Implementa il gioco della vita su qualsiasi cosa tranne una griglia regolare


114

Conway's Game of Life è (quasi) sempre giocato su una griglia quadrata regolare, ma non è necessario.

Scrivi un programma che implementa le regole standard delle celle vicine dal Gioco della vita di Conway su una piastrellatura bidimensionale del piano euclideo che non è una piastrellatura regolare di quadrati, triangoli o esagoni .

In particolare, la piastrellatura che scegli ...

  1. Deve contenere almeno 2 (ma finitamente molti) prototipi di forme diverse .
    • Le diverse forme possono essere versioni ridimensionate o ruotate l'una dell'altra.
    • Devono essere in grado di affiancare l'intero piano senza lasciare buchi.
    • Devono essere poligoni semplici con perimetro finito. (Potrebbero non essere debolmente semplici.)
  2. Deve essere isomorficamente distinto dalle griglie quadrate, triangolari ed esagonali.
    • Non è ammessa alcuna piastrellatura che banalmente si riduce a una griglia quadrata, triangolare o esagonale normale. (Puoi ancora usare quadrati / triangoli / esagoni in altri riquadri.)
    • Il bordo tra due prototipi può contenere più spigoli e vertici, ma deve essere continuo.

La piastrellatura può essere periodica o aperiodica, ma quando espansa per coprire l'intero piano, ogni prototipo deve apparire infinitamente più volte. (Quindi non "codificare" determinate parti della piastrellatura per ottenere i punti extra di seguito.)

Ciascuno dei tuoi prototipi rappresenta una cellula di Game of Life che confina con altre celle:

  • Le celle che condividono bordi o vertici sono considerate vicine.
  • Le celle che condividono più spigoli o vertici vengono comunque conteggiate una sola volta nei vicini vicini.
  • Le cellule non possono avvicinarsi.

Link di ispirazione per piastrellatura:

Produzione

Il tuo programma dovrebbe produrre una sorta di rappresentazione grafica della tua piastrellatura con il Gioco della vita che si gioca in essa, che dovresti ovviamente pubblicare in formato image / gif / jsfiddle.

Disegna le linee dei bordi delle piastrelle e usa un colore chiaro per le cellule morte e un colore scuro per le cellule vive.

punteggio

Il tuo punteggio di sottomissione è il numero di voti meno i voti negativi, oltre a punti extra per scoprire i comuni schemi di Game of Life nella piastrellatura:

  • Trova una natura morta - un modello che non cambia da una generazione all'altra. (+2)
  • Trova oscillatori con periodo da 2 a 29. (+3 per ogni periodo che trovi fino a un totale di 5 periodi o +15 punti max)
  • Trova un oscillatore con un periodo di 30 o più. (+7)
  • Trova un'astronave - qualcosa che può allontanarsi arbitrariamente dalla sua posizione iniziale senza lasciare detriti. (Potrebbe non essere necessariamente un oscillatore in movimento.) (+10)
  • Trova un'altra astronave che si muove in modo nettamente diverso (e non è una versione speculare della prima astronave), ad esempio vedi aliante e LWSS . (+10)
  • Trova un modello di crescita infinita . Non devi dimostrare che la crescita è infinita, ma mostraci abbastanza prove del modello che è praticamente certo. (+25)
  • Trova una pistola - qualcosa che genera astronavi per sempre (anche questa conta come crescita infinita). (+50)

Gli infiniti schemi di crescita devono iniziare con un numero finito di cellule vive e gli altri schemi devono sempre contenere un numero limitato di cellule vive (ad esempio un'astronave non dovrebbe crescere arbitrariamente nel tempo).

A causa della natura dei soffitti aperiodici sembra probabile che molti di questi schemi sarebbero impossibili da implementare in essi. Quindi ogni piastrellatura aperiodica verificabile ottiene automaticamente +40 punti. Un modello che funziona in un punto in una piastrellatura aperiodica non deve funzionare in altri punti.

Ciascuno dei bonus può essere applicato una sola volta. Ovviamente avremo bisogno di vedere l'output per verificarli. Vince il punteggio più alto.

Appunti

  • A ogni risposta possono essere applicati solo bonus a una piastrellatura specifica. (Anche se sentiti libero di includere i relativi massimali.)
  • Le regole di Game of Life sono le seguenti:
    1. Ogni cellula viva con meno di 2 o più di 3 vicini vivi muore.
    2. Qualsiasi cellula morta con esattamente 3 vicini vivi si anima.
    3. Altre cellule non cambiano.
  • I pattern per i punti extra dovrebbero essere possibili indipendentemente dalle condizioni al contorno, ma in caso contrario è possibile scegliere qualsiasi condizione al contorno desiderata.
  • Per impostazione predefinita, lo sfondo dovrebbe essere tutte tessere morte.

Grazie a Peter Taylor, Jan Dvorak e Githubphagocyte per aver aiutato a colmare le lacune in ciò che i soffitti dovrebbero essere ammessi.

