Hard code golf: Regex per divisibilità per 7


75

Matthias Goergens ha una regex di 25.604 caratteri (in calo rispetto ai 63.993 caratteri originali) per abbinare numeri divisibili per 7, ma questo include un sacco di lanugine: parentesi ridondanti, distribuzione ( xx|xy|yx|yyanziché [xy]{2}) e altri problemi, anche se sono sicuro che un un nuovo inizio sarebbe utile per risparmiare spazio. Quanto piccolo può essere fatto?

È consentita qualsiasi varietà ragionevole di espressioni regolari, ma nessun codice eseguibile nella regex.

L'espressione regolare deve corrispondere a tutte le stringhe contenenti la rappresentazione decimale di un numero divisibile per 7 e nessun altro. Credito extra per una regex che non consente 0 iniziali.


Qual è l'intenzione precisa? Deve corrispondere a tutti i numeri di qualsiasi dimensione divisibili per 7 o, ad esempio, solo uint a 32 bit validi?
Peter Taylor,

2
@Peter Taylor: deve corrispondere a tutte le stringhe che rappresentano la rappresentazione decimale di un numero divisibile per 7. Credito extra per soluzioni che non consentono 0 iniziali.
Charles,

1
Per caso ... è necessario che il regex non corrisponda ai numeri indivisibili per 7?
stand dal

@boothby: Assolutamente, altrimenti potresti semplicemente usare l'espressione vuota.
Charles

2
@ n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳ Sì, 0 dovrebbe essere consentito in entrambe le versioni.
Charles

Risposte:


24

10791 caratteri, zeri iniziali consentiti

(0|7|46*[29]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18]))|(2|9|46*4)(3|56*4)*(1|8|56*[29])|(3|46*5|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(2|9|46*4)(3|56*4)*(4|56*5)|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(1|8|36*4)(3|56*4)*(4|56*5)))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(5|34*6|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(1|8|64*6|(5|64*3)(6|[07]4*3)*(2|9|[07]4*6))|(2|9|34*3)(6|[07]4*3)*(2|9|[07]4*6)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))))|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18]))|(1|8|36*4)(3|56*4)*(1|8|56*[29]))|(6|46*[18]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07]))|(2|9|46*4)(3|56*4)*(0|7|56*[18])|(3|46*5|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(2|9|46*4)(3|56*4)*(4|56*5)|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4))|(1|8|36*4)(3|56*4)*(4|56*5)))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(4|34*5|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(0|7|64*5|(5|64*3)(6|[07]4*3)*(1|8|[07]4*5))|(2|9|34*3)(6|[07]4*3)*(1|8|[07]4*5)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18]))))|(5|46*[07]|(1|8|46*3|(2|9|46*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(2|9|46*4)(3|56*4)*(6|56*[07]))(4|36*[07]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07]))|(1|8|36*4)(3|56*4)*(0|7|56*[18])))(2|9|53*[07]|(0|7|53*5)(6|43*5)*(1|8|43*[07])|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18]))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18])))|(6|53*4|(0|7|53*5)(6|43*5)*(5|43*4)|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(4|34*5|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(0|7|64*5|(5|64*3)(6|[07]4*3)*(1|8|[07]4*5))|(2|9|34*3)(6|[07]4*3)*(1|8|[07]4*5)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(3|63*[07]|(1|8|63*5)(6|43*5)*(1|8|43*[07])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(5|36*[18]|(1|8|36*4)(3|56*4)*(0|7|56*[18])))))*(3|53*[18]|(0|7|53*5)(6|43*5)*(2|9|43*[18])|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29])))|(6|53*4|(0|7|53*5)(6|43*5)*(5|43*4)|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(4|[07]6*3|(1|8|53*6|(0|7|53*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(5|[07]6*4)(3|56*4)*(2|9|56*3))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))(1|8|(0|7|[29]6*4)(3|56*4)*(4|56*5)|[29]6*5|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(0|7|63*4|(1|8|63*5)(6|43*5)*(5|43*4)|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(2|9|36*5|(1|8|36*4)(3|56*4)*(4|56*5))))*(5|34*6|(0|7|34*[18]|(2|9|34*3)(6|[07]4*3)*(4|[07]4*[18]))(3|56*4|(6|56*[07])(4|36*[07])*(1|8|36*4))*(1|8|64*6|(5|64*3)(6|[07]4*3)*(2|9|[07]4*6))|(2|9|34*3)(6|[07]4*3)*(2|9|[07]4*6)|(6|(0|7|[29]6*4)(3|56*4)*(2|9|56*3)|[29]6*3|(3|[07]3*6|(2|9|[07]3*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3)))(5|[18]6*3|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(0|7|36*3|(1|8|36*4)(3|56*4)*(2|9|56*3))|(6|[18]6*4)(3|56*4)*(2|9|56*3))*(4|63*[18]|(1|8|63*5)(6|43*5)*(2|9|43*[18])|(2|9|63*6|(1|8|63*5)(6|43*5)*(0|7|43*6))(4|36*[07]|(1|8|36*4)(3|56*4)*(6|56*[07]))*(6|36*[29]|(1|8|36*4)(3|56*4)*(1|8|56*[29]))))))+

