
}

1
Quella seconda merita davvero una versione a 24 bit 4096 x 4096 ...
trichoplax,

Imgur ha elaborato l'immagine per circa mezz'ora. Immagino che probabilmente stia cercando di comprimerlo. Comunque, ho aggiunto un link: SSend.it/hj4ovh
John P

2
Si è verificato un problema con il download.
SuperJedi224,

28

Scala

Ordino tutti i colori percorrendo una curva di Hilbert tridimensionale tramite un L-System . Quindi cammino i pixel nell'immagine di output lungo una curva di Hilbert bidimensionale e dispongo tutti i colori.

Uscita 512 x 512:

inserisci qui la descrizione dell'immagine

Ecco il codice. La maggior parte copre solo la logica e la matematica di muoversi attraverso tre dimensioni tramite pitch / roll / yaw. Sono sicuro che ci fosse un modo migliore per fare quella parte, ma vabbè.

import scala.annotation.tailrec
import java.awt.image.BufferedImage
import javax.imageio.ImageIO
import java.io.File

object AllColors {

  case class Vector(val x: Int, val y: Int, val z: Int) {
    def applyTransformation(m: Matrix): Vector = {
      Vector(m.r1.x * x + m.r1.y * y + m.r1.z * z, m.r2.x * x + m.r2.y * y + m.r2.z * z, m.r3.x * x + m.r3.y * y + m.r3.z * z)
    }
    def +(v: Vector): Vector = {
      Vector(x + v.x, y + v.y, z + v.z)
    }
    def unary_-(): Vector = Vector(-x, -y, -z)
  }

  case class Heading(d: Vector, s: Vector) {
    def roll(positive: Boolean): Heading = {
      val (axis, b) = getAxis(d)
      Heading(d, s.applyTransformation(rotationAbout(axis, !(positive ^ b))))
    }

    def yaw(positive: Boolean): Heading = {
      val (axis, b) = getAxis(s)
      Heading(d.applyTransformation(rotationAbout(axis, positive ^ b)), s)
    }

    def pitch(positive: Boolean): Heading = {
      if (positive) {
        Heading(s, -d)
      } else {
        Heading(-s, d)
      }
    }

    def applyCommand(c: Char): Heading = c match {
      case '+' => yaw(true)
      case '-' => yaw(false)
      case '^' => pitch(true)
      case 'v' => pitch(false)
      case '>' => roll(true)
      case '<' => roll(false)
    }
  }

  def getAxis(v: Vector): (Char, Boolean) = v match {
    case Vector(1, 0, 0) => ('x', true)
    case Vector(-1, 0, 0) => ('x', false)
    case Vector(0, 1, 0) => ('y', true)
    case Vector(0, -1, 0) => ('y', false)
    case Vector(0, 0, 1) => ('z', true)
    case Vector(0, 0, -1) => ('z', false)
  }

  def rotationAbout(axis: Char, positive: Boolean) = (axis, positive) match {
    case ('x', true) => XP
    case ('x', false) => XN
    case ('y', true) => YP
    case ('y', false) => YN
    case ('z', true) => ZP
    case ('z', false) => ZN
  }

  case class Matrix(val r1: Vector, val r2: Vector, val r3: Vector)

  val ZP = Matrix(Vector(0,-1,0),Vector(1,0,0),Vector(0,0,1))
  val ZN = Matrix(Vector(0,1,0),Vector(-1,0,0),Vector(0,0,1))

  val XP = Matrix(Vector(1,0,0),Vector(0,0,-1),Vector(0,1,0))
  val XN = Matrix(Vector(1,0,0),Vector(0,0,1),Vector(0,-1,0))

  val YP = Matrix(Vector(0,0,1),Vector(0,1,0),Vector(-1,0,0))
  val YN = Matrix(Vector(0,0,-1),Vector(0,1,0),Vector(1,0,0))

  @tailrec def applyLSystem(current: Stream[Char], rules: Map[Char, List[Char]], iterations: Int): Stream[Char] = {
    if (iterations == 0) {
      current
    } else {
      val nextStep = current flatMap { c => rules.getOrElse(c, List(c)) }
      applyLSystem(nextStep, rules, iterations - 1)
    }
  }

  def walk(x: Vector, h: Heading, steps: Stream[Char]): Stream[Vector] = steps match {
    case Stream() => Stream(x)
    case 'f' #:: rest => x #:: walk(x + h.d, h, rest)
    case c #:: rest => walk(x, h.applyCommand(c), rest)
  }

  def hilbert3d(n: Int): Stream[Vector] = {
    val rules = Map('x' -> "^>x<f+>>x<<f>>x<<+fvxfxvf+>>x<<f>>x<<+f>x<^".toList)
    val steps = applyLSystem(Stream('x'), rules, n) filterNot (_ == 'x')
    walk(Vector(0, 0, 0), Heading(Vector(1, 0, 0), Vector(0, 1, 0)), steps)
  }

  def hilbert2d(n: Int): Stream[Vector] = {
    val rules = Map('a' -> "-bf+afa+fb-".toList, 'b' -> "+af-bfb-fa+".toList)
    val steps = applyLSystem(Stream('a'), rules, n) filterNot (c => c == 'a' || c == 'b')
    walk(Vector(0, 0, 0), Heading(Vector(1, 0, 0), Vector(0, 0, 1)), steps)
  }

  def main(args: Array[String]): Unit = {
    val n = 4
    val img = new BufferedImage(1 << (3 * n), 1 << (3 * n), BufferedImage.TYPE_INT_RGB)
    hilbert3d(n * 2).zip(hilbert2d(n * 3)) foreach { case (Vector(r,g,b), Vector(x,y,_)) => img.setRGB(x, y, (r << (24 - 2 * n)) | (g << (16 - 2 * n)) | (b << (8 - 2 * n))) }
    ImageIO.write(img, "png", new File(s"out_$n.png"))
  }
}

28

C #

Caspita, cose davvero fantastiche in questa sfida. Ho provato a farlo in C # e ho generato un'immagine 4096x4096 in circa 3 minuti (CPU i7) usando ogni singolo colore tramite la logica Random Walk.

Ok, quindi per il codice. Dopo essere stato frustrato dalle ore di ricerca e dal tentativo di generare ogni singolo colore HSL usando per i cicli nel codice, mi sono deciso a creare un file flat da cui leggere i colori HSL. Quello che ho fatto è stato creare ogni singolo colore RGB in un Elenco, quindi ho ordinato per Tonalità, Luminosità, quindi Saturazione. Quindi ho salvato l'elenco in un file di testo. ColorData è solo una piccola classe che ho scritto che accetta un colore RGB e memorizza anche l'equivalente HSL. Questo codice è un enorme mangiatore di RAM. Usato circa 4 GB di RAM lol.

public class RGB
{
    public double R = 0;
    public double G = 0;
    public double B = 0;
    public override string ToString()
    {
        return "RGB:{" + (int)R + "," + (int)G + "," + (int)B + "}";
    }
}
public class HSL
{
    public double H = 0;
    public double S = 0;
    public double L = 0;
    public override string ToString()
    {
        return "HSL:{" + H + "," + S + "," + L + "}";
    }
}
public class ColorData
{
    public RGB rgb;
    public HSL hsl;
    public ColorData(RGB _rgb)
    {
        rgb = _rgb;
        var _hsl = ColorHelper._color_rgb2hsl(new double[]{rgb.R,rgb.G,rgb.B});
        hsl = new HSL() { H = _hsl[0], S = _hsl[1], L = _hsl[2] };
    }
    public ColorData(double[] _rgb)
    {
        rgb = new RGB() { R = _rgb[0], G = _rgb[1], B = _rgb[2] };
        var _hsl = ColorHelper._color_rgb2hsl(_rgb);
        hsl = new HSL() { H = _hsl[0], S = _hsl[1], L = _hsl[2] };
    }
    public override string ToString()
    {
        return rgb.ToString() + "|" + hsl.ToString();
    }
    public int Compare(ColorData cd)
    {
        if (this.hsl.H > cd.hsl.H)
        {
            return 1;
        }
        if (this.hsl.H < cd.hsl.H)
        {
            return -1;
        }

        if (this.hsl.S > cd.hsl.S)
        {
            return 1;
        }
        if (this.hsl.S < cd.hsl.S)
        {
            return -1;
        }

        if (this.hsl.L > cd.hsl.L)
        {
            return 1;
        }
        if (this.hsl.L < cd.hsl.L)
        {
            return -1;
        }
        return 0;
    }
}
public static class ColorHelper
{


    public static void MakeColorFile(string savePath)
    {
        List<ColorData> Colors = new List<ColorData>();
        System.IO.File.Delete(savePath);

        for (int r = 0; r < 256; r++)
        {
            for (int g = 0; g < 256; g++)
            {
                for (int b = 0; b < 256; b++)
                {
                    double[] rgb = new double[] { r, g, b };
                    ColorData cd = new ColorData(rgb);
                    Colors.Add(cd);
                }
            }
        }
        Colors = Colors.OrderBy(x => x.hsl.H).ThenBy(x => x.hsl.L).ThenBy(x => x.hsl.S).ToList();

        string cS = "";
        using (System.IO.StreamWriter fs = new System.IO.StreamWriter(savePath))
        {

            foreach (var cd in Colors)
            {
                cS = cd.ToString();
                fs.WriteLine(cS);
            }
        }
    }


    public static IEnumerable<Color> NextColorHThenSThenL()
    {
        HashSet<string> used = new HashSet<string>();
        double rMax = 720;
        double gMax = 700;
        double bMax = 700;
        for (double r = 0; r <= rMax; r++)
        {
            for (double g = 0; g <= gMax; g++)
            {
                for (double b = 0; b <= bMax; b++)
                {
                    double h = (r / (double)rMax);
                    double s = (g / (double)gMax);
                    double l = (b / (double)bMax);
                    var c = _color_hsl2rgb(new double[] { h, s, l });
                    Color col = Color.FromArgb((int)c[0], (int)c[1], (int)c[2]);
                    string key = col.R + "-" + col.G + "-" + col.B;
                    if (!used.Contains(key))
                    {
                        used.Add(key);
                        yield return col;
                    }
                    else
                    {
                        continue;
                    }
                }
            }
        }
    }

    public static Color HSL2RGB(double h, double s, double l){
        double[] rgb= _color_hsl2rgb(new double[] { h, s, l });
        return Color.FromArgb((int)rgb[0], (int)rgb[1], (int)rgb[2]);
    }
    public static double[] _color_rgb2hsl(double[] rgb)
    {
        double r = rgb[0]; double g = rgb[1]; double b = rgb[2];
        double min = Math.Min(r, Math.Min(g, b));
        double max = Math.Max(r, Math.Max(g, b));
        double delta = max - min;
        double l = (min + max) / 2.0;
        double s = 0;
        if (l > 0 && l < 1)
        {
            s = delta / (l < 0.5 ? (2 * l) : (2 - 2 * l));
        }
        double h = 0;
        if (delta > 0)
        {
            if (max == r && max != g) h += (g - b) / delta;
            if (max == g && max != b) h += (2 + (b - r) / delta);
            if (max == b && max != r) h += (4 + (r - g) / delta);
            h /= 6;
        } return new double[] { h, s, l };
    }


    public static double[] _color_hsl2rgb(double[] hsl)
    {
        double h = hsl[0];
        double s = hsl[1];
        double l = hsl[2];
        double m2 = (l <= 0.5) ? l * (s + 1) : l + s - l * s;
        double m1 = l * 2 - m2;
        return new double[]{255*_color_hue2rgb(m1, m2, h + 0.33333),
           255*_color_hue2rgb(m1, m2, h),
           255*_color_hue2rgb(m1, m2, h - 0.33333)};
    }


    public static double _color_hue2rgb(double m1, double m2, double h)
    {
        h = (h < 0) ? h + 1 : ((h > 1) ? h - 1 : h);
        if (h * (double)6 < 1) return m1 + (m2 - m1) * h * (double)6;
        if (h * (double)2 < 1) return m2;
        if (h * (double)3 < 2) return m1 + (m2 - m1) * (0.66666 - h) * (double)6;
        return m1;
    }