(Nel caso qualcuno fosse curioso, questo è sicuramente il mio preferito delle mie sfide .)


7
C'è un caso forte da sostenere che se non si trova su una griglia quadrata regolare non è Conway's Life, ma un automa simile alla vita. Certamente se vuoi parlare delle "regole standard di Conway's Game of Life" ed escludere i massimali in cui ogni cellula ha esattamente 8 vicini, stai chiedendo un ossimoro.
Peter Taylor,

2
@PeterTaylor Questa è una differenza piuttosto semantica che non riesco a immaginare sarebbe confusa in questo contesto, ma solo per essere sicuro di averlo cambiato (insieme ai suggerimenti di Martin).
Hobby di Calvin il

4
Devo tessere l' aereo euclideo ?
John Dvorak,

3
La tua condizione " topologicamente distinta " lascia anche una grande scappatoia che consente l'impianto diretto della vita standard per mezzo di una griglia di quadrati ciascuno dei quali ha un cuneo triangolare rimosso dal suo bordo superiore. Il risultato è una piastrellatura di triangoli e quadrati-meno-triangoli in cui ogni triangolo ha due quadrati per i vicini, ogni quadrato ha due triangoli e otto quadrati e i triangoli possono essere semplicemente ignorati. È un punteggio base di 10230 punti economico.
Peter Taylor,

4
L'incapacità di risolverlo immediatamente è precisamente la ragione per chiuderlo. Previene l'inserimento delle risposte che ne impediscono la correzione.
Peter Taylor,

Risposte:


82

Penrose rhombii in Python, +97 punti

Ho scelto una piastrellatura di penrose composta da due rombi di forma diversa, che si incontrano 3-8 per vertice. Questa piastrellatura di penrose è dimostrata aperiodica altrove. La simulazione è grafica (tramite pygame) e interattiva. I commenti indicano due punti nel codice in cui l'implementazione dell'algoritmo è stata presa da un'altra fonte.

animazione della vita di penrose che termina con l'oscillatore p12

Ci sono molte piccole nature morte di quartiere:

natura morta nella vita di penrose natura morta nella vita di penrose natura morta nella vita di penrose

Qualsiasi vertice con quattro vicini "on" è una natura morta:

farfalla natura morta nella vita di penrose natura morta appuntita nella vita di penrose pacman still life nella vita di penrose

Qualsiasi ciclo in cui nessuna cellula interna morta tocca tre celle del circuito è anche una natura morta:

loop still life nella vita di penrose loop still life nella vita di penrose

Ci sono oscillatori a varie frequenze:

p2: (molte varianti)

oscillatore del periodo 2 nella vita di penrose

P3:

oscillatore del periodo 3 nella vita di penrose

P4:

oscillatore del periodo 4 nella vita di penrose oscillatore del periodo 4 nella vita di penrose oscillatore del periodo 4 nella vita di penrose

p5:

oscillatore del periodo 5 nella vita di penrose

p6:

oscillatore del periodo 6 nella vita di penrose

p7:

oscillatore del periodo 7 nella vita di penrose oscillatore del periodo 7 nella vita di penrose

p12:

oscillatore del periodo 12 nella vita di penrose

P20:

oscillatore del periodo 20 nella vita di penrose

Le regole e i chiarimenti come scritti per lo più non consentono alianti o pistole in una piastrellatura aperiodica non pianificata. Ciò lascia una crescita infinita, che direi non è probabile, e un oscillatore p30 +, che quasi sicuramente esiste ma ci vorrà del tempo per trovarlo.

python penrose-life.pygenererà una singola piastrellatura periodica colorata in modo casuale python -O penrose-life.pyo semplicemente ./penrose-life.pyeseguirà effettivamente la simulazione. Durante l'esecuzione proverà a identificare gli oscillatori e quando ne trova uno (p> 2) lo screenshot. Dopo aver registrato un oscillatore o una scheda bloccata, la scheda viene randomizzata.

Fare clic su una cella nella simulazione la commuterà.

Nella simulazione sono presenti le seguenti scorciatoie da tastiera:

  • Esci: esce dal programma
  • Spazio: randomizza l'intera scheda
  • P - mette in pausa la simulazione
  • S - singola fase della simulazione
  • F - attiva la modalità "veloce", eseguendo il rendering solo ogni 25 ° fotogramma

Il seme iniziale dell'algoritmo di piastrellatura di penrose è un cerchio di dieci triangoli stretti. Questo potrebbe essere cambiato in un singolo triangolo o in una diversa disposizione di triangoli, simmetrica o no.