10795 caratteri, zeri iniziali vietati

0|((foo)0*)+, Dove il sopra regex è (0|foo)+.

Spiegazione

I numeri divisibili per 7 sono abbinati all'ovvio automa finito con 7 stati Q = {0,…, 6}, stato iniziale e finale 0 e transizioni d: i ↦ (10i + d) mod 7. Ho convertito questo automa finito in un'espressione regolare, usando la ricorsione sull'insieme degli stati intermedi consentiti:

Dato i, j ∈ Q e S ⊆ Q, f (i, S, j) sia un'espressione regolare che corrisponda a tutti i percorsi dell'automa da i a j usando solo stati intermedi all'interno di S. Quindi,

f (i, ∅, j) = (j - 10i) mod 7,

f (i, S ∪ {k}, j) = f (i, S, j) ∣ f (i, S, k) f (k, S, k) * f (k, S, j).

Ho usato la programmazione dinamica per scegliere k in modo da ridurre al minimo la lunghezza dell'espressione risultante.


Penso che devi aggiungere 2 caratteri per nel caso zero iniziale, poiché suppongo che debba essere consentito lo zero0|((foo)0*)+
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳

3
Ho commentato la domanda, ma di buon senso "nessuno zero iniziale" di solito significa che nessuno 0 iniziale ridondante, ma non esclude il numero zero.
n̴̖̋h̷͉̃a̷̭̿h̸̡̅ẗ̵̨́d̷̰̀ĥ̷̳

95

13.755 12.699 12.731 personaggi

Questa regex non rifiuta lo zero iniziale.

(0|7|[18]5*4|(2|9|[18]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4)))|(5|[18]5*[29]|(2|9|[18]5*6)(3|[29]5*6)*(6|[29]5*[29])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(6|[07]5*4|(1|8|[07]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))))|(6|[18]5*3|(2|9|[18]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))|(5|[18]5*[29]|(2|9|[18]5*6)(3|[29]5*6)*(6|[29]5*[29])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(4|[18]5*[18]|(2|9|[18]5*6)(3|[29]5*6)*(5|[29]5*[18])|(3|[18]5*[07]|(2|9|[18]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(5|[07]5*3|(1|8|[07]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))))(2|9|45*3|(5|45*6)(3|[29]5*6)*(0|7|[29]5*3)|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))|(1|8|45*[29]|(5|45*6)(3|[29]5*6)*(6|[29]5*[29])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(5|[07]5*3|(1|8|[07]5*6)(3|[29]5*6)*(0|7|[29]5*3)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(1|8|35*3|(4|35*6)(3|[29]5*6)*(0|7|[29]5*3)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(4|65*3|(0|7|65*6)(3|[29]5*6)*(0|7|[29]5*3)))))*(3|45*4|(5|45*6)(3|[29]5*6)*(1|8|[29]5*4)|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4)))|(1|8|45*[29]|(5|45*6)(3|[29]5*6)*(6|[29]5*[29])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(0|7|45*[18]|(5|45*6)(3|[29]5*6)*(5|[29]5*[18])|(6|45*[07]|(5|45*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))(4|[07]5*[29]|(1|8|[07]5*6)(3|[29]5*6)*(6|[29]5*[29])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(0|7|35*[29]|(4|35*6)(3|[29]5*6)*(6|[29]5*[29])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(3|65*[29]|(0|7|65*6)(3|[29]5*6)*(6|[29]5*[29]))))*(6|[07]5*4|(1|8|[07]5*6)(3|[29]5*6)*(1|8|[29]5*4)|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))|(3|[07]5*[18]|(1|8|[07]5*6)(3|[29]5*6)*(5|[29]5*[18])|(2|9|[07]5*[07]|(1|8|[07]5*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))(6|35*[18]|(4|35*6)(3|[29]5*6)*(5|[29]5*[18])|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(2|9|65*[18]|(0|7|65*6)(3|[29]5*6)*(5|[29]5*[18])))*(2|9|35*4|(4|35*6)(3|[29]5*6)*(1|8|[29]5*4)|(5|35*[07]|(4|35*6)(3|[29]5*6)*(4|[29]5*[07]))(1|8|65*[07]|(0|7|65*6)(3|[29]5*6)*(4|[29]5*[07]))*(5|65*4|(0|7|65*6)(3|[29]5*6)*(1|8|[29]5*4))))))*

