Ecco un mix dell'ordinamento radicale di Alexandru con il pivot intelligente filettato di Zjarek. Compilalo con
g++ -std=c++0x -pthread -O3 -march=native sorter_gaussian_radix.cxx -o sorter_gaussian_radix
È possibile modificare la dimensione della radice definendo STEP (ad es. Aggiungere -DSTEP = 11). Ho trovato il meglio per il mio laptop è 8 (impostazione predefinita).
Per impostazione predefinita, divide il problema in 4 pezzi ed esegue quello su più thread. Puoi cambiarlo passando un parametro di profondità alla riga di comando. Quindi, se hai due core, eseguilo come
sorter_gaussian_radix 50000000 1
e se hai 16 core
sorter_gaussian_radix 50000000 4
La profondità massima in questo momento è 6 (64 thread). Se si mettono troppi livelli, si rallenta il codice.
Una cosa che ho anche provato è stato l'ordinamento radix dalla libreria Intel Performance Primitives (IPP). L'implementazione di Alexandru risolve sensibilmente l'IPP, con un IPP più lento del 30% circa. Questa variante è inclusa anche qui (commentata).
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <ctime>
#include <iostream>
#include <thread>
#include <vector>
#include <boost/cstdint.hpp>
// #include "ipps.h"
#ifndef STEP
#define STEP 8
#endif
const int step = STEP;
const int start_step=24;
const int num_steps=(64-start_step+step-1)/step;
int size;
double *dbuf, *copy;
clock_t c1, c2, c3, c4, c5;
const double distrib[]={-2.15387,
-1.86273,
-1.67594,
-1.53412,
-1.4178,
-1.31801,
-1.22986,
-1.15035,
-1.07752,
-1.00999,
-0.946782,
-0.887147,
-0.830511,
-0.776422,
-0.724514,
-0.67449,
-0.626099,
-0.579132,
-0.53341,
-0.488776,
-0.445096,
-0.40225,
-0.36013,
-0.318639,
-0.27769,
-0.237202,
-0.197099,
-0.157311,
-0.11777,
-0.0784124,
-0.0391761,
0,
0.0391761,
0.0784124,
0.11777,
0.157311,
0.197099,
0.237202,
0.27769,
0.318639,
0.36013,
0.40225,
0.445097,
0.488776,
0.53341,
0.579132,
0.626099,
0.67449,
0.724514,
0.776422,
0.830511,
0.887147,
0.946782,
1.00999,
1.07752,
1.15035,
1.22986,
1.31801,
1.4178,
1.53412,
1.67594,
1.86273,
2.15387};
class Distrib
{
const int value;
public:
Distrib(const double &v): value(v) {}
bool operator()(double a)
{
return a<value;
}
};
void recursive_sort(const int start, const int end,
const int index, const int offset,
const int depth, const int max_depth)
{
if(depth<max_depth)
{
Distrib dist(distrib[index]);
const int middle=std::partition(dbuf+start,dbuf+end,dist) - dbuf;
// const int middle=
// std::partition(dbuf+start,dbuf+end,[&](double a)
// {return a<distrib[index];})
// - dbuf;
std::thread lower(recursive_sort,start,middle,index-offset,offset/2,
depth+1,max_depth);
std::thread upper(recursive_sort,middle,end,index+offset,offset/2,
depth+1,max_depth);
lower.join(), upper.join();
}
else
{
// ippsSortRadixAscend_64f_I(dbuf+start,copy+start,end-start);
c1=clock();
double *dbuf_local(dbuf), *copy_local(copy);
boost::uint64_t mask = (1 << step) - 1;
int cnt[num_steps][mask+1];
boost::uint64_t *ibuf = reinterpret_cast<boost::uint64_t *> (dbuf_local);
for(int i=0;i<num_steps;++i)
for(uint j=0;j<mask+1;++j)
cnt[i][j]=0;
for (int i = start; i < end; i++)
{
for (int w = start_step, v = 0; w < 64; w += step, v++)
{
int p = (~ibuf[i] >> w) & mask;
(cnt[v][p])++;
}
}
c2=clock();
std::vector<int> sum(num_steps,0);
for (uint i = 0; i <= mask; i++)
{
for (int w = start_step, v = 0; w < 64; w += step, v++)
{
int tmp = sum[v] + cnt[v][i];
cnt[v][i] = sum[v];
sum[v] = tmp;
}
}
c3=clock();
for (int w = start_step, v = 0; w < 64; w += step, v++)
{
ibuf = reinterpret_cast<boost::uint64_t *>(dbuf_local);
for (int i = start; i < end; i++)
{
int p = (~ibuf[i] >> w) & mask;
copy_local[start+((cnt[v][p])++)] = dbuf_local[i];
}
std::swap(copy_local,dbuf_local);
}
// Do the last set of reversals
for (int p = start; p < end; p++)
if (dbuf_local[p] >= 0.)
{
std::reverse(dbuf_local+p, dbuf_local + end);
break;
}
c4=clock();
// Insertion sort
for (int i = start+1; i < end; i++) {
double value = dbuf_local[i];
if (value < dbuf_local[i - 1]) {
dbuf_local[i] = dbuf_local[i - 1];
int p = i - 1;
for (; p > 0 && value < dbuf_local[p - 1]; p--)
dbuf_local[p] = dbuf_local[p - 1];
dbuf_local[p] = value;
}
}
c5=clock();
}
}
int main(int argc, char **argv) {
size = atoi(argv[1]);
copy = new double[size];
dbuf = new double[size];
FILE *f = fopen("gaussian.dat", "r");
fread(dbuf, size, sizeof(double), f);
fclose(f);
clock_t c0 = clock();
const int max_depth= (argc > 2) ? atoi(argv[2]) : 2;
// ippsSortRadixAscend_64f_I(dbuf,copy,size);
recursive_sort(0,size,31,16,0,max_depth);
if(num_steps%2==1)
std::swap(dbuf,copy);
// for (int i=0; i<size-1; i++){
// if (dbuf[i]>dbuf[i+1])
// std::cout << "BAD "
// << i << " "
// << dbuf[i] << " "
// << dbuf[i+1] << " "
// << "\n";
// }
std::cout << "Finished after "
<< (double) (c1 - c0) / CLOCKS_PER_SEC << " "
<< (double) (c2 - c1) / CLOCKS_PER_SEC << " "
<< (double) (c3 - c2) / CLOCKS_PER_SEC << " "
<< (double) (c4 - c3) / CLOCKS_PER_SEC << " "
<< (double) (c5 - c4) / CLOCKS_PER_SEC << " "
<< "\n";
// delete [] dbuf;
// delete [] copy;
return 0;
}
EDIT : ho implementato i miglioramenti della cache di Alexandru e questo si è ridotto del 30% delle volte sul mio computer.
EDIT : questo implementa un tipo ricorsivo, quindi dovrebbe funzionare bene sulla macchina a 16 core di Alexandru. Utilizza anche l'ultimo miglioramento di Alexandru e rimuove uno degli inversi. Per me, questo ha dato un miglioramento del 20%.
EDIT : risolto un bug di segno che causava inefficienza quando c'erano più di 2 core.
EDIT : rimosso lambda, quindi verrà compilato con le versioni precedenti di gcc. Include la variazione del codice IPP commentata. Ho anche corretto la documentazione per l'esecuzione su 16 core. Per quanto ne so, questa è l'implementazione più rapida.
EDIT : risolto un bug quando STEP non era 8. Aumentato il numero massimo di thread a 64. Aggiunte alcune informazioni di temporizzazione.