Fonte:

#!/usr/bin/env python -O

# tiling generation code originally from http://preshing.com/files/penrose.py

import sys
import math
import time
import cairo
import cmath
import random
import pygame

#TODO: command line parameters
#------ Configuration --------
IMAGE_SIZE = (1200, 1200)
OFFX = 600
OFFY = 600
RADIUS = 600
if __debug__: NUM_SUBDIVISIONS = 5
else: NUM_SUBDIVISIONS = 7
#-----------------------------

goldenRatio = (1 + math.sqrt(5)) / 2

class Triangle():
    def __init__(self, parent = None, color = 0, corners = []):
        self.parent = parent
        self.other_half = None
        # immediate neighbor 0 is on BA side, 1 is on AC side
        self.neighbors = [None, None]
        # all_neighbors includes diagonal neighbors
        self.all_neighbors = set()
        # child 0 is first on BA side, 1 is second, 2 is on AC side
        self.children = []
        self.color = color
        if __debug__: self.debug_color = (random.random(),random.random(),random.random())
        self.state = random.randint(0,1)
        self.new_state = 0
        self.corners = corners
        self.quad = None
    def __repr__(self):
        return "Triangle: state=" + str(self.state) + \
            " color=" + str(self.color) + \
            " parent=" + ("yes" if self.parent else "no") + \
            " corners=" + str(self.corners)
    # break one triangle up into 2-3 smaller triangles
    def subdivide(self):
        result = []
        A,B,C = self.corners
        if self.color == 0:
            # Subdivide red triangle
            P = A + (B - A) / goldenRatio
            result = [Triangle(self, 0, (C, P, B)), Triangle(self, 1, (P, C, A))]
        else:
            # Subdivide blue triangle
            Q = B + (A - B) / goldenRatio
            R = B + (C - B) / goldenRatio
            result = [Triangle(self, 1, (Q, R, B)), Triangle(self, 0, (R, Q, A)), Triangle(self, 1, (R, C, A))]
        self.children.extend(result)
        return result;
    # identify the left and right neighbors of a triangle
    def connect_immediate(self):
        o = None
        n = self.neighbors
        if self.parent:
            if self.color == 0: # red child
                if self.parent.color == 0: # red parent
                    if self.parent.neighbors[0]:
                        if self.parent.neighbors[0].color == 0: # red left neighbor
                            o = self.parent.neighbors[0].children[0]
                        else: # blue left neighbor
                            o = self.parent.neighbors[0].children[1]
                    n[0] = self.parent.children[1]
                    if self.parent.other_half:
                        n[1] = self.parent.other_half.children[0]
                else: # blue parent
                    if self.parent.neighbors[0]:
                        if self.parent.neighbors[0].color == 0: # red left neighbor
                            o = self.parent.neighbors[0].children[0]
                        else: # blue left neighbor
                            o = self.parent.neighbors[0].children[1]
                    n[0] = self.parent.children[0]
                    n[1] = self.parent.children[2]
            else: # blue child
                if self.parent.color == 0: # red parent
                    if self.parent.neighbors[1]:
                        if self.parent.neighbors[1].color == 0: # red right neighbor
                            o = self.parent.neighbors[1].children[1]
                        else: # blue right neighbor
                            o = self.parent.neighbors[1].children[2]
                    n[0] = self.parent.children[0]
                    if self.parent.neighbors[0]:
                        if self.parent.neighbors[0].color == 0: # red left neighbor
                            n[1] = self.parent.neighbors[0].children[1]
                        else: # blue left neighbor
                            n[1] = self.parent.neighbors[0].children[0]
                else: # blue child of blue parent
                    if self.corners[2] == self.parent.corners[1]: # first blue child
                        if self.parent.other_half:
                            o = self.parent.other_half.children[0]
                        n[0] = self.parent.children[1]
                        if self.parent.neighbors[0]:
                            if self.parent.neighbors[0].color == 0: # red left neighbor
                                n[1] = self.parent.neighbors[0].children[1]
                            else: #blue left neighbor
                                n[1] = self.parent.neighbors[0].children[0]
                    else: # second blue child
                        if self.parent.neighbors[1]:
                            if self.parent.neighbors[1].color == 0: # red right neighbor
                                o = self.parent.neighbors[1].children[1]
                            else: # blue right neighbor
                                o = self.parent.neighbors[1].children[2]
                        if self.parent.other_half:
                            n[0] = self.parent.other_half.children[2]
                        n[1] = self.parent.children[1]
        self.other_half = o
        if o:
            self.state = self.other_half.state
            if __debug__: self.debug_color = self.other_half.debug_color

#TODO: different seed triangle configurations
# Create wheel of red triangles around the origin
triangles = [[]]
for i in xrange(10):
    B = cmath.rect(RADIUS, (2*i - 1) * math.pi / 10)+OFFX+OFFY*1j
    C = cmath.rect(RADIUS, (2*i + 1) * math.pi / 10)+OFFX+OFFY*1j
    if i % 2 == 0:
        B, C = C, B  # Make sure to mirror every second triangle
    triangles[0].append(Triangle(None, 0, (OFFX+OFFY*1j, B, C)))