Questo è testato con The Regex Coach .

Come ci arriviamo

Il Regex sopra prodotto produceva prima un DFA che avrebbe accettato l'input che vogliamo (decimali divisibili per 7) e poi convertito in un'espressione regolare e riparando la notaion

Per capirlo, aiuta innanzitutto a creare un DFA che accetta la seguente lingua:

L = {w | w is a binary representation of an integer divisible by 7 }

Cioè, "abbinerà" i numeri binari che sono divisibili per 7.

Il DFA si presenta così:

Mod 7 NFA

Come funziona

Mantenete un valore corrente Ache rappresenta il valore dei bit letti da DFA. Quando leggi a 0allora A = 2*Ae quando leggi a 1 A = 2*A + 1. Ad ogni passaggio calcolato, A mod 7si passa allo stato che rappresenta la risposta.

Quindi un test eseguito:

Stiamo leggendo in 10101quale è la rappresentazione binaria per 21 in decimale.

  1. Iniziamo allo stato q0, attualmenteA=0
  2. Leggiamo un 1, dalla "regola" sopra A = 2*A + 1così A = 1. A mod 7 = 1quindi passiamo allo statoq1
  3. Leggiamo un 0, A = 2*A = 2, A mod 7 = 2quindi partiamo alla voltaq2
  4. Leggere una 1, A = 2*A + 1 = 5, A mod 7 = 5, per passare aq5
  5. Leggere una 0, A = 2*A = 10, A mod 7 = 3, per passare aq3
  6. Leggere una 1, A = 2*A + 1 = 21, A mod 7 = 0, per passare aq0
  7. L'input è accettato quindi il numero 10101è divisibile per 7!

La conversione del DFA in un'espressione regolare è un compito complicato, quindi ho fatto in modo che JFLAP lo facesse per me, producendo quanto segue:

(0|111|100((1|00)0)*011|(101|100((1|00)0)*(1|00)1)(1((1|00)0)*(1|00)1)*(01|1((1|00)0)*011)|(110|100((1|00)0)*010|(101|100((1|00)0)*(1|00)1)(1((1|00)0)*(1|00)1)*(00|1((1|00)0)*010))(1|0(1((1|00)0)*(1|00)1)*(00|1((1|00)0)*010))*0(1((1|00)0)*(1|00)1)*(01|1((1|00)0)*011))*

Per i numeri decimali

Il processo è più o meno lo stesso:

Ho costruito un DFA che accetta la lingua:

L = {w | w is a decimal number that is divisible by 7}

Ecco il DFA:

La logica è simile, lo stesso numero di stati solo molte più transizioni per gestire tutte le cifre extra che portano i numeri decimali.

Ora la regola di cambiare Aad ogni passo è: quando si legge una cifra decimale n: A = 10*A + n. Poi di nuovo solo mod Aper 7 e vai allo stato successivo.

revisioni

Revisione 5

L'espressione regolare sopra ora rifiuta i numeri che precedono gli zeri, a parte ovviamente lo stesso zero.

Ciò rende il DFA leggermente diverso, in pratica si ramifica dal nodo iniziale quando si legge il primo zero. Leggere un altro zero ti mette in un ciclo infinito sullo stato ramificato. Non ho corretto il diagramma per mostrare questo.

Revisione 7

Ha "metaregex" e ha accorciato la mia regex sostituendo alcuni dei sindacati con classi di caratteri.

Revisione 10 e 11 (di nhahtdh)

La modifica dell'autore per rifiutare lo zero iniziale non è corretta. Fa in modo che le regex non corrispondano a numeri validi, come 1110 (decimale = 14) nel caso della regex binaria e 70 nel caso della regex decimale. Questa revisione ripristina la modifica e, di conseguenza, consente agli zeri iniziali arbitrari e alla stringa vuota di corrispondere.

