Costruisci una macchina per aggiungere minifloat usando le porte logiche NAND


15

Una minifloat è una rappresentazione binaria di un numero in virgola mobile che ha pochissimi bit.

Il minifloat in questa domanda sarà definito come un numero a 6 bit m, che ha la seguente rappresentazione:

  • 1 bit per rispondere al segno del numero. Questo bit sarà 0se il numero è positivo e 1se il numero è negativo.

  • 3 bit per rappresentare l'esponente del numero, sfalsato di 3(ovvero un esponente di 110rappresenta in realtà un fattore di 2 3 , non di 2 6 ).

    • Un esponente di si 000riferisce a un numero subnormale. La mantissa si riferisce alla parte frazionaria di un numero con una parte intera 0moltiplicata per un fattore dell'esponente più basso possibile (in questo caso, 2 -2 ).
  • 2 bit per rappresentare la mantissa del numero. Se l'esponente è diverso da 000o 111, i 2 bit rappresentano la parte frazionaria dopo a 1.

    • Un esponente di 111rappresenta infinityse la mantissa è 0, e NaN(non un numero) altrimenti.

Nell'articolo di Wikipedia, questo sarebbe indicato come (1.3.2.3) minifloat.

Alcuni esempi della rappresentazione di questo minifloat:

000000 =  0.00 = 0
000110 =  1.10 × 2^(1-3) = 0.375
001100 =  1.00 × 2^(3-3) = 1
011001 =  1.01 × 2^(6-3) = 10
011100 = infinity
011101 = NaN
100000 = -0.00 = -0
100011 = -0.11 × 2^(1-3) = -0.1875 (subnormal)
101011 = -1.11 × 2^(2-3) = -0.875
110100 = -1.00 × 2^(5-3) = -4
111100 = -infinity
111111 = NaN

Il tuo compito è costruire una rete di porte NAND a due ingressi che accetta 6 ingressi che rappresentano una minifloat ae 6 ingressi che rappresentano una minifloat be restituisce 6 uscite che rappresentano la minifloat a + b.

  • La tua rete deve aggiungere correttamente subnormali. Ad esempio, 000001+ 000010deve essere uguale 000011e 001001+ 000010= 001010.

  • La tua rete deve aggiungere e sottrarre correttamente gli infiniti. Qualsiasi cosa finita aggiunta a un infinito è lo stesso infinito. L'infinito positivo più l'infinito negativo è NaN.

  • Un NaNplus qualsiasi cosa deve essere uguale a a NaN, sebbene ciò NaNche equivale a te.

  • Il modo in cui gestisci l'aggiunta di zero positivo e zero negativo l'uno all'altro dipende da te, anche se zero più zero deve essere uguale a zero.

La rete può implementare una delle seguenti regole di arrotondamento a seconda della convenienza:

  • Arrotondare per difetto (verso l'infinito negativo)
  • Arrotondare (verso l'infinito positivo)
  • Arrotonda verso zero
  • Arrotondare da zero
  • Arrotondare al più vicino, con metà arrotondata secondo una delle regole sopra

Per semplificare le cose, puoi usare le porte AND, OR, NOT e XOR nel diagramma, con i seguenti punteggi corrispondenti:

  • NOT: 1
  • AND: 2
  • OR: 3
  • XOR: 4

Ognuno di questi punteggi corrisponde al numero di porte NAND necessarie per costruire la porta corrispondente.

Vince il circuito logico che utilizza il minor numero di gate NAND per implementare correttamente tutti i requisiti di cui sopra.


2
Bella sfida: dovrei pensarci seriamente per implementarlo nel codice, per non parlare delle porte della NAND.
Trauma digitale

Risposte:


10

830 NAND

Utilizza 24 NOT, 145 AND, 128 OR, 33 XOR. Arrotonda sempre verso zero, può restituire -0 o +0 per valori zero e credo che tratti correttamente Infinity e NaNs:

  • ± INF ± INF = ± INF
  • ± INF + NaN = ± INF
  • ± INF ∓ INF = NaN
  • ± INF + numero = ± INF
  • NaN + NaN = NaN
  • NaN + numero = NaN

Di seguito ho una rappresentazione codificata del circuito. Ho poca esperienza di annotazione di questo tipo di cose, quindi non so davvero quale sia il modo tipico di farlo, ma ogni variabile è un valore booleano, quindi è chiaro che descrive un circuito. Un'altra cosa, non ho né il know-how né probabilmente la tenacia di provare a fare un diagramma di questo, ma se c'è un software facile da usare là fuori qualcuno vuole sottolineare che sarei interessato a dare un'occhiata.