# identify the neighbors of the starting triangles
for i in xrange(10):
    if i%2:
        triangles[0][i].neighbors[0] = triangles[0][(i+9)%10]
        triangles[0][i].neighbors[1] = triangles[0][(i+1)%10]
    else:
        triangles[0][i].neighbors[1] = triangles[0][(i+9)%10]
        triangles[0][i].neighbors[0] = triangles[0][(i+1)%10]

# Perform subdivisions
for i in xrange(NUM_SUBDIVISIONS):
    triangles.append([])
    for t in triangles[i]:
        triangles[i+1].extend(t.subdivide())
    for t in triangles[i+1]:
        t.connect_immediate()

# from here on, we only deal with the most-subdivided triangles
tris = triangles[NUM_SUBDIVISIONS]

# make a dict of every vertex, containing a list of every triangle sharing that vertex
vertices = {}
for t in tris:
    for c in t.corners:
        if c not in vertices:
            vertices[c] = []
        vertices[c].append(t)

# every triangle sharing a vertex are neighbors of each other
for v,triset in vertices.iteritems():
    for t in triset:
        t.all_neighbors.update(triset)

# combine mirrored triangles into quadrilateral cells
quads = []
total_neighbors = 0
for t in tris:
    if t.quad == None and t.other_half != None:
        quads.append(t)
        q = t
        q.corners = (q.corners[0], q.corners[1], q.other_half.corners[0], q.corners[2])
        q.quad = q
        q.other_half.quad = q
        q.all_neighbors.update(q.other_half.all_neighbors)
        q.all_neighbors.remove(q.other_half)
        q.all_neighbors.remove(q)
        total_neighbors += len(q.all_neighbors)

# clean up quads who still think they have triangles for neighbors
for q in quads:
    new_neighbors = set()
    for n in q.all_neighbors:
        if len(n.corners)==3:
            if n.other_half:
                if len(n.other_half.corners)==4:
                    new_neighbors.add(n.other_half)
        else:
            new_neighbors.add(n)
    q.all_neighbors = new_neighbors


# # adopt your other half's neighbors, minus them and yourself. mark other half as dead.
# for t in tris:
#     if t.other_half:
#         t.all_neighbors.update(t.other_half.all_neighbors)
#     t.all_neighbors.remove(t)
#     if t.other_half and t.other_half in t.all_neighbors:
#         t.all_neighbors.remove(t.other_half)
#     if t.other_half and not t.dead_half:
#         t.other_half.dead_half = True

pygame.init()
screen = pygame.display.set_mode(IMAGE_SIZE, 0, 32)
pygame.display.set_caption("Penrose Life")
pygame.display.flip()

paused = False
fast = False
randomize = True
found_oscillator = 0
randomized_tick = 0
tick = 0
timed_tick = 0
timed_tick_time = time.clock()
render_countdown = 0

history_length = 45
quad_history = [[0]*len(quads)]*history_length
quad_pointer = 0

myfont = pygame.font.SysFont("monospace", 15)
guidish = random.randint(0,99999999)

while True:

    tick += 1
    if tick - randomized_tick > 1000 and render_countdown == 0:
        randomize = True
    edited = False
    step = False
    if found_oscillator > 0 and render_countdown == 0:
        print "Potential p" + str(found_oscillator) + " osillator"
        render_countdown = found_oscillator
    if render_countdown == 0: # don't handle input while rendering an oscillator
        for event in pygame.event.get():
            if event.type == pygame.QUIT:
                sys.exit(0)
            elif event.type == pygame.KEYDOWN:
                # print event
                if event.scancode == 53: # escape
                    sys.exit(0)
                elif event.unicode == " ": # randomize
                    randomize = True
                    edited = True
                elif event.unicode == "p": # pause
                    paused = not paused
                elif event.unicode == "f": # fast
                    fast = not fast
                elif event.unicode == "s": # step
                    paused = True
                    step = True
            elif event.type == pygame.MOUSEBUTTONDOWN:
            # click to toggle a cell
                x = event.pos[0]
                y = event.pos[1]
                for q in quads:
                    poly = [(c.real,c.imag) for c in q.corners]
                    # http://www.ariel.com.au/a/python-point-int-poly.html
                    n = len(poly)
                    inside = False
                    p1x,p1y = poly[0]
                    for i in range(n+1):
                        p2x,p2y = poly[i % n]
                        if y > min(p1y,p2y):
                            if y <= max(p1y,p2y):
                                if x <= max(p1x,p2x):
                                    if p1y != p2y:
                                        xinters = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
                                    if p1x == p2x or x <= xinters:
                                        inside = not inside
                        p1x,p1y = p2x,p2y
                    if inside:
                        edited = True
                        q.state = 0 if q.state==1 else 1

    if randomize and render_countdown == 0:
        randomized_tick = tick
        randomize = False
        for q in quads:
            q.state = random.randint(0,1)
            edited = True