Questa revisione aumenta la dimensione della regex decimale, poiché corregge un bug nella regex originale, causato dalla mancanza di un bordo (9) dallo stato 5 allo stato 3 nel DFA originale.


Chiarirò la domanda per specificare il decimale. Sì, è molto più facile nelle basi b dove 7 | b (b-1).
Charles,

Ho modificato la mia risposta. Il decimale va bene: D
Griffin,

Troppo tardi per modificare il mio commento, però ... intendevo 7 | B (B-1) dove B è una piccola potenza di b. Binary ha una regex breve dal 7 | 8 (8-1). Il decimale è maggiore dal 7 | 999999000000 è il più piccolo che funziona.
Charles,

3
btw penso che tu abbia usato DFA , non NFA
codice binario il

2
Nessuno dei regex mostrati in questa risposta sono corretti. Quello binario non corrisponde 1110e quello per i decimali non corrisponde 70. Questo è stato testato sia in pitone che in perl. (Python ha richiesto la conversione di tutti (in (?:primi)
Daniel Martin,

35

Regex .NET, 119 118 105 byte

^(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

111 caratteri che non consentono gli 0 iniziali:

^(?!0.)(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

113 caratteri che non consentono 0 iniziali e supportano numeri negativi:

^-?(?>(?=[1468](?<4>)|)(?=[2569](?<4>){2}|)([3-6]()|\d)((?<-2>)(){3}|){7}((?<-4>){7}|(?<2-4>)|){9})+$(?!\2)

Provalo qui.

Spiegazione (della versione precedente)

Usa le tecniche usate da varie risposte in questa domanda: Poliziotti e Ladri: Reverse Regex Golf . Il regex .NET ha una funzione chiamata gruppo di bilanciamento, che può essere usata per fare l'aritmetica. (?<a>)spinge un gruppo a. (?<-a>)lo apre e non corrisponde se non esiste un gruppo acorrispondente prima.

  • (?>...)Abbina e non tornare indietro più tardi. Quindi corrisponderà sempre solo alla prima alternativa abbinata.
  • ((?<-t>)(){3}|){6} Moltiplicare il numero del gruppo t per 3. Salvare il risultato per il numero del gruppo 2.
  • (?=[1468](?<2>)|)(?=[2569](?<2>){2}|)([3-6](?<2>){3}|\d) Abbina un numero e quel numero del gruppo 2.
  • ((?<-2>){7}|){3} Rimuovi il gruppo 2 un multiplo di 7 volte.
  • ((?<t-2>)|){6} Rimuovere il gruppo 2 e abbinare lo stesso numero del gruppo t.
  • $(?(t)a)Se c'è ancora un gruppo t abbinato, abbina adopo la fine della stringa, il che è impossibile.

Ho pensato che anche questa versione da 103 byte avrebbe funzionato, ma non ho trovato una soluzione alternativa al bug nel compilatore.

^(?(?(?((?<3>){2}[2569]|)([3-6])?((?<-1>)(){3}|){7})(?<3>[1468])?((?<-3>){7}|(?<1-3>)|){9})\d)+$(?(1)a)

Molto corto. Mi piacerebbe una spiegazione di come funziona!
Charles,

@Charles Edited.
jimmy23013,

Non penso che questo sarà battuto, ma preferisco almeno dover implementare il DFA con ricorsione, questo è semplicemente folle. Mi chiedo se qualcuno può provare o confutare le regex .NET come Turing completo.
ThePlasmaRailgun

@ThePlasmaRailgun .NET regex non è Turing completo, perché non consente di ripetere acquisizioni vuote più del limite inferiore ( esempio ). Quindi ogni gruppo con quantificatori potrebbe avere solo un numero finito di alternative se l'input ha una lunghezza fissa.
jimmy23013,

Ah. Senza questo limite, Turing sarebbe completo?
ThePlasmaRailgun

30

468 caratteri

Il sapore regex di Ruby consente la ricorsione (anche se è una specie di imbroglio), quindi è semplice implementare un DFA che riconosce i numeri divisibili per 7 usando quello. Ogni gruppo denominato corrisponde a uno stato e ogni ramo nelle alternanze consuma una cifra e quindi passa allo stato appropriato. Se viene raggiunta la fine del numero, il regex corrisponde solo se il motore è nel gruppo "A", altrimenti non funziona.