}

Con quello fuori mano. Ho scritto una lezione per ottenere il colore successivo dal file generato. Ti consente di impostare l'inizio e la fine della tonalità. In realtà, ciò potrebbe e dovrebbe probabilmente essere generalizzato in base alla dimensione per cui il file è stato ordinato per primo. Inoltre mi rendo conto che per un aumento delle prestazioni qui, avrei potuto semplicemente inserire i valori RGB nel file e mantenere ogni riga a una lunghezza fissa. In questo modo avrei potuto facilmente specificare l'offset del byte invece di scorrere ciclicamente ogni linea fino a quando non ho raggiunto la linea da cui volevo iniziare. Ma non è stato un grande successo per me. Ma ecco quella classe

public class HSLGenerator
{

    double hEnd = 1;
    double hStart = 0;

    double colCount = 256 * 256 * 256;

    public static Color ReadRGBColorFromLine(string line)
    {
        string sp1 = line.Split(new string[] { "RGB:{" }, StringSplitOptions.None)[1];
        string sp2 = sp1.Split('}')[0];
        string[] sp3 = sp2.Split(',');
        return Color.FromArgb(Convert.ToInt32(sp3[0]), Convert.ToInt32(sp3[1]), Convert.ToInt32(sp3[2]));
    }
    public IEnumerable<Color> GetNextFromFile(string colorFile)
    {
        int currentLine = -1;
        int startLine = Convert.ToInt32(hStart * colCount);
        int endLine = Convert.ToInt32(hEnd * colCount);
        string line = "";
        using(System.IO.StreamReader sr = new System.IO.StreamReader(colorFile))
        {

            while (!sr.EndOfStream)
            {
                line = sr.ReadLine();
                currentLine++;
                if (currentLine < startLine) //begin at correct offset
                {
                    continue;
                }
                yield return ReadRGBColorFromLine(line);
                if (currentLine > endLine) 
                {
                    break;
                }
            }
    }

    HashSet<string> used = new HashSet<string>();

    public void SetHueLimits(double hueStart, double hueEnd)
    {
        hEnd = hueEnd;
        hStart = hueStart;
    }
}

Quindi ora che abbiamo il file di colore e abbiamo un modo per leggere il file, ora possiamo effettivamente creare l'immagine. Ho usato una classe che ho trovato per migliorare le prestazioni di impostazione dei pixel in una bitmap, chiamata LockBitmap. Fonte LockBitmap

Ho creato una piccola classe Vector2 per memorizzare le posizioni delle coordinate

public class Vector2
{
    public int X = 0;
    public int Y = 0;
    public Vector2(int x, int y)
    {
        X = x;
        Y = y;
    }
    public Vector2 Center()
    {
        return new Vector2(X / 2, Y / 2);
    }
    public override string ToString()
    {
        return X.ToString() + "-" + Y.ToString();
    }
}

E ho anche creato una classe chiamata SearchArea, che è stata utile per trovare pixel vicini. Si specifica il pixel per cui si desidera trovare i vicini, i limiti in cui cercare e le dimensioni del "quadrato vicino" da cercare. Quindi, se la dimensione è 3, significa che stai cercando un quadrato 3x3, con il pixel specificato proprio al centro.

public class SearchArea
{
    public int Size = 0;
    public Vector2 Center;
    public Rectangle Bounds;

    public SearchArea(int size, Vector2 center, Rectangle bounds)
    {
        Center = center;
        Size = size;
        Bounds = bounds;
    }
    public bool IsCoordinateInBounds(int x, int y)
    {
        if (!IsXValueInBounds(x)) { return false; }
        if (!IsYValueInBounds(y)) { return false; }
        return true;

    }
    public bool IsXValueInBounds(int x)
    {
        if (x < Bounds.Left || x >= Bounds.Right) { return false; }
        return true;
    }
    public bool IsYValueInBounds(int y)
    {
        if (y < Bounds.Top || y >= Bounds.Bottom) { return false; }
        return true;
    }

}

Ecco la classe che sceglie effettivamente il prossimo vicino. Fondamentalmente ci sono 2 modalità di ricerca. A) Il quadrato completo, B) solo il perimetro del quadrato. Questa è stata un'ottimizzazione che ho fatto per evitare di cercare nuovamente il quadrato intero dopo aver realizzato che il quadrato era pieno. DepthMap è stata un'ulteriore ottimizzazione per evitare di cercare ripetutamente gli stessi quadrati. Tuttavia, non l'ho ottimizzato completamente. Ogni chiamata a GetNeighbors eseguirà sempre la prima ricerca per intero. So che potrei ottimizzare questo per fare la ricerca perimetrale solo dopo aver completato il quadrato completo iniziale. Non ho ancora ottenuto l'ottimizzazione, e anche senza di essa il codice è piuttosto veloce. Le righe "lock" commentate sono perché stavo usando Parallel.ForEach ad un certo punto, ma mi sono reso conto che dovevo scrivere più codice di quanto volessi per quel lol.

public class RandomWalkGenerator
{
    HashSet<string> Visited = new HashSet<string>();
    Dictionary<string, int> DepthMap = new Dictionary<string, int>();
    Rectangle Bounds;
    Random rnd = new Random();
    public int DefaultSearchSize = 3;
    public RandomWalkGenerator(Rectangle bounds)
    {
        Bounds = bounds;
    }
    private SearchArea GetSearchArea(Vector2 center, int size)
    {
        return new SearchArea(size, center, Bounds);
    }

    private List<Vector2> GetNeighborsFullSearch(SearchArea srchArea, Vector2 coord)
    {
        int radius = (int)Math.Floor((double)((double)srchArea.Size / (double)2));
        List<Vector2> pixels = new List<Vector2>();
        for (int rX = -radius; rX <= radius; rX++)
        {
            for (int rY = -radius; rY <= radius; rY++)
            {
                if (rX == 0 && rY == 0) { continue; } //not a new coordinate
                int x = rX + coord.X;
                int y = rY + coord.Y;
                if (!srchArea.IsCoordinateInBounds(x, y)) { continue; }
                var key = x + "-" + y;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(x, y));
                    }
                }
            }
        }
        if (pixels.Count == 0)
        {
            int depth = 0;
            string vecKey = coord.ToString();
            if (!DepthMap.ContainsKey(vecKey))
            {
                DepthMap.Add(vecKey, depth);
            }
            else
            {
                depth = DepthMap[vecKey];
            }

            var size = DefaultSearchSize + 2 * depth;
            var sA = GetSearchArea(coord, size);
            pixels = GetNeighborsPerimeterSearch(sA, coord, depth);
        }
        return pixels;
    }
    private Rectangle GetBoundsForPerimeterSearch(SearchArea srchArea, Vector2 coord)
    {
        int radius = (int)Math.Floor((decimal)(srchArea.Size / 2));
        Rectangle r = new Rectangle(-radius + coord.X, -radius + coord.Y, srchArea.Size, srchArea.Size);
        return r;
    }
    private List<Vector2> GetNeighborsPerimeterSearch(SearchArea srchArea, Vector2 coord, int depth = 0)
    {
        string vecKey = coord.ToString();
        if (!DepthMap.ContainsKey(vecKey))
        {
            DepthMap.Add(vecKey, depth);
        }
        else
        {
            DepthMap[vecKey] = depth;
        }
        Rectangle bounds = GetBoundsForPerimeterSearch(srchArea, coord);
        List<Vector2> pixels = new List<Vector2>();
        int depthMax = 1500;

        if (depth > depthMax)
        {
            return pixels;
        }

        int yTop = bounds.Top;
        int yBot = bounds.Bottom;

        //left to right scan
        for (int x = bounds.Left; x < bounds.Right; x++)
        {

            if (srchArea.IsCoordinateInBounds(x, yTop))
            {
                var key = x + "-" + yTop;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(x, yTop));
                    }
                }
            }
            if (srchArea.IsCoordinateInBounds(x, yBot))
            {
                var key = x + "-" + yBot;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(x, yBot));
                    }
                }
            }
        }

        int xLeft = bounds.Left;
        int xRight = bounds.Right;
        int yMin = bounds.Top + 1;
        int yMax = bounds.Bottom - 1;
        //top to bottom scan
        for (int y = yMin; y < yMax; y++)
        {
            if (srchArea.IsCoordinateInBounds(xLeft, y))
            {
                var key = xLeft + "-" + y;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(xLeft, y));
                    }
                }
            }
            if (srchArea.IsCoordinateInBounds(xRight, y))
            {
                var key = xRight + "-" + y;
                // lock (Visited)
                {
                    if (!Visited.Contains(key))
                    {
                        pixels.Add(new Vector2(xRight, y));
                    }
                }
            }
        }

        if (pixels.Count == 0)
        {
            var size = srchArea.Size + 2;
            var sA = GetSearchArea(coord, size);
            pixels = GetNeighborsPerimeterSearch(sA, coord, depth + 1);
        }
        return pixels;
    }
    private List<Vector2> GetNeighbors(SearchArea srchArea, Vector2 coord)
    {
        return GetNeighborsFullSearch(srchArea, coord);
    }
    public Vector2 ChooseNextNeighbor(Vector2 coord)
    {
        SearchArea sA = GetSearchArea(coord, DefaultSearchSize);
        List<Vector2> neighbors = GetNeighbors(sA, coord);
        if (neighbors.Count == 0)
        {
            return null;
        }
        int idx = rnd.Next(0, neighbors.Count);
        Vector2 elm = neighbors.ElementAt(idx);
        string key = elm.ToString();
        // lock (Visited)
        {
            Visited.Add(key);
        }
        return elm;
    }
}

Ok fantastico, quindi ora ecco la classe che crea l'immagine

public class RandomWalk
{
    Rectangle Bounds;
    Vector2 StartPath = new Vector2(0, 0);
    LockBitmap LockMap;
    RandomWalkGenerator rwg;
    public int RandomWalkSegments = 1;
    string colorFile = "";

    public RandomWalk(int size, string _colorFile)
    {
        colorFile = _colorFile;
        Bounds = new Rectangle(0, 0, size, size);
        rwg = new RandomWalkGenerator(Bounds);
    }
    private void Reset()
    {
        rwg = new RandomWalkGenerator(Bounds);
    }
    public void CreateImage(string savePath)
    {
        Reset();
        Bitmap bmp = new Bitmap(Bounds.Width, Bounds.Height);
        LockMap = new LockBitmap(bmp);
        LockMap.LockBits();
        if (RandomWalkSegments == 1)
        {
            RandomWalkSingle();
        }
        else
        {
            RandomWalkMulti(RandomWalkSegments);
        }
        LockMap.UnlockBits();
        bmp.Save(savePath);

    }
    public void SetStartPath(int X, int Y)
    {
        StartPath.X = X;
        StartPath.Y = Y;
    }
    private void RandomWalkMulti(int buckets)
    {

        int Buckets = buckets;
        int PathsPerSide = (Buckets + 4) / 4;
        List<Vector2> Positions = new List<Vector2>();

        var w = Bounds.Width;
        var h = Bounds.Height;
        var wInc = w / Math.Max((PathsPerSide - 1),1);
        var hInc = h / Math.Max((PathsPerSide - 1),1);

        //top
        for (int i = 0; i < PathsPerSide; i++)
        {
            var x = Math.Min(Bounds.Left + wInc * i, Bounds.Right - 1);
            Positions.Add(new Vector2(x, Bounds.Top));
        }
        //bottom
        for (int i = 0; i < PathsPerSide; i++)
        {
            var x = Math.Max(Bounds.Right -1 - wInc * i, 0);
            Positions.Add(new Vector2(x, Bounds.Bottom - 1));
        }
        //right and left
        for (int i = 1; i < PathsPerSide - 1; i++)
        {
            var y = Math.Min(Bounds.Top + hInc * i, Bounds.Bottom - 1);
            Positions.Add(new Vector2(Bounds.Left, y));
            Positions.Add(new Vector2(Bounds.Right - 1, y));
        }
        Positions = Positions.OrderBy(x => Math.Atan2(x.X, x.Y)).ToList();
        double cnt = 0;
        List<IEnumerator<bool>> _execs = new List<IEnumerator<bool>>();
        foreach (Vector2 startPath in Positions)
        {
            double pct = cnt / (Positions.Count);
            double pctNext = (cnt + 1) / (Positions.Count);

            var enumer = RandomWalkHueSegment(pct, pctNext, startPath).GetEnumerator();