    if (not fast) or (tick%25==0) or edited or render_countdown > 0:
        # draw filled quads
        for q in quads:
            cs = [(c.real,c.imag) for c in q.corners]
            if __debug__:
                color = q.debug_color
                color = (int(color[0]*256)<<24)+(int(color[1]*256)<<16)+(int(color[2]*256)<<8)+0xFF
            else:
                if q.state == 0:
                    color = 0xFFFFFFFF
                else:
                    color = 0x000000FF
            pygame.draw.polygon(screen, color, cs, 0)
        # draw edges
        for q in quads:
            if len(q.corners)==3:
                exit(1)
            cs = [(c.real,c.imag) for c in q.corners]
            width = 3
            pygame.draw.lines(screen, 0x7F7F7FFF, 1, cs, int(width))
        now = time.clock()
        speed = (tick-timed_tick)/(now-timed_tick_time)
        timed_tick_time = now
        timed_tick = tick
        screen.blit(screen, (0, 0))
        label = myfont.render("%4.2f/s"%speed, 1, (255,255,255))
        screen.fill(pygame.Color("black"), (0, 0, 110, 15))
        screen.blit(label, (0, 0))        
        pygame.display.update()

    if __debug__:
        break

    if paused and not step and render_countdown == 0:
        time.sleep(0.05)
        continue

    # screenshot
    if render_countdown > 0:
        filename = "oscillator_p%03d_%08d_%03d.png" % (found_oscillator, guidish, found_oscillator - render_countdown)
        pygame.image.save(screen,filename)
        render_countdown -= 1
        if render_countdown == 0:
            guidish = random.randint(0,99999999)
            found_oscillator = 0
            randomize = True
            continue


    # calculate new cell states based on the Game of Life rules
    for q in quads:
        a = sum([n.state for n in q.all_neighbors])
        q.new_state = q.state
        # dead cells with three neighbors spawn
        if q.state == 0 and a == 3:
            q.new_state = 1
        # live cells only survive with two or three neighbors
        elif a < 2 or a > 3:
            q.new_state = 0

    # update cell states
    for q in quads:
        q.state = q.new_state

    this_state = [q.state for q in quads]

    # don't bother checking
    if render_countdown == 0:
        # compare this board state to the last N-1 states
        for i in range(1,history_length):
            if quad_history[(quad_pointer-i)%history_length] == this_state:
                if i == 1 or i == 2: # stalled board or p2 oscillator (boring)
                    randomize = True
                    break
                #TODO: give up if the "oscillator" includes border cells
                #TODO: identify cases of two oprime oscillators overlapping
                elif i > 2:
                    found_oscillator = i
                    break # don't keep looking

        # remember this board state
        quad_history[quad_pointer] = this_state
        quad_pointer = (quad_pointer+1)%history_length

if __debug__:
    filename = "penrose.png"
    pygame.image.save(screen,filename)
    time.sleep(1)

2
Ci ho pensato subito, perché ho letto questo post: newscientist.com/article/… con il quale posso ottenere prontamente 50 punti. Puoi estenderti da quell'idea? EDIT: Ahh, ho appena capito che dobbiamo usare le regole originali di Game of Life.
solo il

49

C ++ con OpenGL (+17)

Così ho provato la griglia del pentagono convessa 3-isobedrica. Funziona per me;) Si applicano le regole del gioco standard della vita, tranne per il fatto che la griglia non è infinita: ci sono celle di bordo all'esterno dell'immagine. Il 30% delle cellule è inizialmente vivo.

Ecco come appare la griglia:

inserisci qui la descrizione dell'immagine

La versione live:

I globuli blu sono vivi, i bianchi sono morti. I globuli rossi sono appena morti, i verdi sono appena nati. Si noti che i manufatti nell'immagine sono il risultato della compressione gif, quindi non piacciono le gif di 10 MB :(.

inserisci qui la descrizione dell'immagine

Natura morta: (+2)

inserisci qui la descrizione dell'immagine

Oscillatori T = 2, T = 3, T = 12: (+9)

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Oscillatori T = 6, T = 7: (+6)

inserisci qui la descrizione dell'immagine

Ci sono molti più oscillatori diversi ... Ma sembra che la griglia non sia abbastanza regolare per una nave ...

Questo è niente (nessun punto), ma mi piace:

inserisci qui la descrizione dell'immagine

Il codice è un casino :) Usa alcuni OpenGL fissi antichi. Altrimenti usato GLEW, GLFW, GLM e ImageMagick per l'esportazione gif.