a0,a1,a2,a3,a4,a5 = mini0
b0,b1,b2,b3,b4,b5 = mini1

neg = XOR(a0,b0)
nneg = NOT(neg)

na1 = NOT(a1)
na2 = NOT(a2)
na3 = NOT(a3)

a2_a3 = AND(a2,a3)
a2_na3 = AND(a2,na3)
na2_a3 = AND(na2,a3)
na2_na3 = AND(na2,na3)

a123 = AND(a1,a2_a3)
l0 = AND(a1,a2_na3)
l1 = AND(a1,na2_a3)
l2 = AND(a1,na2_na3)
l3 = AND(na1,a2_a3)
l4 = AND(na1,a2_na3)
l5 = AND(na1,na2_a3)
l6 = AND(na1,na2_na3)

a45 = OR(a4,a5)
a_nan = AND(a123,a45)
a_inf = AND(a123,NOT(a45))

m0 = l0
m1 = OR(l1,AND(l0,a4))
m2 = OR(l2,OR(AND(l1,a4),AND(l0,a5)))
m3 = OR(l3,OR(AND(l2,a4),AND(l1,a5)))
m4 = OR(l4,OR(AND(l3,a4),AND(l2,a5)))
m5 = OR(l5,OR(AND(l4,a4),AND(l3,a5)))
l5_l6 = OR(l5,l6)
m6 = OR(AND(l4,a5),AND(l5_l6,a4))
m7 = AND(l5_l6,a5)

nb1 = NOT(b1)
nb2 = NOT(b2)
nb3 = NOT(b3)

b2_b3 = AND(b2,b3)
b2_nb3 = AND(b2,nb3)
nb2_b3 = AND(nb2,b3)
nb2_nb3 = AND(nb2,nb3)

b123 = AND(b1,b2_b3)
k0 = AND(b1,b2_nb3)
k1 = AND(b1,nb2_b3)
k2 = AND(b1,nb2_nb3)
k3 = AND(nb1,b2_b3)
k4 = AND(nb1,b2_nb3)
k5 = AND(nb1,nb2_b3)
k6 = AND(nb1,nb2_nb3)

b45 = OR(b4,b5)
b_nan = AND(b123,b45)
b_inf = AND(b123,NOT(b45))  

n0 = k0
n1 = OR(k1,AND(k0,b4))
n2 = OR(k2,OR(AND(k1,b4),AND(k0,b5)))
n3 = OR(k3,OR(AND(k2,b4),AND(k1,b5)))
n4 = OR(k4,OR(AND(k3,b4),AND(k2,b5)))
n5 = OR(k5,OR(AND(k4,b4),AND(k3,b5)))
k5_k6 = OR(k5,k6)
n6 = OR(AND(k4,b5),AND(k5_k6,b4))
n7 = AND(k5_k6,b5)

first = n0,n1,n2,n3,n4,n5,n6,n7

i7 = n7
i6 = XOR(n6,n7)
carry_6 = OR(n6,n7)
i5 = XOR(n5,carry_6)
carry_5 = OR(n5,carry_6)
i4 = XOR(n4,carry_5)
carry_4 = OR(n4,carry_5)
i3 = XOR(n3,carry_4)
carry_3 = OR(n3,carry_4)
i2 = XOR(n2,carry_3)
carry_2 = OR(n2,carry_3)
i1 = XOR(n1,carry_2)
carry_1 = OR(n1,carry_2)
i0 = XOR(n0,carry_1)
i_sign = OR(n0,carry_1)

n7 = OR(AND(nneg,n7),AND(neg,i7))
n6 = OR(AND(nneg,n6),AND(neg,i6))
n5 = OR(AND(nneg,n5),AND(neg,i5))
n4 = OR(AND(nneg,n4),AND(neg,i4))
n3 = OR(AND(nneg,n3),AND(neg,i3))
n2 = OR(AND(nneg,n2),AND(neg,i2))
n1 = OR(AND(nneg,n1),AND(neg,i1))
n0 = OR(AND(nneg,n0),AND(neg,i0))
n_sign = AND(neg,i_sign)

r7 = XOR(m7,n7)
carry_7 = AND(m7,n7)
hr6 = XOR(m6,n6)
hcarry_6 = AND(m6,n6)
r6 = XOR(hr6,carry_7)
carry_6 = OR(hcarry_6,AND(hr6,carry_7))
hr5 = XOR(m5,n5)
hcarry_5 = AND(m5,n5)
r5 = XOR(hr5,carry_6)
carry_5 = OR(hcarry_5,AND(hr5,carry_6))
hr4 = XOR(m4,n4)
hcarry_4 = AND(m4,n4)
r4 = XOR(hr4,carry_5)
carry_4 = OR(hcarry_4,AND(hr4,carry_5))
hr3 = XOR(m3,n3)
hcarry_3 = AND(m3,n3)
r3 = XOR(hr3,carry_4)
carry_3 = OR(hcarry_3,AND(hr3,carry_4))
hr2 = XOR(m2,n2)
hcarry_2 = AND(m2,n2)
r2 = XOR(hr2,carry_3)
carry_2 = OR(hcarry_2,AND(hr2,carry_3))
hr1 = XOR(m1,n1)
hcarry_1 = AND(m1,n1)
r1 = XOR(hr1,carry_2)
carry_1 = OR(hcarry_1,AND(hr1,carry_2))
hr0 = XOR(m0,n0)
hcarry_0 = AND(m0,n0)
r0 = XOR(hr0,carry_1)
carry_0 = OR(hcarry_0,AND(hr0,carry_1))
r_sign = XOR(n_sign,carry_0)