            _execs.Add(enumer);
            cnt++;
        }

        bool hadChange = true;
        while (hadChange)
        {
            hadChange = false;
            foreach (var e in _execs)
            {
                if (e.MoveNext())
                {
                    hadChange = true;
                }
            }
        }

    }
    private IEnumerable<bool> RandomWalkHueSegment(double hueStart, double hueEnd, Vector2 startPath)
    {
        var colors = new HSLGenerator();
        colors.SetHueLimits(hueStart, hueEnd);
        var colorFileEnum = colors.GetNextFromFile(colorFile).GetEnumerator();
        Vector2 coord = new Vector2(startPath.X, startPath.Y);
        LockMap.SetPixel(coord.X, coord.Y, ColorHelper.HSL2RGB(0, 0, 0));

        while (true)
        {
            if (!colorFileEnum.MoveNext())
            {
                break;
            }
            var rgb = colorFileEnum.Current;
            coord = ChooseNextNeighbor(coord);
            if (coord == null)
            {
                break;
            }
            LockMap.SetPixel(coord.X, coord.Y, rgb);
            yield return true;

        }
    }
    private void RandomWalkSingle()
    {
        Vector2 coord = new Vector2(StartPath.X, StartPath.Y);
        LockMap.SetPixel(coord.X, coord.Y, ColorHelper.HSL2RGB(0, 0, 0));
        int cnt = 1;
        var colors = new HSLGenerator();
        var colorFileEnum = colors.GetNextFromFile(colorFile).GetEnumerator();
        while (true)
        {
            if (!colorFileEnum.MoveNext())
            {
                return;
            }
            var rgb = colorFileEnum.Current;
            var newCoord = ChooseNextNeighbor(coord);
            coord = newCoord;
            if (newCoord == null)
            {
                return;
            }
            LockMap.SetPixel(newCoord.X, newCoord.Y, rgb);
            cnt++;

        }

    }

    private Vector2 ChooseNextNeighbor(Vector2 coord)
    {
        return rwg.ChooseNextNeighbor(coord);
    }


}

Ed ecco un'implementazione di esempio:

class Program
{
    static void Main(string[] args)
    {
        {
           // ColorHelper.MakeColorFile();
          //  return;
        }
        string colorFile = "colors.txt";
        var size = new Vector2(1000,1000);
        var ctr = size.Center();
        RandomWalk r = new RandomWalk(size.X,colorFile);
        r.RandomWalkSegments = 8;
        r.SetStartPath(ctr.X, ctr.Y);
        r.CreateImage("test.bmp");

    }
}

Se RandomWalkSegments = 1, allora inizia semplicemente a camminare ovunque tu lo dica, e inizia dal primo primo colore nel file.

Non è il codice più pulito che ammetto, ma funziona abbastanza velocemente!

Uscita ritagliata

3 percorsi

128 percorsi

MODIFICARE:

Quindi ho imparato a conoscere OpenGL e Shaders. Ho generato un 4096x4096 usando tutti i colori in modo rapido sulla GPU con 2 semplici script shader. L'output è noioso, ma ha pensato che qualcuno potesse trovare questo interessante e trovare alcune idee interessanti:

Vertex Shader

attribute vec3 a_position;
varying vec2 vTexCoord;
   void main() {
      vTexCoord = (a_position.xy + 1) / 2;
      gl_Position = vec4(a_position, 1);
  }

Frag Shader

void main(void){
    int num = int(gl_FragCoord.x*4096.0 + gl_FragCoord.y);
    int h = num % 256;
    int s = (num/256) % 256;
    int l = ((num/256)/256) % 256;
    vec4 hsl = vec4(h/255.0,s/255.0,l/255.0,1.0);
    gl_FragColor = hsl_to_rgb(hsl); // you need to implement a conversion method
}

Modifica (15/10/16): volevo solo mostrare una prova del concetto di algoritmo genetico. Sono ancora in esecuzione questo codice 24 ore dopo su un set 100x100 di colori casuali, ma finora l'output è bellissimo!inserisci qui la descrizione dell'immagine

Modifica (26/10/16): sto eseguendo il codice dell'algoritmo genetico da 12 giorni ... e sta ancora ottimizzando l'output. Fondamentalmente è converto in un minimo locale ma a quanto pare sta ancora trovando ulteriori miglioramenti:inserisci qui la descrizione dell'immagine

Modifica: 12/08/17 - Ho scritto un nuovo algoritmo di camminata casuale - fondamentalmente si specifica un numero di "camminatori", ma invece di camminare in modo casuale - sceglieranno casualmente un altro camminatore o o li eviteranno (scegli il prossimo pixel disponibile più lontano ) - oppure cammina verso di loro (scegli il prossimo pixel disponibile più vicino a loro). Un esempio di output in scala di grigi è qui (farò un rendering a colori completo 4096x4096 dopo aver collegato la colorazione!):inserisci qui la descrizione dell'immagine


4
Un po 'in ritardo, ma benvenuto in PPCG! Questo è un eccellente primo post.
uno spaghetto il

1
Grazie! Non vedo l'ora di completare più sfide! Ultimamente ho fatto più cose sulla codifica delle immagini, è il mio nuovo hobby
applejacks01

Wow, questi sono fantastici; Sono contento di essere tornato a questo post oggi e ho controllato tutte le cose successive.
Jason C,

Grazie! Attualmente sto realizzando un po 'di algoritmo genetico per produrre gradienti interessanti. Fondamentalmente, prendi 10000 colori, formando una griglia 100x100. Per ogni pixel, ottieni i pixel vicini. Per ciascuno, ottieni la distanza CIEDE2000. Riassumilo. Sommalo per tutti i 10000 pixel. L'algoritmo genetico tenta di ridurre tale somma totale. È lento, ma per un'immagine 20x20 la sua uscita è davvero interessante
applejacks01

Amo particolarmente l'output di questa soluzione.
r_alex_hall

22

Tela HTML5 + JavaScript

Lo chiamo randoGraph e puoi crearne quanti ne vuoi qui

Qualche esempio:

Esempio 1

esempio 2

esempio 3

esempio 4

esempio 5

esempio 6

esempio 7

Ad esempio, in Firefox è possibile fare clic con il pulsante destro del mouse nell'area di disegno (al termine) e salvarlo come immagine. La produzione di immagini 4096x4096 è un tipo di problema a causa del limite di memoria di alcuni browser.

L'idea è abbastanza semplice ma ogni immagine è unica. Per prima cosa creiamo la tavolozza dei colori. Quindi partendo da punti X selezioniamo i colori casuali dalla tavolozza e le posizioni per loro (ogni volta che selezioniamo un colore lo cancelliamo dalla tavolozza) e registriamo dove lo mettiamo per non mettere nella stessa posizione il prossimo pixel.

Per ogni pixel tangente a quello creiamo un numero (X) di possibili colori e quindi selezioniamo il più rilevante per quel pixel. Questo continua fino al completamento dell'immagine.

Il codice HTML

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="el">
<head>
<script type="text/javascript" src="randoGraph.js"></script>
</head>
<body>
    <canvas id="randoGraphCanvas"></canvas> 
</body>
</html>

E il JavaScript per randoGraph.js

window.onload=function(){
    randoGraphInstance = new randoGraph("randoGraphCanvas",256,128,1,1);
    randoGraphInstance.setRandomness(500, 0.30, 0.11, 0.59);
    randoGraphInstance.setProccesses(10);
    randoGraphInstance.init(); 
}

function randoGraph(canvasId,width,height,delay,startings)
{
    this.pixels = new Array();
    this.colors = new Array(); 
    this.timeouts = new Array(); 
    this.randomFactor = 500;
    this.redFactor = 0.30;
    this.blueFactor = 0.11;
    this.greenFactor  = 0.59;
    this.processes = 1;
    this.canvas = document.getElementById(canvasId); 
    this.pixelsIn = new Array(); 
    this.stopped = false;

    this.canvas.width = width;
    this.canvas.height = height;
    this.context = this.canvas.getContext("2d");
    this.context.clearRect(0,0, width-1 , height-1);
    this.shadesPerColor = Math.pow(width * height, 1/3);
    this.shadesPerColor = Math.round(this.shadesPerColor * 1000) / 1000;

    this.setRandomness = function(randomFactor,redFactor,blueFactor,greenFactor)
    {
        this.randomFactor = randomFactor;
        this.redFactor = redFactor;
        this.blueFactor = blueFactor;
        this.greenFactor = greenFactor;
    }

    this.setProccesses = function(processes)
    {
        this.processes = processes;
    }

    this.init = function()
    {
        if(this.shadesPerColor > 256 || this.shadesPerColor % 1 > 0) 
        { 
            alert("The dimensions of the image requested to generate are invalid. The product of width multiplied by height must be a cube root of a integer number up to 256."); 
        }
        else 
        {
            var steps = 256 / this.shadesPerColor;
            for(red = steps / 2; red <= 255;)
            {
                for(blue = steps / 2; blue <= 255;)
                {
                    for(green = steps / 2; green <= 255;)
                    {   
                        this.colors.push(new Color(Math.round(red),Math.round(blue),Math.round(green)));
                        green = green + steps;
                    }
                    blue = blue + steps; 
                }
                red = red + steps; 
            }   

            for(var i = 0; i < startings; i++)
            {
                var color = this.colors.splice(randInt(0,this.colors.length - 1),1)[0];
                var pixel = new Pixel(randInt(0,width - 1),randInt(0,height - 1),color);
                this.addPixel(pixel);       
            }

            for(var i = 0; i < this.processes; i++)
            {
                this.timeouts.push(null);
                this.proceed(i);
            }
        }
    }

    this.proceed = function(index) 
    { 
        if(this.pixels.length > 0)
        {
            this.proceedPixel(this.pixels.splice(randInt(0,this.pixels.length - 1),1)[0]);
            this.timeouts[index] = setTimeout(function(that){ if(!that.stopped) { that.proceed(); } },this.delay,this);
        }
    }

    this.proceedPixel = function(pixel)
    {
        for(var nx = pixel.getX() - 1; nx < pixel.getX() + 2; nx++)
        {
            for(var ny = pixel.getY() - 1; ny < pixel.getY() + 2; ny++)
            {
                if(! (this.pixelsIn[nx + "x" + ny] == 1 || ny < 0 || nx < 0 || nx > width - 1 || ny > height - 1 || (nx == pixel.getX() && ny == pixel.getY())) )
                {
                    var color = this.selectRelevantColor(pixel.getColor());
                    var newPixel = new Pixel(nx,ny,color);
                    this.addPixel(newPixel);
                }
            }
        }   
    }

    this.selectRelevantColor = function(color)
    {
        var relevancies = new Array(); 
        var relColors = new Array(); 
        for(var i = 0; i < this.randomFactor && i < this.colors.length; i++)
        {
            var index = randInt(0,this.colors.length - 1);
            var c = this.colors[index];
            var relevancy = Math.pow( ((c.getRed()-color.getRed()) * this.redFactor) , 2)
            + Math.pow( ((c.getBlue()-color.getBlue()) * this.blueFactor), 2)
            + Math.pow( ((c.getGreen()-color.getGreen()) * this.greenFactor) , 2);
            relevancies.push(relevancy); 
            relColors[relevancy+"Color"] = index;
        }
        return this.colors.splice(relColors[relevancies.min()+"Color"],1)[0]
    }

    this.addPixel = function(pixel)
    {
        this.pixels.push(pixel);
        this.pixelsIn[pixel.getX() + "x" + pixel.getY() ] = 1;
        var color = pixel.getColor();
        this.context.fillStyle = "rgb("+color.getRed()+","+color.getBlue()+","+color.getGreen()+")";
        this.context.fillRect( pixel.getX(), pixel.getY(), 1, 1);   
    }

    var toHex = function toHex(num) 
    {
        num = Math.round(num);
        var hex = num.toString(16);
        return hex.length == 1 ? "0" + hex : hex;
    }

    this.clear = function()
    {
        this.stopped = true;
    }
}

function Color(red,blue,green)
{   
    this.getRed = function() { return red; } 
    this.getBlue = function() { return blue; } 
    this.getGreen = function() { return green; } 
}

function Pixel(x,y,color)
{   
    this.getX = function() { return x; } 
    this.getY = function() { return y; } 
    this.getColor = function() { return color; } 
}


function randInt(min, max) 
{
    return Math.floor(Math.random() * (max - min + 1)) + min;
}