Riconosce gli zeri iniziali.

(?!$)(?>(|(?<B>4\g<A>|5\g<B>|6\g<C>|[07]\g<D>|[18]\g<E>|[29]\g<F>|3\g<G>))(|(?<C>[18]\g<A>|[29]\g<B>|3\g<C>|4\g<D>|5\g<E>|6\g<F>|[07]\g<G>))(|(?<D>5\g<A>|6\g<B>|[07]\g<C>|[18]\g<D>|[29]\g<E>|3\g<F>|4\g<G>))(|(?<E>[29]\g<A>|3\g<B>|4\g<C>|5\g<D>|6\g<E>|[07]\g<F>|[18]\g<G>))(|(?<F>6\g<A>|[07]\g<B>|[18]\g<C>|[29]\g<D>|3\g<E>|4\g<F>|5\g<G>))(|(?<G>3\g<A>|4\g<B>|5\g<C>|6\g<D>|[07]\g<E>|[18]\g<F>|[29]\g<G>)))(?<A>$|[07]\g<A>|[18]\g<B>|[29]\g<C>|3\g<D>|4\g<E>|5\g<F>|6\g<G>)

3
Avevo intenzione di non consentirlo, ma suppongo di no. Ciò consente soluzioni molto brevi nei linguaggi Ruby, Perl, PCRE e .NET.
Charles,

2
la ricorsione la rende una grammatica senza contesto (se può decidere {a*b*|a and b an equal amount of times})
maniaco del cricchetto

@ratchet maniaco: so che tecnicamente questa non è un'espressione regolare, ma la domanda afferma che qualsiasi sapore regex è accettabile.
Lowjacker,

Ho creato un generatore basato sul tuo post che crea questi per divisori e basi arbitrarie: github.com/ThePlasmaRailgun/DivisibilityRegexes . Ha anche l'opzione per generare i file .jff per JFLAP.
ThePlasmaRailgun

24

Sono stato davvero colpito dalla risposta di Griffin e ho dovuto capire come funzionava! Il risultato è il seguente JavaScript. (Sono 3,5k caratteri, che in un certo senso è più corto!) La genfunzione prende un divisore e una base e genera un'espressione regolare che corrisponde ai numeri nella base specificata che sono divisibili per quel divisore.

Ho generalizzato l'NFA di Griffin per qualsiasi base: la nfafunzione prende un divisore e una base e restituisce una matrice bidimensionale di transizioni. L'input richiesto per passare dallo stato 0 allo stato 2, ad esempio, è states[0][2] == "1".

La reducefunzione accetta l' statesarray e lo esegue attraverso questo algoritmo per tradurre l'NFA in regex. Le regex che vengono generate sono enormi e sembrano avere molte clausole ridondanti, nonostante i miei tentativi di ottimizzazione. Il regex per 7 base 10 è lungo circa 67k caratteri; Firefox genera un "InternalError" per n> 5 tentando di analizzare il regex; l'esecuzione di regex su Chrome inizia a rallentare per n> 6.

C'è anche la testfunzione che prende una regex e una base e la esegue contro i numeri da 0 a 100, quindi test(gen(5)) == [0, 5, 10, 15, ...].

Nonostante il risultato non ottimale, questa è stata una fantastica opportunità di apprendimento e spero che parte di questo codice sia utile in futuro!

function gen(b, base) {
    var states = nfa(b, base)
    for (var i = 0; i < states.length; i++)
        states = reduce(states, i);
    return states[0][0] != 'phi' && new RegExp('^' + wrap(states[0][0]) + '$');
}

function test(reg, base) {
    if (!base)
        base = 10;

    var x = [];
    for (var i = 0; i < 100; i++)
        x.push(i);
    return x.map(function (a) {return a.toString(base)}).filter(reg.test.bind(reg)).map(function (a) {return parseInt(a, base)})
}

function nfa(b, base) {
    if (!base)
        base = 10;

    var states = [];
    for (var i = 0; i < b; i++) {
        states[i] = [];
        for (var j = 0; j < b; j++)
            states[i][j] = [];
    }

    for (var i = 0; i < b; i++)
        for (var n = 0; n < base; n++)
            states[i][(i * base + n) % b].push(n.toString());

    for (var i = 0; i < b; i++)
        for (var j = 0; j < b; j++)
            states[i][j] = states[i][j].length > 1 ? '[' + states[i][j].join('') + ']' : (states[i][j][0] || 'phi');
    return states;
}