/**
 * Tile pattern generation is inspired by the code 
 * on http://www.jaapsch.net/tilings/
 * It saved me a lot of thinkink (and debugging) - thank you, sir!
 */

#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <FTGL/ftgl.h>  //debug only
#include <ImageMagick-6/Magick++.h> //gif export
#include "glm/glm.hpp" 

#include <iostream>
#include <array>
#include <vector>
#include <set>
#include <algorithm>
#include <unistd.h>

typedef glm::vec2 Point;
typedef glm::vec3 Color;

struct Tile {
    enum State {ALIVE=0, DEAD, BORN, DIED, SIZE};

    static const int VERTICES = 5;
    static constexpr float SCALE = 0.13f;
    static constexpr std::array<std::array<int, 7>, 18> DESC 
    {{
        {{1, 0,0, 0,0,0, 0}},
        {{0, 1,2, 0,2,1, 0}},
        {{2, 2,3, 0,2,3, 1}},
        {{1, 0,4, 0,0,1, 0}},
        {{0, 1,2, 3,2,1, 0}},
        {{2, 2,3, 3,2,3, 1}},
        {{1, 0,4, 3,0,1, 0}},
        {{0, 1,2, 6,2,1, 0}},
        {{2, 2,3, 6,2,3, 1}},
        {{1, 0,4, 6,0,1, 0}},
        {{0, 1,2, 9,2,1, 0}},
        {{2, 2,3, 9,2,3, 1}},
        {{1, 0,4, 9,0,1, 0}},
        {{0, 1,2,12,2,1, 0}},
        {{2, 2,3,12,2,3, 1}},
        {{1, 0,4,12,0,1, 0}},
        {{0, 1,2,15,2,1, 0}},
        {{2, 2,3,15,2,3, 1}}
    }};

    const int ID;
    std::vector<Point> coords;
    std::set<Tile*> neighbours;
    State state;
    State nextState;
    Color color;

    Tile() : ID(-1), state(DEAD), nextState(DEAD), color(1, 1, 1) {
        const float ln = 0.6f;
        const float h = ln * sqrt(3) / 2.f;
        coords = {
            Point(0.f,      0.f), 
            Point(ln,       0.f), 
            Point(ln*3/2.f,h), 
            Point(ln,       h*4/3.f), 
            Point(ln/2.f,   h)
        };
        for(auto &c : coords) {
            c *= SCALE;
        }
    }

    Tile(const int id, const std::vector<Point> coords_) : 
        ID(id), coords(coords_), state(DEAD), nextState(DEAD), color(1, 1, 1) {}

    bool operator== (const Tile &other) const {
        return ID == other.ID;
    }

    const Point & operator[] (const int i) const {
        return coords[i];
    }
    void updateState() {
        state = nextState;
    }
    /// returns "old" state
    bool isDead() const {
        return state == DEAD || state == DIED;
    }
    /// returns "old" state
    bool isAlive() const {
        return state == ALIVE || state == BORN;
    }

    void translate(const Point &p) {
       for(auto &c : coords) {
           c += p;
       }
    }

    void rotate(const Point &p, const float angle) {
        const float si = sin(angle);
        const float co = cos(angle);
        for(auto &c : coords) {
            Point tmp = c - p;
            c.x = tmp.x * co - tmp.y * si + p.x;
            c.y = tmp.y * co + tmp.x * si + p.y;
        }      
    }

    void mirror(const float y2) {
       for(auto &c : coords) {
          c.y = y2 - (c.y - y2);
       }
    }

};
std::array<std::array<int, 7>, 18> constexpr Tile::DESC;
constexpr float Tile::SCALE;

class Game {
    static const int    CHANCE_TO_LIVE  = 30;       //% of cells initially alive
    static const int    dim             = 4;        //evil grid param

    FTGLPixmapFont &font;
    std::vector<Tile> tiles;
    bool animate; //animate death/birth
    bool debug; //show cell numbers (very slow)
    bool exportGif;     //save gif
    bool run;

public: 
    Game(FTGLPixmapFont& font) : font(font), animate(false), debug(false), exportGif(false), run(false) {
        //create the initial pattern
        std::vector<Tile> init(18);
        for(int i = 0; i < Tile::DESC.size(); ++i) {
            auto &desc = Tile::DESC[i];
            Tile &tile = init[i];
            switch(desc[0]) {   //just to check the grid
                case 0: tile.color = Color(1, 1, 1);break;
                case 1: tile.color = Color(1, 0.7, 0.7);break;
                case 2: tile.color = Color(0.7, 0.7, 1);break;
            }

            if(desc[3] != i) {
                const Tile &tile2 = init[desc[3]];
                tile.translate(tile2[desc[4]] - tile[desc[1]]);
                if(desc[6] != 0) {
                   float angleRad = getAngle(tile[desc[1]], tile[desc[2]]);
                   tile.rotate(tile[desc[1]], -angleRad);
                   tile.mirror(tile[desc[1]].y);
                   angleRad = getAngle(tile[desc[1]], tile2[desc[5]]);
                   tile.rotate(tile[desc[1]], angleRad);
                }
                else {
                   float angleRad = getAngle(tile[desc[1]], tile[desc[2]], tile2[desc[5]]);
                   tile.rotate(tile[desc[1]], angleRad);
                }
            }
        }

        const float offsets[4] {
            init[2][8].x - init[8][9].x,
            init[2][10].y - init[8][11].y,
            init[8][12].x - init[14][13].x,
            init[8][14].y - init[14][15].y 
        };