// @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/min
Array.prototype.min = function() 
{
      return Math.min.apply(null, this);
};

// @see http://stackoverflow.com/questions/5223/length-of-javascript-object-ie-associative-array
Object.size = function(obj) 
{
    var size = 0, key;
    for (key in obj) {
        if (obj.hasOwnProperty(key)) size++;
    }
    return size;
};

È carino ma sembra la risposta C # di fejesjoco . È solo per caso?
AL

1
Gli algoritmi sono qui e chiunque può leggere e capire che sono molto diversi. Questa risposta, pubblicata dopo la risposta C # di fejesjoco, è stata dichiarata vincitrice motivata da quanto è bello il suo risultato. Poi ho pensato a un approccio completamente diverso di elaborazione e selezione dei colori vicini, e questo è tutto. Naturalmente entrambe le risposte hanno la stessa base, come la distribuzione uniforme dei colori utilizzati lungo lo spettro visibile, il concetto di colori pertinenti e i punti di partenza, forse confondendo quelle basi qualcuno potrebbe pensare che le immagini prodotte abbiano una somiglianza in alcuni casi.
KonstantinosX

Ok, mi dispiace se pensavi di criticare la tua risposta. Mi chiedevo solo se fossi ispirato dalla risposta di fejesjoco poiché l'output risultante è simile.
AL

1
"Definire metodi di una classe all'interno del costruttore invece di usare la catena di prototipi è davvero inefficiente, specialmente se detta classe viene utilizzata più volte." È un commento molto interessante Patrick Roberts. Hai qualche riferimento con l'esempio che lo convalida? , Vorrei sinceramente sapere se questa affermazione ha qualche base (al fine di smettere di usarla) e di cosa si tratta.
KonstantinosX,

2
Per quanto riguarda l'uso del prototipo: funziona più o meno allo stesso modo di un metodo statico. Quando hai la funzione definita nell'oggetto letterale, ogni nuovo oggetto che crei deve creare anche una nuova copia della funzione e memorizzarla con quell'istanza dell'oggetto (quindi 16 milioni di oggetti colore significano 16 milioni di copie di quella stessa identica funzione in memoria). In confronto, l'uso del prototipo lo creerà una sola volta, da associare alla "classe" anziché all'oggetto. Ciò ha evidenti vantaggi in termini di memoria e potenziali vantaggi in termini di velocità.
Mwr247,

20

Pitone

Quindi ecco la mia soluzione in Python, ci vuole quasi un'ora per realizzarne una, quindi probabilmente c'è qualche ottimizzazione da fare:

import PIL.Image as Image
from random import shuffle
import math

def mulColor(color, factor):
    return (int(color[0]*factor), int(color[1]*factor), int(color[2]*factor))

def makeAllColors(arg):
    colors = []
    for r in range(0, arg):
        for g in range(0, arg):
            for b in range(0, arg):
                colors.append((r, g, b))
    return colors

def distance(color1, color2):
    return math.sqrt(pow(color2[0]-color1[0], 2) + pow(color2[1]-color1[1], 2) + pow(color2[2]-color1[2], 2))

def getClosestColor(to, colors):
    closestColor = colors[0]
    d = distance(to, closestColor)
    for color in colors:
        if distance(to, color) < d:
            closestColor = color
            d = distance(to, closestColor)
    return closestColor

imgsize = (256, 128)
#imgsize = (10, 10)
colors = makeAllColors(32)
shuffle(colors)
factor = 255.0/32.0
img = Image.new("RGB", imgsize, "white")
#start = (imgsize[0]/4, imgsize[1]/4)
start = (imgsize[0]/2, 0)
startColor = colors.pop()
img.putpixel(start, mulColor(startColor, factor))

#color = getClosestColor(startColor, colors)
#img.putpixel((start[0]+1, start[1]), mulColor(color, factor))

edgePixels = [(start, startColor)]
donePositions = [start]
for pixel in edgePixels:
    if len(colors) > 0:
        color = getClosestColor(pixel[1], colors)
    m = [(pixel[0][0]-1, pixel[0][1]), (pixel[0][0]+1, pixel[0][2]), (pixel[0][0], pixel[0][3]-1), (pixel[0][0], pixel[0][4]+1)]
    if len(donePositions) >= imgsize[0]*imgsize[1]:
    #if len(donePositions) >= 100:
        break
    for pos in m:
        if (not pos in donePositions):
            if not (pos[0]<0 or pos[1]<0 or pos[0]>=img.size[0] or pos[1]>=img.size[1]):
                img.putpixel(pos, mulColor(color, factor))
                #print(color)
                donePositions.append(pos)
                edgePixels.append((pos, color))
                colors.remove(color)
                if len(colors) > 0:
                    color = getClosestColor(pixel[1], colors)
    print((len(donePositions) * 1.0) / (imgsize[0]*imgsize[1]))
print len(donePositions)
img.save("colors.png")

Ecco alcuni esempi di output:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine


1
Sembra alcune forme d'onda sonore pazze
Mark Jeronimus,

19

Giava

Ho deciso di provare questa sfida. Sono stato ispirato da questa risposta a un altro codice golf. Il mio programma genera immagini più brutte, ma hanno tutti i colori.

Inoltre, la mia prima volta golf a codice. :)

(Le immagini 4k erano troppo grandi per la mia piccola velocità di upload, ho provato a caricarne una ma dopo un'ora non si è caricata. Puoi generare le tue.)

Avvicinamento:

Genera un'immagine in 70 secondi sulla mia macchina, richiede circa 1,5 GB di memoria durante la generazione

Main.java

import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Random;

import javax.imageio.ImageIO;


public class Main {
    static char[][] colors = new char[4096 * 4096][3];
    static short[][] pixels = new short[4096 * 4096][2];

    static short[][] iterMap = new short[4096][4096];  

    public static int mandel(double re0, double im0, int MAX_ITERS) {
        double re = re0;
        double im = im0;
        double _r;
        double _i;
        double re2;
        double im2;
        for (int iters = 0; iters < MAX_ITERS; iters++) {
            re2 = re * re;
            im2 = im * im;
            if (re2 + im2 > 4.0) {
                return iters;
            }
            _r = re;
            _i = im;
            _r = re2 - im2;
            _i = 2 * (re * im);
            _r += re0;
            _i += im0;
            re = _r;
            im = _i;
        }
        return MAX_ITERS;
    }

    static void shuffleArray(Object[] ar) {
        Random rnd = new Random();
        for (int i = ar.length - 1; i > 0; i--) {
          int index = rnd.nextInt(i + 1);
          // Simple swap
          Object a = ar[index];
          ar[index] = ar[i];
          ar[i] = a;
        }
      }

    public static void main(String[] args) {
        long startTime = System.nanoTime();

        System.out.println("Generating colors...");

        for (int i = 0; i < 4096 * 4096; i++) {
            colors[i][0] = (char)((i >> 16) & 0xFF); // Red
            colors[i][1] = (char)((i >> 8) & 0xFF);  // Green
            colors[i][2] = (char)(i & 0xFF);         // Blue
        }

        System.out.println("Sorting colors...");

        //shuffleArray(colors); // Not needed

        Arrays.sort(colors, new Comparator<char[]>() {
            @Override
            public int compare(char[] a, char[] b) {
                return (a[0] + a[1] + a[2]) - (b[0] + b[1] + b[2]);
            }
        });

        System.out.println("Generating fractal...");

        for (int y = -2048; y < 2048; y++) {
            for (int x = -2048; x < 2048; x++) {
                short iters = (short) mandel(x / 1024.0, y / 1024.0, 1024);
                iterMap[x + 2048][y + 2048] = iters;
            }
        }

        System.out.println("Organizing pixels in the image...");

        for (short x = 0; x < 4096; x++) {
            for (short y = 0; y < 4096; y++) {
                pixels[x * 4096 + y][0] = x;
                pixels[x * 4096 + y][1] = y;
            }
        }

        shuffleArray(pixels);

        Arrays.sort(pixels, new Comparator<short[]>() {
            @Override
            public int compare(short[] a, short[] b) {
                return iterMap[b[0]][b[1]] - iterMap[a[0]][a[1]];
            }
        });

        System.out.println("Writing image to BufferedImage...");

        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        Graphics2D g = img.createGraphics();

        for (int i = 0; i < 4096 * 4096; i++) {
            g.setColor(new Color(colors[i][0], colors[i][1], colors[i][2]));
            g.fillRect(pixels[i][0], pixels[i][1], 1, 1);
        }

        g.dispose();

        System.out.println("Writing image to file...");

        File imageFile = new File("image.png");

        try {
            ImageIO.write(img, "png", imageFile);
        } catch (IOException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }

        System.out.println("Done!");
        System.out.println("Took " + ((System.nanoTime() - startTime) / 1000000000.) + " seconds.");
        System.out.println();
        System.out.println("The result is saved in " + imageFile.getAbsolutePath());

    }

}

18

matematica

colors = Table[
r = y*256 + x; {BitAnd[r, 2^^111110000000000]/32768., 
BitAnd[r, 2^^1111100000]/1024., BitAnd[r, 2^^11111]/32.}, {y, 0, 
127}, {x, 0, 255}];
SeedRandom[1337];
maxi = 5000000;
Monitor[For[i = 0, i < maxi, i++,
x1 = RandomInteger[{2, 255}];
x2 = RandomInteger[{2, 255}];
y1 = RandomInteger[{2, 127}];
y2 = RandomInteger[{2, 127}];
c1 = colors[[y1, x1]];
c2 = colors[[y2, x2]];
ca1 = (colors[[y1 - 1, x1]] + colors[[y1, x1 - 1]] + 
  colors[[y1 + 1, x1]] + colors[[y1, x1 + 1]])/4.;
ca2 = (colors[[y2 - 1, x2]] + colors[[y2, x2 - 1]] + 
  colors[[y2 + 1, x2]] + colors[[y2, x2 + 1]])/4.;
d1 = Abs[c1[[1]] - ca1[[1]]] + Abs[c1[[2]] - ca1[[2]]] + 
Abs[c1[[3]] - ca1[[3]]];
d1p = Abs[c2[[1]] - ca1[[1]]] + Abs[c2[[2]] - ca1[[2]]] + 
Abs[c2[[3]] - ca1[[3]]];
d2 = Abs[c2[[1]] - ca2[[1]]] + Abs[c2[[2]] - ca2[[2]]] + 
Abs[c2[[3]] - ca2[[3]]];
d2p = Abs[c1[[1]] - ca2[[1]]] + Abs[c1[[2]] - ca2[[2]]] + 
Abs[c1[[3]] - ca2[[3]]];
If[(d1p + d2p < 
  d1 + d2) || (RandomReal[{0, 1}] < 
   Exp[-Log10[i]*(d1p + d2p - (d1 + d2))] && i < 1000000),
temp = colors[[y1, x1]];
colors[[y1, x1]] = colors[[y2, x2]];
colors[[y2, x2]] = temp
]
], ProgressIndicator[i, {1, maxi}]]
Image[colors]

Risultato (2x):

256x128 2x

Immagine originale 256x128

Modificare:

sostituendo Log10 [i] con Log10 [i] / 5 ottieni: inserisci qui la descrizione dell'immagine

Il codice sopra riportato si riferisce alla ricottura simulata. Vista in questo modo, la seconda immagine viene creata con una "temperatura" più elevata nei primi 10 ^ 6 passaggi. La "temperatura" più alta provoca più permutazioni tra i pixel, mentre nella prima immagine la struttura dell'immagine ordinata è ancora leggermente visibile.