// http://www.cs.umbc.edu/~squire/cs451_l7.html
function reduce(states, n) {
    var s = states.length;
    var reduced = [];
    for (var i = 0; i < s; i++) {
        reduced[i] = [];
        for (var j = 0; j < s; j++) {
            // reduced[i][j] = wrap(states[i][n] + wrap(states[n][n]) + '*' + states[n][j] + '|' + states[i][j]);
            reduced[i][j] = '';

            if (states[i][n] == 'phi' || states[n][j] == 'phi') {
                reduced[i][j] = states[i][j];
                continue;
            }

            if (states[i][n] != states[n][n])
                reduced[i][j] += wrap(states[i][n]);

            if (states[n][n] != 'phi') {
                reduced[i][j] += wrap(states[n][n]);

                if (states[i][n] == states[n][n] && states[n][j] == states[n][n])
                    reduced[i][j] += wrap(states[n][n]);

                if (states[i][n] == states[n][n] || states[n][j] == states[n][n])
                    reduced[i][j] += '+';
                else
                    reduced[i][j] += '*';
            }

            if (states[n][j] != states[n][n])
                reduced[i][j] += wrap(states[n][j]);

            reduced[i][j] = states[i][j] == 'phi' ? wrap(reduced[i][j]) : alternate(reduced[i][j], states[i][j]);
        }
    }
    return reduced;
}

function matching(x, open, close) {
    // Test if the parens are actually matching
    if ('(['.indexOf(x.charAt(open)) != -1 && ')]'.indexOf(x.charAt(close)) != -1) {
        var count = 0;
        for (var i = open; i <= close; i++) {
            if ('(['.indexOf(x.charAt(i)) != -1)
                count++;
            else if (')]'.indexOf(x.charAt(i)) != -1) {
                count--;

                if (count == 0)
                    return i == close;
            }
        }
    }

    return false;
}

function wrap(x) {
    if (x.length < 2 || matching(x, 0, x.length - 1))
        return x;
    return '(' + x + ')';
}

function optional(cond) {
    if (matching(cond, 0, cond.length - 2)) {
        var op = cond.charAt(cond.length - 1);
        if (op == '+')
            return cond.slice(0, -1) + '*';
        else if (op == '*' || op == '?')
            return cond;
    } else if (matching(cond, 0, cond.length - 1))
        return optional(cond.slice(1, -1));

    return wrap(cond) + '?';
}

function alternate(cond1, cond2) {
    cond2 = wrap(cond2);
    var index = cond1.indexOf(cond2);
    var len = cond2.length;
    var cond = '';

    if (index == 0) {
        var op = cond1.charAt(len);
        if (op == '*')
            cond = cond2 + '+' + optional(cond1.slice(len));
        else if (op == '+')
            cond = cond1;
        else 
            cond = cond2 + optional(cond1.slice(len));
    } else if (index == cond1.length - len)
        cond = optional(cond1.slice(0, index)) + cond2;
    else if (cond1.length == 1 && cond2.length == 1)
        cond = '[' + cond1 + cond2 + ']';
    else
        cond = cond1 + '|' + cond2;

    return wrap(cond);
}

7

Perl / PCRE, 370 caratteri

^(?!$|0.)([07]*(?:[18](?2)|[29](?3)|3(?4)|4(?5)|5(?7)|6(?9)|$))|(5*(?:[07](?4)|[18](?5)|[29](?7)|4(?1)|6(?3)|3(?9)))(3*(?:[18](?1)|[29](?2)|[07](?9)|4(?4)|5(?5)|6(?7)))([18]*(?:[07](?3)|[29](?5)|5(?1)|6(?2)|3(?7)|4(?9)))(6*([29](?1)|[07](?7)|[18](?9)|3(?2)|4(?3)|5(?4)))(4*([07](?2)|[18](?3)|[29](?4)|6(?1)|3(?5)|5(?9)))([29]*([07](?5)|[18](?7)|3(?1)|4(?2)|5(?3)|6(?4)))

Rifiuta la stringa vuota e le stringhe con 0 iniziali (tranne "0").


@Charles Questo è PHP PCRE valido e funziona davvero per convalidare la divisibilità - provalo qui
cat
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.