        // create all the tiles
        for(int dx = -dim; dx <= dim; ++dx) { //fuck bounding box, let's hardcode it
            for(int dy = -dim; dy <= dim; ++dy) {

                for(auto &tile : init) {
                    std::vector<Point> vert;
                    for(auto &p : tile.coords) {
                        float ax = dx * offsets[0] + dy * offsets[2];
                        float ay = dx * offsets[1] + dy * offsets[3];
                        vert.push_back(Point(p.x + ax, p.y + ay));
                    }
                    tiles.push_back(Tile(tiles.size(), vert));
                    tiles.back().color = tile.color;
                    tiles.back().state = tile.state;
                }
            }
        }

        //stupid bruteforce solution, but who's got time to think..
        for(Tile &tile : tiles) { //find neighbours for each cell 
            for(Tile &t : tiles) {
                if(tile == t) continue;
                for(Point &p : t.coords) {
                    for(Point &pt : tile.coords) {
                        if(glm::distance(p, pt) < 0.01 ) {
                            tile.neighbours.insert(&t);
                            break;
                        }
                    }
                }
            }
            assert(tile.neighbours.size() <= 9);
        }   
    }

    void init() {
        for(auto &t : tiles) {
            if(rand() % 100 < CHANCE_TO_LIVE) {
                t.state = Tile::BORN;
            }
            else {
                t.state = Tile::DEAD;           
            }
        }
    }

    void update() {
        for(auto &tile: tiles) {
            //check colors
            switch(tile.state) {
                case Tile::BORN:    //animate birth
                    tile.color.g -= 0.05;
                    tile.color.b += 0.05;
                    if(tile.color.b > 0.9) {
                        tile.state = Tile::ALIVE;
                    }
                    break;
                case Tile::DIED:    //animate death
                    tile.color += 0.05;
                    if(tile.color.g > 0.9) {
                        tile.state = Tile::DEAD;
                    }
                    break;
            }
            //fix colors after animation
            switch(tile.state) {
                case Tile::ALIVE:
                    tile.color = Color(0, 0, 1);
                    break;
                case Tile::DEAD:
                    tile.color = Color(1, 1, 1);
                    break;
            }

            //draw polygons
            glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
            glBegin(GL_POLYGON);
            glColor3f(tile.color.r, tile.color.g, tile.color.b);
            for(auto &pt : tile.coords) {
                glVertex2f(pt.x, pt.y); //haha so oldschool!
            }
            glEnd();
        }

        //draw grid
        glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
        glColor3f(0, 0, 0);
        for(auto &tile : tiles) {
            glBegin(GL_POLYGON);
            Point c;    //centroid of tile
            for(auto &pt : tile.coords) {
                glVertex2f(pt.x, pt.y);
                c += pt;
            }
            glEnd();
            if(debug) {
                c /= (float) Tile::VERTICES;
                glRasterPos2f(c.x - 0.025, c.y - 0.01);
                font.Render(std::to_string(tile.ID).c_str()); // 
            }
        }

        if(!run) {
            return;
        }

        //compute new generation
        for(Tile &tile: tiles) {

            tile.nextState = tile.state; //initialize next state
            int c = 0;
            for(auto *n : tile.neighbours) {
                if(n->isAlive()) c++;
            }
            switch(c) {
                case 2:
                    break;
                case 3:
                    if(tile.isDead()) {
                        tile.nextState = animate ? Tile::BORN : Tile::ALIVE;
                        tile.color = Color(0, 1, 0);
                    }
                    break;
                default:
                    if(tile.isAlive()) {
                        tile.nextState = animate ? Tile::DIED : Tile::DEAD;
                        tile.color = Color(1, 0, 0);
                    }
                    break;
            }
        }
        //switch state to new
        for(Tile &tile: tiles) {
            tile.updateState();
        }
    }

    void stop() {run = false;}
    void switchRun() {run = !run;}
    bool isRun() {return run;}
    void switchAnim() {animate = !animate;}
    bool isAnim() {return animate;}
    void switchExportGif() {exportGif = !exportGif;}
    bool isExportGif() {return exportGif;}
    void switchDebug() {debug = !debug;}
    bool isDebug() const {return debug;}
 private:
    static float getAngle(const Point &p0, const Point &p1, Point const &p2) {
       return atan2(p2.y - p0.y, p2.x - p0.x) - atan2(p1.y - p0.y, p1.x - p0.x);
    }

    static float getAngle(const Point &p0, const Point &p1) {
       return atan2(p1.y - p0.y, p1.x - p0.x);
    }
};