17

JavaScript

Sono ancora uno studente e la mia prima volta che invio post quindi i miei codici probabilmente sono disordinati e non sono sicuro al 100% che le mie foto abbiano tutti i colori necessari, ma sono stato molto contento dei miei risultati, quindi ho pensato di pubblicarli.

So che il concorso è finito, ma ho amato davvero i risultati di questi e ho sempre amato l'aspetto di labirinti ricorsivi generati dal backtrack, quindi ho pensato che sarebbe bello vedere come sarebbe se si posizionassero pixel colorati. Quindi inizio generando tutti i colori in un array, quindi eseguo il backtracking ricorsivo mentre rimuovo i colori dall'array.

Ecco il mio JSFiddle http://jsfiddle.net/Kuligoawesome/3VsCu/

// Global variables
const FPS = 60;// FrameRate
var canvas = null;
var ctx = null;

var bInstantDraw = false;
var MOVES_PER_UPDATE = 50; //How many pixels get placed down
var bDone = false;
var width; //canvas width
var height; //canvas height
var colorSteps = 32;

var imageData;
var grid;
var colors;

var currentPos;
var prevPositions;

// This is called when the page loads
function Init()
{
    canvas = document.getElementById('canvas'); // Get the HTML element with the ID of 'canvas'
    width = canvas.width;
    height = canvas.height;
    ctx = canvas.getContext('2d'); // This is necessary, but I don't know exactly what it does

    imageData = ctx.createImageData(width,height); //Needed to do pixel manipulation

    grid = []; //Grid for the labyrinth algorithm
    colors = []; //Array of all colors
    prevPositions = []; //Array of previous positions, used for the recursive backtracker algorithm

    for(var r = 0; r < colorSteps; r++)
    {
        for(var g = 0; g < colorSteps; g++)
        {
            for(var b = 0; b < colorSteps; b++)
            {
                colors.push(new Color(r * 255 / (colorSteps - 1), g * 255 / (colorSteps - 1), b * 255 / (colorSteps - 1)));
                //Fill the array with all colors
            }
        }
    }

    colors.sort(function(a,b)
    {
        if (a.r < b.r)
            return -1;
        if (a.r > b.r)
            return 1;
        if (a.g < b.g)
            return -1;
        if (a.g > b.g)
            return 1;
        if (a.b < b.b)
            return -1;
        if (a.b > b.b)
            return 1;
        return 0;
    });

    for(var x = 0; x < width; x++)
    {
        grid.push(new Array());
        for(var y = 0; y < height; y++)
        {
            grid[x].push(0); //Set up the grid
            //ChangePixel(imageData, x, y, colors[x + (y * width)]);
        }
    }

    currentPos = new Point(Math.floor(Math.random() * width),Math.floor(Math.random() * height)); 

    grid[currentPos.x][currentPos.y] = 1;
    prevPositions.push(currentPos);
    ChangePixel(imageData, currentPos.x, currentPos.y, colors.pop());

    if(bInstantDraw)
    {
        do
        {
            var notMoved = true;
            while(notMoved)
            {
                var availableSpaces = CheckForSpaces(grid);

                if(availableSpaces.length > 0)
                {
                    var test = availableSpaces[Math.floor(Math.random() * availableSpaces.length)];
                    prevPositions.push(currentPos);
                    currentPos = test;
                    grid[currentPos.x][currentPos.y] = 1;
                    ChangePixel(imageData, currentPos.x, currentPos.y, colors.pop());
                    notMoved = false;
                }
                else
                {
                    if(prevPositions.length != 0)
                    {
                        currentPos = prevPositions.pop();
                    }
                    else
                    {
                        break;
                    }
                }
            }
        }
        while(prevPositions.length > 0)

        ctx.putImageData(imageData,0,0);
    }
    else
    {
        setInterval(GameLoop, 1000 / FPS);
    }
}

// Main program loop
function GameLoop()
{
    Update();
    Draw();
}

// Game logic goes here
function Update()
{
    if(!bDone)
    {
        var counter = MOVES_PER_UPDATE;
        while(counter > 0) //For speeding up the drawing
        {
            var notMoved = true;
            while(notMoved)
            {
                var availableSpaces = CheckForSpaces(grid); //Find available spaces

                if(availableSpaces.length > 0) //If there are available spaces
                {
                    prevPositions.push(currentPos); //add old position to prevPosition array
                    currentPos = availableSpaces[Math.floor(Math.random() * availableSpaces.length)]; //pick a random available space
                    grid[currentPos.x][currentPos.y] = 1; //set that space to filled
                    ChangePixel(imageData, currentPos.x, currentPos.y, colors.pop()); //pop color of the array and put it in that space
                    notMoved = false;
                }
                else
                {
                    if(prevPositions.length != 0)
                    {
                        currentPos = prevPositions.pop(); //pop to previous position where spaces are available
                    }
                    else
                    {
                        bDone = true;
                        break;
                    }
                }
            }
            counter--;
        }
    }
}
function Draw()
{
    // Clear the screen
    ctx.clearRect(0, 0, ctx.canvas.width, ctx.canvas.height);
    ctx.fillStyle='#000000';
    ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);

    ctx.putImageData(imageData,0,0);
}

function CheckForSpaces(inGrid) //Checks for available spaces then returns back all available spaces
{
    var availableSpaces = [];

    if(currentPos.x > 0 && inGrid[currentPos.x - 1][currentPos.y] == 0)
    {
        availableSpaces.push(new Point(currentPos.x - 1, currentPos.y));
    }

    if(currentPos.x < width - 1 && inGrid[currentPos.x + 1][currentPos.y] == 0)
    {
        availableSpaces.push(new Point(currentPos.x + 1, currentPos.y));
    }

    if(currentPos.y > 0 && inGrid[currentPos.x][currentPos.y - 1] == 0)
    {
        availableSpaces.push(new Point(currentPos.x, currentPos.y - 1));
    }

    if(currentPos.y < height - 1 && inGrid[currentPos.x][currentPos.y + 1] == 0)
    {
        availableSpaces.push(new Point(currentPos.x, currentPos.y + 1));
    }

    return availableSpaces;
}

function ChangePixel(data, x, y, color) //Quick function to simplify changing pixels
{
    data.data[((x + (y * width)) * 4) + 0] = color.r;
    data.data[((x + (y * width)) * 4) + 1] = color.g;
    data.data[((x + (y * width)) * 4) + 2] = color.b;
    data.data[((x + (y * width)) * 4) + 3] = 255;
}

/*Needed Classes*/
function Point(xIn, yIn)
{
    this.x = xIn;
    this.y = yIn;
}

function Color(r, g, b)
{
    this.r = r;
    this.g = g;
    this.b = b;
    this.hue = Math.atan2(Math.sqrt(3) * (this.g - this.b), 2 * this.r - this.g, this.b);
    this.min = Math.min(this.r, this.g);
    this.min = Math.min(this.min, this.b);
    this.min /= 255;
    this.max = Math.max(this.r, this.g);
    this.max = Math.max(this.max, this.b);
    this.max /= 255;
    this.luminance = (this.min + this.max) / 2;
    if(this.min === this.max)
    {
        this.saturation = 0;
    }
    else if(this.luminance < 0.5)
    {
        this.saturation = (this.max - this.min) / (this.max + this.min);
    }
    else if(this.luminance >= 0.5)
    {
        this.saturation = (this.max - this.min) / (2 - this.max - this.min);
    }
}

Immagine 256x128, colori ordinati rosso-> verde-> blu
Colori ordinati RGB

Immagine 256x128, colori ordinati blu-> verde-> rosso
Colori ordinati BGR

Immagine 256x128, colori ordinati tonalità-> luminanza-> saturazione
Colori ordinati HLS

E infine una GIF di uno generato
Color Labyrinth GIF


I tuoi colori vengono ritagliati nelle regioni più luminose, causando duplicati. Cambia r * Math.ceil(255 / (colorSteps - 1)in r * Math.floor(255 / (colorSteps - 1)o anche meglio: r * 255 / (colorSteps - 1)(non testato, dal momento che non hai fornito un jsfiddle)
Mark Jeronimus

Chissà, sì, avevo la sensazione che avrebbe causato problemi, si spera che ora sia risolto, e mi dispiace per la mancanza di jsfiddle (non sapevo che esistesse!) Grazie!
Kuligoawesome

Adoro l'output ordinato di caos / rumore di questa e di un'altra soluzione che produce output simili.
r_alex_hall

17

C #

Quindi ho iniziato a lavorarci su come un esercizio divertente e ho finito con un risultato che almeno per me sembra abbastanza pulito. La differenza chiave nella mia soluzione (almeno) alla maggior parte degli altri è che sto generando esattamente il numero di colori necessari per iniziare e spaziando uniformemente la generazione dal bianco puro al nero puro. Sto anche impostando i colori lavorando in una spirale interiore e scegliendo il colore successivo in base alla media della differenza di colore tra tutti i vicini che sono stati impostati.

Ecco un piccolo output di esempio che ho prodotto finora, sto lavorando su un rendering 4K ma mi aspetto che ci vorrà un giorno per terminare.

Ecco un esempio dell'output delle specifiche a 256x128:

Rendering delle specifiche

Alcune immagini più grandi con tempi di rendering ancora ragionevoli:

Rendering a 360 x 240

La seconda corsa a 360 x 240 ha prodotto un'immagine molto più fluida

Rendering # 2 a 360 x 240

Dopo aver migliorato le prestazioni sono stato in grado di eseguire un rendering HD che ha richiesto 2 giorni, non ho ancora rinunciato a un 4K, ma potrebbero volerci settimane.

Rendering HD

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;

namespace SandBox
{
    class Program
    {
        private static readonly List<Point> directions = new List<Point>
        {
            new Point(1, 0),
            new Point(0, 1),
            new Point(-1, 0),
            new Point(0, -1)
        };

        static void Main(string[] args)
        {
            if (args.Length != 2)
            {
                HelpFile();
                return;
            }
            try
            {
                var config = new ColorGeneratorConfig
                {
                    XLength = int.Parse(args[0]),
                    YLength = int.Parse(args[1])
                };

                Console.WriteLine("Starting image generation with:");
                Console.WriteLine($"\tDimensions:\t\t{config.XLength} X {config.YLength}");
                Console.WriteLine($"\tSteps Per Channel:\t{config.NumOfSteps}");
                Console.WriteLine($"\tStep Size:\t\t{config.ColorStep}");
                Console.WriteLine($"\tSteps to Skip:\t\t{config.StepsToSkip}\n");

                var runner = new TaskRunner();
                var colors = runner.Run(() => GenerateColorList(config), "color selection");
                var pixels = runner.Run(() => BuildPixelArray(colors, config), "pixel array generation");
                runner.Run(() => OutputBitmap(pixels, config), "bitmap creation");
            }
            catch (Exception ex)
            {
               HelpFile("There was an issue in execution");
            }

            Console.ReadLine();
        }

        private static void HelpFile(string errorMessage = "")
        {
            const string Header = "Generates an image with every pixel having a unique color";
            Console.WriteLine(errorMessage == string.Empty ? Header : $"An error has occured: {errorMessage}\n Ensure the Arguments you have provided are valid");
            Console.WriteLine();
            Console.WriteLine($"{AppDomain.CurrentDomain.FriendlyName} X Y");
            Console.WriteLine();
            Console.WriteLine("X\t\tThe Length of the X dimension eg: 256");
            Console.WriteLine("Y\t\tThe Length of the Y dimension eg: 128");
        }

        public static List<Color> GenerateColorList(ColorGeneratorConfig config)
        {

            //Every iteration of our color generation loop will add the iterationfactor to this accumlator which is used to know when to skip
            decimal iterationAccumulator = 0;

            var colors = new List<Color>();
            for (var r = 0; r < config.NumOfSteps; r++)
                for (var g = 0; g < config.NumOfSteps; g++)
                    for (var b = 0; b < config.NumOfSteps; b++)
                    {
                        iterationAccumulator += config.IterationFactor;