s7 = r7
s6 = XOR(r6,r7)
carry_6 = OR(r6,r7)
s5 = XOR(r5,carry_6)
carry_5 = OR(r5,carry_6)
s4 = XOR(r4,carry_5)
carry_4 = OR(r4,carry_5)
s3 = XOR(r3,carry_4)
carry_3 = OR(r3,carry_4)
s2 = XOR(r2,carry_3)
carry_2 = OR(r2,carry_3)
s1 = XOR(r1,carry_2)
carry_1 = OR(r1,carry_2)
s0 = XOR(r0,carry_1)

n_r_sign = NOT(r_sign)
r0 = OR(AND(n_r_sign,r0),AND(r_sign,s0))
r1 = OR(AND(n_r_sign,r1),AND(r_sign,s1))
r2 = OR(AND(n_r_sign,r2),AND(r_sign,s2))
r3 = OR(AND(n_r_sign,r3),AND(r_sign,s3))
r4 = OR(AND(n_r_sign,r4),AND(r_sign,s4))
r5 = OR(AND(n_r_sign,r5),AND(r_sign,s5))
r6 = OR(AND(n_r_sign,r6),AND(r_sign,s6))
r7 = OR(AND(n_r_sign,r7),AND(r_sign,s7))

h0 = r0
rest = h0
h1 = AND(r1,NOT(rest))
rest = OR(rest,h1)
h2 = AND(r2,NOT(rest))
rest = OR(rest,h2)
h3 = AND(r3,NOT(rest))
rest = OR(rest,h3)
h4 = AND(r4,NOT(rest))
rest = OR(rest,h4)
h5 = AND(r5,NOT(rest))
rest = OR(rest,h5)
h6 = AND(r6,NOT(rest))
rest = OR(rest,h6)
h7 = AND(r7,NOT(rest))

e0 = OR(h0,OR(h1,h2))
e1 = OR(h0,OR(h3,h4))
e2 = OR(h1,OR(h3,h5))

ne0 = NOT(e0)
ne1 = NOT(e1)
ne2 = NOT(e2)

e0e1 = AND(e0,e1)
e0ne1 = AND(e0,ne1)
ne0e1 = AND(ne0,e1)
ne0ne1 = AND(ne0,ne1)

x0 = AND(e0e1,  ne2)
x1 = AND(e0ne1, e2 )
x2 = AND(e0ne1, ne2)
x3 = AND(ne0e1, e2 )
x4 = AND(ne0e1, ne2)
x5 = AND(ne0ne1,e2 )
x6 = AND(ne0ne1,ne2)

u0 = AND(x0,r1)
u1 = AND(x1,r2)
u2 = AND(x2,r3)
u3 = AND(x3,r4)
u4 = AND(x4,r5)
u5 = AND(x5,r6)
u6 = AND(x6,r6)

v0 = AND(x0,r2)
v1 = AND(x1,r3)
v2 = AND(x2,r4)
v3 = AND(x3,r5)
v4 = AND(x4,r6)
v5 = AND(x5,r7)
v6 = AND(x6,r7)

f0 = OR(u0,OR(u1,OR(u2,OR(u3,OR(u4,OR(u5,u6))))))
f1 = OR(v0,OR(v1,OR(v2,OR(v3,OR(v4,OR(v5,v6))))))
sign = XOR(a0,r_sign)

either_nan = OR(a_nan,b_nan)
either_inf = OR(a_inf,b_inf)
ans_nan = OR(AND(AND(a_inf,b_inf),XOR(a0,b0)),AND(NOT(either_inf),either_nan))
nans_nan = NOT(ans_nan)
ans_inf = AND(nans_nan,OR(either_nan,either_inf))
ans_none = AND(nans_nan,NOT(ans_inf))
nans_none = NOT(ans_none)

result0 = OR(OR(AND(a_inf,a0),AND(b_inf,b0)),AND(ans_none,sign))
result1 = OR( nans_none, AND(ans_none,e0) )
result2 = OR( nans_none, AND(ans_none,e1) )
result3 = OR( nans_none, AND(ans_none,e2) )
result4 = OR( ans_nan, AND(ans_none,f0) )
result5 = OR( ans_nan, AND(ans_none,f1) )

Al termine, arrotonderà "verso il basso" verso lo zero o verso l'infinito negativo? Solo curioso.
Joe Z.

@JoeZ. Cercherò sicuramente di farlo arrotondare a zero e penso che farlo non dovrebbe essere un problema, anche se non posso esserne sicuro senza scriverlo. È ovviamente banale aggiungere due numeri negativi (facendoli arrotondare verso zero), quindi penso che sarà probabilmente più facile attenersi a questo.
KSab il

1
Ben fatto per aver trovato una soluzione completa. Ci sono alcune facili ottimizzazioni. OR(AND(w,x),AND(y,z))sta NAND(NAND(w,x),NAND(y,z))salvando 4 e hai usato la prima costruzione alcune volte; e il trattamento con NaN è leggermente sbagliato perché Inf + NaNdovrebbe esserlo NaN.
Peter Taylor,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.