                        //If our accumulator has reached 1, then subtract one and skip this iteration
                        if (iterationAccumulator > 1)
                        {
                            iterationAccumulator -= 1;
                            continue;
                        }

                        colors.Add(Color.FromArgb(r*config.ColorStep, g*config.ColorStep,b*config.ColorStep));
                    }
            return colors;
        }

        public static Color?[,] BuildPixelArray(List<Color> colors, ColorGeneratorConfig config)
        {
            //Get a random color to start with.
            var random = new Random(Guid.NewGuid().GetHashCode());
            var nextColor = colors[random.Next(colors.Count)];

            var pixels = new Color?[config.XLength, config.YLength];
            var currPixel = new Point(0, 0);

            var i = 0;

            //Since we've only generated exactly enough colors to fill our image we can remove them from the list as we add them to our image and stop when none are left.
            while (colors.Count > 0)
            {
                i++;

                //Set the current pixel and remove the color from the list.
                pixels[currPixel.X, currPixel.Y] = nextColor;
                colors.RemoveAt(colors.IndexOf(nextColor));

                //Our image generation works in an inward spiral generation GetNext point will retrieve the next pixel given the current top direction.
                var nextPixel = GetNextPoint(currPixel, directions.First());

                //If this next pixel were to be out of bounds (for first circle of spiral) or hit a previously generated pixel (for all other circles)
                //Then we need to cycle the direction and get a new next pixel
                if (nextPixel.X >= config.XLength || nextPixel.Y >= config.YLength || nextPixel.X < 0 || nextPixel.Y < 0 ||
                    pixels[nextPixel.X, nextPixel.Y] != null)
                {
                    var d = directions.First();
                    directions.RemoveAt(0);
                    directions.Add(d);
                    nextPixel = GetNextPoint(currPixel, directions.First());
                }

                //This code sets the pixel to pick a color for and also gets the next color
                //We do this at the end of the loop so that we can also support haveing the first pixel set outside of the loop
                currPixel = nextPixel;

                if (colors.Count == 0) continue;

                var neighbours = GetNeighbours(currPixel, pixels, config);
                nextColor = colors.AsParallel().Aggregate((item1, item2) => GetAvgColorDiff(item1, neighbours) <
                                                                            GetAvgColorDiff(item2, neighbours)
                    ? item1
                    : item2);
            }

            return pixels;
        }

        public static void OutputBitmap(Color?[,] pixels, ColorGeneratorConfig config)
        {
            //Now that we have generated our image in the color array we need to copy it into a bitmap and save it to file.
            var image = new Bitmap(config.XLength, config.YLength);

            for (var x = 0; x < config.XLength; x++)
                for (var y = 0; y < config.YLength; y++)
                    image.SetPixel(x, y, pixels[x, y].Value);

            using (var file = new FileStream($@".\{config.XLength}X{config.YLength}.png", FileMode.Create))
            {
                image.Save(file, ImageFormat.Png);
            }
        }

        static Point GetNextPoint(Point current, Point direction)
        {
            return new Point(current.X + direction.X, current.Y + direction.Y);
        }

        static List<Color> GetNeighbours(Point current, Color?[,] grid, ColorGeneratorConfig config)
        {
            var list = new List<Color>();
            foreach (var direction in directions)
            {
                var xCoord = current.X + direction.X;
                var yCoord = current.Y + direction.Y;
                if (xCoord < 0 || xCoord >= config.XLength|| yCoord < 0 || yCoord >= config.YLength)
                {
                    continue;
                }
                var cell = grid[xCoord, yCoord];
                if (cell.HasValue) list.Add(cell.Value);
            }
            return list;
        }

        static double GetAvgColorDiff(Color source, IList<Color> colors)
        {
            return colors.Average(color => GetColorDiff(source, color));
        }

        static int GetColorDiff(Color color1, Color color2)
        {
            var redDiff = Math.Abs(color1.R - color2.R);
            var greenDiff = Math.Abs(color1.G - color2.G);
            var blueDiff = Math.Abs(color1.B - color2.B);
            return redDiff + greenDiff + blueDiff;
        }
    }

    public class ColorGeneratorConfig
    {
        public int XLength { get; set; }
        public int YLength { get; set; }

        //Get the number of permutations for each color value base on the required number of pixels.
        public int NumOfSteps
            => (int)Math.Ceiling(Math.Pow((ulong)XLength * (ulong)YLength, 1.0 / ColorDimensions));

        //Calculate the increment for each step
        public int ColorStep
            => 255 / (NumOfSteps - 1);

        //Because NumOfSteps will either give the exact number of colors or more (never less) we will sometimes to to skip some
        //this calculation tells how many we need to skip
        public decimal StepsToSkip
            => Convert.ToDecimal(Math.Pow(NumOfSteps, ColorDimensions) - XLength * YLength);

        //This factor will be used to as evenly as possible spread out the colors to be skipped so there are no large gaps in the spectrum
        public decimal IterationFactor => StepsToSkip / Convert.ToDecimal(Math.Pow(NumOfSteps, ColorDimensions));

        private double ColorDimensions => 3.0;
    }

    public class TaskRunner
    {
        private Stopwatch _sw;
        public TaskRunner()
        {
            _sw = new Stopwatch();
        }

        public void Run(Action task, string taskName)
        {
            Console.WriteLine($"Starting {taskName}...");
            _sw.Start();
            task();
            _sw.Stop();
            Console.WriteLine($"Finished {taskName}. Elapsed(ms): {_sw.ElapsedMilliseconds}");
            Console.WriteLine();
            _sw.Reset();
        }

        public T Run<T>(Func<T> task, string taskName)
        {
            Console.WriteLine($"Starting {taskName}...");
            _sw.Start();
            var result = task();
            _sw.Stop();
            Console.WriteLine($"Finished {taskName}. Elapsed(ms): {_sw.ElapsedMilliseconds}");
            Console.WriteLine();
            _sw.Reset();
            return result;
        }
    }
}

Se qualcuno ha qualche idea su come migliorare le prestazioni dell'algoritmo di selezione dei colori, per favore fatemi sapere, poiché i rendering a 360 * 240 richiedono circa 15 minuti. Non credo che possa essere parallelizzato ma mi chiedo se ci sarebbe un modo più veloce per ottenere la differenza di colore più bassa.
Phaeze,

In che modo un'immagine di 360 * 240 costituisce "tutti i colori"? Come stai producendo cbrt (360 * 240) = 44.208377983684639269357874002958 colori per componente?
Mark Jeronimus,

Che lingua è questa? Randomizzare un tipo di elenco e Casuale è una cattiva idea a prescindere, perché a seconda dell'algoritmo e dell'implementazione può causare un risultato parziale o un'eccezione affermando che "Comparison method violates its general contract!": perché il contratto lo afferma (x.compareTo(y)>0 && y.compareTo(z)>0) implies x.compareTo(z)>0. Per randomizzare un elenco, utilizzare alcuni metodi Shuffle forniti. ( colors.Shuffle()?)
Mark Jeronimus,

@MarkJeronimus Ammetto di aver perso le specifiche sull'immagine 256x128, farò i rendering semplici usando quelle dimensioni, mi sono concentrato su ogni pixel è un aspetto colore unico della sfida e rendering più grandi come altri invii.
Phaeze,

@MarkJeronimus Mi rendo conto che l'ordinamento casuale è male, in effetti c'è un commento che dice altrettanto. Questo era solo un residuo di un altro approccio che ho iniziato ad adottare e stavo dando la priorità a eseguire i rendering di grandi dimensioni poiché impiegano molto tempo.
Phaeze,

16

Partire

Eccone un altro, penso che dia risultati più interessanti:

package main

import (
    "image"
    "image/color"
    "image/png"
    "os"

    "math"
    "math/rand"
)

func distance(c1, c2 color.Color) float64 {
    r1, g1, b1, _ := c1.RGBA()
    r2, g2, b2, _ := c2.RGBA()
    rd, gd, bd := int(r1)-int(r2), int(g1)-int(g2), int(b1)-int(b2)
    return math.Sqrt(float64(rd*rd + gd*gd + bd*bd))
}

func main() {
    allcolor := image.NewRGBA(image.Rect(0, 0, 256, 128))
    for y := 0; y < 128; y++ {
        for x := 0; x < 256; x++ {
            allcolor.Set(x, y, color.RGBA{uint8(x%32) * 8, uint8(y%32) * 8, uint8(x/32+(y/32*8)) * 8, 255})
        }
    }

    for y := 0; y < 128; y++ {
        for x := 0; x < 256; x++ {
            rx, ry := rand.Intn(256), rand.Intn(128)

            c1, c2 := allcolor.At(x, y), allcolor.At(rx, ry)
            allcolor.Set(x, y, c2)
            allcolor.Set(rx, ry, c1)
        }
    }

    for i := 0; i < 16384; i++ {
        for y := 0; y < 128; y++ {
            for x := 0; x < 256; x++ {
                xl, xr := (x+255)%256, (x+1)%256
                cl, c, cr := allcolor.At(xl, y), allcolor.At(x, y), allcolor.At(xr, y)
                dl, dr := distance(cl, c), distance(c, cr)
                if dl < dr {
                    allcolor.Set(xl, y, c)
                    allcolor.Set(x, y, cl)
                }

                yu, yd := (y+127)%128, (y+1)%128
                cu, c, cd := allcolor.At(x, yu), allcolor.At(x, y), allcolor.At(x, yd)
                du, dd := distance(cu, c), distance(c, cd)
                if du < dd {
                    allcolor.Set(x, yu, c)
                    allcolor.Set(x, y, cu)
                }
            }
        }
    }

    filep, err := os.Create("EveryColor.png")
    if err != nil {
        panic(err)
    }
    err = png.Encode(filep, allcolor)
    if err != nil {
        panic(err)
    }
    filep.Close()
}

Inizia con lo stesso modello della gif nell'altra mia risposta . Quindi, lo mescola in questo:

solo rumore

Più iterazioni eseguo l'algoritmo di confronto del vicino piuttosto banale, più evidente diventa il modello arcobaleno.

Ecco 16384:

un arcobaleno molto rumoroso a 16384 iterazioni

E 65536:

inserisci qui la descrizione dell'immagine


6
+1 Mi piace che un modello emerga da quello; dovresti farne un'animazione!
Jason C,

16

Queste immagini sono "Langton's Rainbow". Sono disegnati piuttosto semplicemente: mentre la formica di Langton si muove, un colore viene disegnato su ogni pixel la prima volta che viene visto. Il colore da disegnare successivamente viene quindi semplicemente incrementato di 1, assicurando che vengano utilizzati 2 ^ 15 colori, uno per ogni pixel.

MODIFICARE: ho realizzato una versione che esegue il rendering di immagini 4096X4096, utilizzando 2 ^ 24 colori. I colori sono anche "riflessi", quindi creano gradazioni gradevoli e uniformi. Fornirò i collegamenti solo perché sono enormi (> 28 MB)

Langton's Rainbow grande, regola LR

Langton's Rainbow grande, regola LLRR

// Fine della modifica.

Questo per il classico set di regole LR:

Langton's Rainbow LR

Ecco LLRR:

Langton's Rainbow LLRR

Infine, questo utilizza il set di regole LRRRRRLLR:

Langton's Rainbow LRRRRRLLR

Scritto in C ++, usando CImg per la grafica. Vorrei anche menzionare il modo in cui i colori sono stati selezionati: in primo luogo, uso un short senza segno per contenere i dati di colore RGB. Ogni volta che una cella viene visualizzata per la prima volta, sposta a destra i bit di un multiplo di 5, E di 31, quindi moltiplico per 8. Quindi il colore corto senza segno viene incrementato di 1. Questo produce valori da 0 a 248 al massimo. Tuttavia, ho sottratto questo valore da 255 nei componenti rosso e blu, quindi R e B sono in multipli di 8, a partire da 255, fino a 7:

c[0]=255-((color&0x1F)*8);
c[2]=255-(((color>>5)&0x1F)*8);
c[1]=(((color>>10)&0x1F)*8);

Tuttavia, ciò non si applica al componente verde, che è in multipli di 8 da 0 a 248. In ogni caso, ogni pixel dovrebbe contenere un colore unico.

Comunque, il codice sorgente è sotto:

#include "CImg.h"
using namespace cimg_library;
CImgDisplay screen;
CImg<unsigned char> surf;
#define WIDTH 256
#define HEIGHT 128
#define TOTAL WIDTH*HEIGHT
char board[WIDTH][HEIGHT];


class ant
{
  public:
  int x,y;
  char d;
  unsigned short color;
  void init(int X, int Y,char D)
  {
    x=X;y=Y;d=D;
    color=0;
  }

  void turn()
  {
    ///Have to hard code for the rule set here.
    ///Make sure to set RULECOUNT to the number of rules!
    #define RULECOUNT 9
    //LRRRRRLLR
    char get=board[x][y];
    if(get==0||get==6||get==7){d+=1;}
    else{d-=1;}
    if(d<0){d=3;}
    else if(d>3){d=0;}
  }

  void forward()
  {
    if(d==0){x++;}
    else if(d==1){y--;}
    else if(d==2){x--;}
    else {y++;}
    if(x<0){x=WIDTH-1;}
    else if(x>=WIDTH){x=0;}
    if(y<0){y=HEIGHT-1;}
    else if(y>=HEIGHT){y=0;}
  }

  void draw()
  {
    if(board[x][y]==-1)
    {
      board[x][y]=0;
      unsigned char c[3];
      c[0]=255-((color&0x1F)*8);
      c[2]=255-(((color>>5)&0x1F)*8);
      c[1]=(((color>>10)&0x1F)*8);
      surf.draw_point(x,y,c);
      color++;
    }

    board[x][y]++;
    if(board[x][y]==RULECOUNT){board[x][y]=0;}

  }

  void step()
  {
    draw();
    turn();
    forward();
  }
};

void renderboard()
{
  unsigned char white[]={200,190,180};
  surf.draw_rectangle(0,0,WIDTH,HEIGHT,white);
  for(int x=0;x<WIDTH;x++)
  for(int y=0;y<HEIGHT;y++)
  {
    char get=board[x][y];
    if(get==1){get=1;unsigned char c[]={255*get,255*get,255*get};
    surf.draw_point(x,y,c);}
    else if(get==0){get=0;unsigned char c[]={255*get,255*get,255*get};
    surf.draw_point(x,y,c);}
  }
}

int main(int argc, char** argv)
{

  screen.assign(WIDTH*3,HEIGHT*3);
  surf.assign(WIDTH,HEIGHT,1,3);
  ant a;
  a.init(WIDTH/2,HEIGHT/2,2);
  surf.fill(0);
  for(int x=0;x<WIDTH;x++)
  for(int y=0;y<HEIGHT;y++)
  {
    board[x][y]=-1;
  }

  while(a.color<TOTAL)
  {
    a.step();
  }

  screen=surf;
  while(screen.is_closed()==false)
  {
    screen.wait();
  }
  surf.save_bmp("LangtonsRainbow.bmp");
  return 0;
}

1
Benvenuto e unisciti al club. Forse è interessante provare altre turmiti da code.google.com/p/ruletablerepository/wiki/… (ci ho partecipato)
Mark Jeronimus

3
I collegamenti alle immagini sono morti perché Dropbox ha ucciso le cartelle pubbliche.
user2428118,

15

Rubino

Ho deciso di andare avanti e creare il PNG da zero, perché pensavo che sarebbe stato interessante. Questo codice sta letteralmente producendo il raw dati binari in un file.

Ho fatto la versione 512x512. (L'algoritmo è piuttosto poco interessante, però.) Termina in circa 3 secondi sulla mia macchina.

require 'zlib'

class RBPNG
  def initialize
    # PNG header
    @data = [137, 80, 78, 71, 13, 10, 26, 10].pack 'C*'
  end

  def chunk name, data = ''
    @data += [data.length].pack 'N'
    @data += name
    @data += data
    @data += [Zlib::crc32(name + data)].pack 'N'
  end

  def IHDR opts = {}
    opts = {bit_depth: 8, color_type: 6, compression: 0, filter: 0, interlace: 0}.merge opts
    raise 'IHDR - Missing width param' if !opts[:width]
    raise 'IHDR - Missing height param' if !opts[:height]

    self.chunk 'IHDR', %w[width height].map {|x| [opts[x.to_sym]].pack 'N'}.join +
                       %w[bit_depth color_type compression filter interlace].map {|x| [opts[x.to_sym]].pack 'C'}.join
  end

  def IDAT data; self.chunk 'IDAT', Zlib.deflate(data); end
  def IEND; self.chunk 'IEND'; end
  def write filename; IO.binwrite filename, @data; end
end

class Color
  attr_accessor :r, :g, :b, :a

  def initialize r = 0, g = 0, b = 0, a = 255
    if r.is_a? Array
      @r, @g, @b, @a = @r
      @a = 255 if !@a
    else
      @r = r
      @g = g
      @b = b
      @a = a
    end
  end

  def hex; '%02X' * 4 % [@r, @g, @b, @a]; end
  def rgbhex; '%02X' * 3 % [@r, @g, @b]; end
end

img = RBPNG.new
img.IHDR({width: 512, height: 512, color_type: 2})
#img.IDAT ['00000000FFFFFF00FFFFFF000000'].pack 'H*'
r = g = b = 0
data = Array.new(512){ Array.new(512){
  c = Color.new r, g, b
  r += 4
  if r == 256
    r = 0
    g += 4
    if g == 256
      g = 0
      b += 4
    end
  end
  c
} }
img.IDAT [data.map {|x| '00' + x.map(&:rgbhex).join }.join].pack 'H*'
img.IEND
img.write 'all_colors.png'

Output (in all_colors.png) (fare clic su una di queste immagini per ingrandirle):

Produzione

Output gradiente-ish un po 'più interessante (cambiando la quarta all'ultima riga in }.shuffle }):

Uscita 2

E cambiandolo in }.shuffle }.shuffle, ottieni linee di colore folli:

Uscita 3


È davvero bello. C'è un modo per renderlo più carino però? Forse randomizzare i pixel? Scoring is by vote. Vote for the most beautiful images made by the most elegant code.

1
@LowerClassOverflowian Ok, modificato
Maniglia della porta

Molto meglio!!!!!!!

1
Cosa succederà se hai cambiato la 4a all'ultima riga }.shuffle }.shuffle }.shuffle?
John Odom,

6
@ John Erm, errore di sintassi, probabilmente?
Maniglia della porta

14

Pitone

plasma

Utilizzo di Python per ordinare i colori in base alla luminanza, generando un modello di luminanza e selezionando il colore più appropriato. I pixel sono iterati in ordine casuale in modo tale che le corrispondenze di luminanza meno favorevoli che si verificano naturalmente quando l'elenco dei colori disponibili si riducono si distribuiscano uniformemente in tutta l'immagine.

#!/usr/bin/env python

from PIL import Image
from math import pi, sin, cos
import random

WIDTH = 256
HEIGHT = 128

img = Image.new("RGB", (WIDTH, HEIGHT))

colors = [(x >> 10, (x >> 5) & 31, x & 31) for x in range(32768)]
colors = [(x[0] << 3, x[1] << 3, x[2] << 3) for x in colors]
colors.sort(key=lambda x: x[0] * 0.2126 + x[1] * 0.7152 + x[2] * 0.0722)

def get_pixel(lum):
    for i in range(len(colors)):
        c = colors[i]
        if c[0] * 0.2126 + c[1] * 0.7152 + c[2] * 0.0722 > lum:
            break
    return colors.pop(i)

def plasma(x, y):
    x -= WIDTH / 2
    p = sin(pi * x / (32 + 10 * sin(y * pi / 32)))
    p *= cos(pi * y / 64)
    return 128 + 127 * p

xy = []
for x in range(WIDTH):
    for y in range(HEIGHT):
        xy.append((x, y))
random.shuffle(xy)

count = 0
for x, y in xy:
    l = int(plasma(x, y))
    img.putpixel((x, y), get_pixel(plasma(x, y)))
    count += 1
    if not count & 255:
        print "%d pixels rendered" % count

img.save("test.png")

13

Giava

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        int num = 0;
        ArrayList<Point> points = new ArrayList<>();
        for (int y = 0; y < 4096; y++) {
            for (int x = 0; x < 4096 ; x++) {
                points.add(new Point(x, y));
            }
        }
        for (Point p : points) {
            int x = p.x;
            int y = p.y;

            img.setRGB(x, y, num);
            num++;
        }
        try {
            ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

Ho optato per 4096 per 4096 perché non riuscivo a capire come ottenere tutti i colori senza farlo.

Produzione:

Troppo grande per adattarsi qui. Questo è uno screenshot:

inserisci qui la descrizione dell'immagine

Con un piccolo cambiamento, possiamo ottenere un'immagine più bella:

Aggiungi Collections.shuffle(points, new Random(0));tra la generazione dei punti e i colori:

import java.awt.Point;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);
        int num = 0;
        ArrayList<Point> points = new ArrayList<>();
        for (int y = 0; y < 4096; y++) {
            for (int x = 0; x < 4096 ; x++) {
                points.add(new Point(x, y));
            }
        }
        Collections.shuffle(points, new Random(0));
        for (Point p : points) {
            int x = p.x;
            int y = p.y;

            img.setRGB(x, y, num);
            num++;
        }
        try {
            ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

inserisci qui la descrizione dell'immagine

Avvicinamento:

inserisci qui la descrizione dell'immagine


29
Chiami una grande chiazza grigia "bella"?
Maniglia della porta

22
@Doorknob Sì. Lo chiamo molto bello. Trovo sorprendente che tutti i colori possano essere disposti in una grande chiazza grigia. Trovo il BLOB più interessante quando ingrandisco. Con un po 'più di dettagli, puoi vedere quanto è casuale l'Rng di Java. Quando ingrandiamo ancora di più, come la seconda schermata, diventa chiaro quanti colori ci sono in quella cosa. Quando ingrandisco ulteriormente, sembra un programma Piet.
Giustino, il

Ho ottenuto i colori nelle versioni più piccole facendo cadere i bit inferiori.
Mark Jeronimus,

Sì, i bit inferiori per r, ge bseparatamente, ma avevo a che fare con loro come un numero.
Giustino, il

Vedo che hai capito la magia nella tua prossima risposta. A proposito, potrebbe essere interessante sperimentare con la propria Randomsottoclasse che produce numeri casuali ancora meno ideali.
Mark Jeronimus,

13

C ++ 11

( Aggiornamento: solo successivamente ho notato che un approccio simile è già stato provato --- con più pazienza per quanto riguarda il numero di iterazioni.)

Per ogni pixel, definisco un insieme di pixel vicini. Definisco la discrepanza tra due pixel per essere la somma dei quadrati delle loro differenze R / G / B. La penalità di un dato pixel è quindi la somma delle discrepanze tra il pixel e i suoi vicini.

Ora, prima ho generato una permutazione casuale, quindi ho iniziato a scegliere coppie di pixel casuali. Se lo scambio dei due pixel riduce la somma delle penalità totali di tutti i pixel, lo scambio passa. Lo ripeto per un milione di volte.

L'output è nel formato PPM, che ho convertito in PNG usando le utility standard.

Fonte:

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <random>

static std::mt19937 rng;

class Pixel
{
public:
    int r, g, b;

    Pixel() : r(0), g(0), b(0) {}
    Pixel(int r, int g, int b) : r(r), g(g), b(b) {}

    void swap(Pixel& p)
    {
        int r = this->r,  g = this->g,    b = this->b;
        this->r = p.r;    this->g = p.g;  this->b = p.b;
        p.r = r;          p.g = g;        p.b = b;
    }
};

class Image
{
public:
    static const int width = 256;
    static const int height = 128;
    static const int step = 32;
    Pixel pixel[width*height];
    int penalty[width*height];
    std::vector<int>** neighbors;

    Image()
    {
        if (step*step*step != width*height)
        {
            std::cerr << "parameter mismatch" << std::endl;
            exit(EXIT_FAILURE);
        }

        neighbors = new std::vector<int>*[width*height];

        for (int i = 0; i < width*height; i++)
        {
            penalty[i] = -1;
            neighbors[i] = pixelNeighbors(i);
        }

        int i = 0;
        for (int r = 0; r < step; r++)
        for (int g = 0; g < step; g++)
        for (int b = 0; b < step; b++)
        {
            pixel[i].r = r * 255 / (step-1);
            pixel[i].g = g * 255 / (step-1);
            pixel[i].b = b * 255 / (step-1);
            i++;
        }
    }

    ~Image()
    {
        for (int i = 0; i < width*height; i++)
        {
            delete neighbors[i];
        }
        delete [] neighbors;
    }

    std::vector<int>* pixelNeighbors(const int pi)
    {
        // 01: X-shaped structure
        //const int iRad = 7, jRad = 7;
        //auto condition = [](int i, int j) { return abs(i) == abs(j); };
        //
        // 02: boring blobs
        //const int iRad = 7, jRad = 7;
        //auto condition = [](int i, int j) { return true; };
        //
        // 03: cross-shaped
        //const int iRad = 7, jRad = 7;
        //auto condition = [](int i, int j) { return i==0 || j == 0; };
        //
        // 04: stripes
        const int iRad = 1, jRad = 5;
        auto condition = [](int i, int j) { return i==0 || j == 0; };

        std::vector<int>* v = new std::vector<int>;

        int x = pi % width;
        int y = pi / width;

        for (int i = -iRad; i <= iRad; i++)
        for (int j = -jRad; j <= jRad; j++)
        {
            if (!condition(i,j))
                continue;

            int xx = x + i;
            int yy = y + j;

            if (xx < 0 || xx >= width || yy < 0 || yy >= height)
                continue;

            v->push_back(xx + yy*width);
        }

        return v;
    }

    void shuffle()
    {
        for (int i = 0; i < width*height; i++)
        {
            std::uniform_int_distribution<int> dist(i, width*height - 1);
            int j = dist(rng);
            pixel[i].swap(pixel[j]);
        }
    }

    void writePPM(const char* filename)
    {
        std::ofstream fd;
        fd.open(filename);
        if (!fd.is_open())
        {
            std::cerr << "failed to open file " << filename
                      << "for writing" << std::endl;
            exit(EXIT_FAILURE);
        }
        fd << "P3\n" << width << " " << height << "\n255\n";
        for (int i = 0; i < width*height; i++)
        {
            fd << pixel[i].r << " " << pixel[i].g << " " << pixel[i].b << "\n";
        }
        fd.close();
    }

    void updatePixelNeighborhoodPenalty(const int pi)
    {
        for (auto j : *neighbors[pi])
            updatePixelPenalty(j);
    }

    void updatePixelPenalty(const int pi)
    {
        auto pow2 = [](int x) { return x*x; };
        int pen = 0;
        Pixel* p1 = &pixel[pi];
        for (auto j : *neighbors[pi])
        {
            Pixel* p2 = &pixel[j];
            pen += pow2(p1->r - p2->r) + pow2(p1->g - p2->g) + pow2(p1->b - p2->b);
        }
        penalty[pi] = pen / neighbors[pi]->size();
    }

    int getPixelPenalty(const int pi)
    {
        if (penalty[pi] == (-1))
        {
            updatePixelPenalty(pi);
        }
        return penalty[pi];
    }

    int getPixelNeighborhoodPenalty(const int pi)
    {
        int sum = 0;
        for (auto j : *neighbors[pi])
        {
            sum += getPixelPenalty(j);
        }
        return sum;
    }

    void iterate()
    {
        std::uniform_int_distribution<int> dist(0, width*height - 1);       

        int i = dist(rng);
        int j = dist(rng);

        int sumBefore = getPixelNeighborhoodPenalty(i)
                        + getPixelNeighborhoodPenalty(j);

        int oldPenalty[width*height];
        std::copy(std::begin(penalty), std::end(penalty), std::begin(oldPenalty));

        pixel[i].swap(pixel[j]);
        updatePixelNeighborhoodPenalty(i);
        updatePixelNeighborhoodPenalty(j);

        int sumAfter = getPixelNeighborhoodPenalty(i)
                       + getPixelNeighborhoodPenalty(j);

        if (sumAfter > sumBefore)
        {
            // undo the change
            pixel[i].swap(pixel[j]);
            std::copy(std::begin(oldPenalty), std::end(oldPenalty), std::begin(penalty));
        }
    }
};

int main(int argc, char* argv[])
{
    int seed;
    if (argc >= 2)
    {
        seed = atoi(argv[1]);
    }
    else
    {
        std::random_device rd;
        seed = rd();
    }
    std::cout << "seed = " << seed << std::endl;
    rng.seed(seed);

    const int numIters = 1000000;
    const int progressUpdIvl = numIters / 100;
    Image img;
    img.shuffle();
    for (int i = 0; i < numIters; i++)
    {
        img.iterate();
        if (i % progressUpdIvl == 0)
        {
            std::cout << "\r" << 100 * i / numIters << "%";
            std::flush(std::cout);
        }
    }
    std::cout << "\rfinished!" << std::endl;
    img.writePPM("AllColors2.ppm");

    return EXIT_SUCCESS;
}

Variando il passo dei vicini si ottengono risultati diversi. Questo può essere modificato nella funzione Image :: pixelNeighbors (). Il codice include esempi per quattro opzioni: (vedi sorgente)

esempio 01 esempio 02 esempio 03 esempio 04

Modifica: un altro esempio simile al quarto sopra ma con un kernel più grande e più iterazioni:

esempio 05

Ancora uno: usando

const int iRad = 7, jRad = 7;
auto condition = [](int i, int j) { return (i % 2==0 && j % 2==0); };

e dieci milioni di iterazioni, ho ottenuto questo:

esempio 06


11

Non è il codice più elegante, ma interessante per due motivi: calcolare il numero di colori dalle dimensioni (purché il prodotto delle dimensioni sia una potenza di due) e fare cose spaziali tridimensionali:

void Main()
{
    var width = 256;
    var height = 128;
    var colorCount = Math.Log(width*height,2);
    var bitsPerChannel = colorCount / 3;
    var channelValues = Math.Pow(2,bitsPerChannel);
    var channelStep = (int)(256/channelValues);

    var colors = new List<Color>();

    var m1 = new double[,] {{0.6068909,0.1735011,0.2003480},{0.2989164,0.5865990,0.1144845},{0.00,0.0660957,1.1162243}};
    for(var r=0;r<255;r+=channelStep)
    for(var g=0;g<255;g+=channelStep)
    for(var b=0;b<255;b+=channelStep)   
    {
        colors.Add(Color.FromArgb(0,r,g,b));
    }
    var sortedColors = colors.Select((c,i)=>
                            ToLookupTuple(MatrixProduct(m1,new[]{c.R/255d,c.G/255d,c.B/255d}),i))
                            .Select(t=>new
                                            {
                                                x = (t.Item1==0 && t.Item2==0 && t.Item3==0) ? 0 : t.Item1/(t.Item1+t.Item2+t.Item3),
                                                y = (t.Item1==0 && t.Item2==0 && t.Item3==0) ? 0 :t.Item2/(t.Item1+t.Item2+t.Item3),
                                                z = (t.Item1==0 && t.Item2==0 && t.Item3==0) ? 0 :t.Item3/(t.Item1+t.Item2+t.Item3),
                                                Y = t.Item2,
                                                i = t.Item4
                                            })
                            .OrderBy(t=>t.x).Select(t=>t.i).ToList();
    if(sortedColors.Count != (width*height))
    {
        throw new Exception(string.Format("Some colors fell on the floor: {0}/{1}",sortedColors.Count,(width*height)));
    }
    using(var bmp = new Bitmap(width,height,PixelFormat.Format24bppRgb))
    {
        for(var i=0;i<colors.Count;i++)
        {
            var y = i % height;
            var x = i / height;

            bmp.SetPixel(x,y,colors[sortedColors[i]]);
        }
        //bmp.Dump(); //For LINQPad use
        bmp.Save("output.png");
    }
}
static Tuple<double,double,double,int>ToLookupTuple(double[] t, int index)
{
    return new Tuple<double,double,double,int>(t[0],t[1],t[2],index);
}

public static double[] MatrixProduct(double[,] matrixA,
    double[] vectorB)
{
    double[] result=new double[3];
    for (int i=0; i<3; ++i) // each row of A
        for (int k=0; k<3; ++k)
            result[i]+=matrixA[i,k]*vectorB[k];
    return result;
}

Alcune interessanti variazioni possono essere apportate semplicemente modificando la clausola OrderBy:

X:

inserisci qui la descrizione dell'immagine

y:

inserisci qui la descrizione dell'immagine

z:

inserisci qui la descrizione dell'immagine

Y:

inserisci qui la descrizione dell'immagine

Vorrei poter capire cosa stava causando le strane linee nei primi tre


2
Quelle strane linee sono probabilmente il pregiudizio di qualche tipo o metodo di ricerca (ricerca binaria / quicksort?)
Mark Jeronimus,

In realtà mi piacciono molto le linee qui.
Jason C,

11

Giava

Questa è stata un'idea molto migliore. Questo è un codice Java molto breve; il metodo principale è lungo solo 13 righe:

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.imageio.ImageIO;

/**
 *
 * @author Quincunx
 */
public class AllColorImage {

    public static void main(String[] args) {
        BufferedImage img = new BufferedImage(4096, 4096, BufferedImage.TYPE_INT_RGB);

        for (int r = 0; r < 256; r++) {
            for (int g = 0; g < 256; g++) {
                for (int b = 0; b < 256; b++) {
                    img.setRGB(((r & 15) << 8) | g, ((r >>> 4) << 8 ) | b, (((r << 8) | g) << 8) | b);
                }
            }
        }
        try {
             ImageIO.write(img, "png", new File("Filepath"));
        } catch (IOException ex) {
            Logger.getLogger(AllColorImage.class.getName()).log(Level.SEVERE, null, ex);
        }
    }
}

Genera blocchi di "selettori di colore". Fondamentalmente, nel primo blocco, r=0nel secondo r=1, ecc. In ogni blocco, gli gincrementi rispetto a x, e brispetto ay .

Mi piacciono molto gli operatori bit a bit. Vorrei scomporre l' setRGBaffermazione:

img.setRGB(((r & 15) << 8) | g, ((r >>> 4) << 8 ) | b, (((r << 8) | g) << 8) | b);

((r & 15) << 8) | g         is the x-coordinate to be set.
r & 15                      is the same thing as r % 16, because 16 * 256 = 4096
<< 8                        multiplies by 256; this is the distance between each block.
| g                         add the value of g to this.

((r >>> 4) << 8 ) | b       is the y-coordinate to be set.
r >>> 4                     is the same thing as r / 16.
<< 8 ) | b                  multiply by 256 and add b.

(((r << 8) | g) << 8) | b   is the value of the color to be set.
r << 8                      r is 8 bits, so shift it 8 bits to the left so that
| g                         we can add g to it.
<< 8                        shift those left 8 bits again, so that we can
| b                         add b

Come risultato degli operatori bit a bit, il completamento richiede solo 7 secondi. Se r & 15viene sostituito con r % 16, ci vogliono 9 secondi.

Ho scelto 4096 x 4096

Output (screenshot, altrimenti troppo grande):

inserisci qui la descrizione dell'immagine

Output con ghigno malvagio disegnato su di esso da cerchi rossi a mano libera:

inserisci qui la descrizione dell'immagine


2
Link all'originale in modo da poter verificare la validità (contare i colori)
Mark Jeronimus,

2
Lol! Ho dimenticato di poter eseguire il codice Java. La prima immagine passa e non riesco a riprodurre la seconda immagine (lol) ☺
Mark Jeronimus,

16
I cerchi a mano libera hanno tutti lo stesso colore, squalificati. : P
Nick T,

3
@Quincunx +1 se riesci a disegnare una faccia spaventosa e mantenere comunque i requisiti di colore!
Jason C,

2
@JasonC Vedi la mia risposta. Il merito va a Quincunx per l'ispirazione.
Level River St,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.