class Controlls {
    Game *game;
    std::vector<Magick::Image> *gif;
    Controlls() : game(nullptr), gif(nullptr) {}
public:
    static Controlls& getInstance() {
        static Controlls instance;
        return instance;
    }

    static void keyboardAction(GLFWwindow* window, int key, int scancode, int action, int mods) {
        getInstance().keyboardActionImpl(key, action);
    }

    void setGame(Game *game) {
        this->game = game;
    }
    void setGif(std::vector<Magick::Image> *gif) {
        this->gif = gif;
    }
private:    
    void keyboardActionImpl(int key, int action) {
        if(!game || action == GLFW_RELEASE) {
            return;
        }
        switch (key) {
            case 'R':
                game->stop();
                game->init();
                if(gif) gif->clear();
                break;
            case GLFW_KEY_SPACE:
                game->switchRun();
                break;
            case 'A':
                game->switchAnim();
                break;
            case 'D':
                game->switchDebug();
                break;
                break;
            case 'G':
                game->switchExportGif();
                break;
        };
    }
};

int main(int argc, char** argv) {
    const int width         = 620;      //window size
    const int height        = 620;
    const std::string window_title  ("Game of life!");
    const std::string font_file     ("/usr/share/fonts/truetype/arial.ttf");
    const std::string gif_file      ("./gol.gif");

    if(!glfwInit()) return 1;

    GLFWwindow* window = glfwCreateWindow(width, height, window_title.c_str(), NULL, NULL);
    glfwSetWindowPos(window, 100, 100);
    glfwMakeContextCurrent(window);

    GLuint err = glewInit();
    if (err != GLEW_OK) return 2;

    FTGLPixmapFont font(font_file.c_str());
    if(font.Error()) return 3;
    font.FaceSize(8);

    std::vector<Magick::Image> gif; //gif export
    std::vector<GLfloat> pixels(3 * width * height);

    Game gol(font);
    gol.init();
    Controlls &controlls = Controlls::getInstance();
    controlls.setGame(&gol);
    controlls.setGif(&gif);

    glfwSetKeyCallback(window, Controlls::keyboardAction);

    glClearColor(1.f, 1.f, 1.f, 0);
    while(!glfwWindowShouldClose(window) && !glfwGetKey(window, GLFW_KEY_ESCAPE)) {
        glClear(GL_COLOR_BUFFER_BIT);

        gol.update();

        //add layer to gif
        if(gol.isExportGif()) {
            glReadPixels(0, 0, width, height, GL_RGB, GL_FLOAT, &pixels[0]);
            Magick::Image image(width, height, "RGB", Magick::FloatPixel, &pixels[0]);
            image.animationDelay(50);
            gif.push_back(image);
        }

        std::string info = "ANIMATE (A): ";
        info += gol.isAnim() ? "ON " : "OFF";
        info += " | DEBUG (D): ";
        info += gol.isDebug() ? "ON " : "OFF";
        info += " | EXPORT GIF (G): ";
        info += gol.isExportGif() ? "ON " : "OFF";
        info += gol.isRun() ? " | STOP (SPACE)" : " | START (SPACE)";
        font.FaceSize(10);
        glRasterPos2f(-.95f, -.99f);
        font.Render(info.c_str());

        if(gol.isDebug()) font.FaceSize(8);
        if(!gol.isDebug()) usleep(50000); //not so fast please!

        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    //save gif to file
    if(gol.isExportGif()) {
        std::cout << "saving " << gif.size() << " frames to gol.gif\n";
        gif.back().write("./last.png");
        Magick::writeImages(gif.begin(), gif.end(), gif_file);
    }

    glfwTerminate();
    return 0;
}

1
Molto bello! Ma cosa intendevi con il 23% delle cellule inizialmente in vita? Scusa se ti sto solo fraintendendo, ma una delle regole è By default the background should be all dead tiles.(quindi non puoi seminare la griglia con un numero infinito di riquadri attivi).
Calvin's Hobbies

1
@ Calvin'sHobbies: Non sono sicuro di seguirlo .. Devi impostare una sorta di configurazione iniziale ... Se all'inizio tutte le celle sono morte, non succederebbe mai nulla.
Jaa-c,

1
Ovviamente. Mi riferisco solo a un caso in cui, ad esempio, un'astronave dipende da una fila infinita preinizializzata di tessere accanto ad essa per funzionare. Adesso vedo che stai inizializzando il 23% delle tue tessere per l'animazione casuale, quindi non preoccuparti, qui non c'è nessun problema.
Calvin's Hobbies

2
Il tuo grande oscillatore ora vale punti :)
Calvin's Hobbies

1
@Calvin'sHobbies: Sfortunatamente ho appena trovato un bug nel mio codice (stavo mescolando stati di vecchia e nuova genrazione), quindi l'oscillatore non è più valido: / Risolto ora.
Jaa-c,

38

Vai? punti

Quindi, piuttosto che appuntarmi su una piastrellatura particolare, ho scritto un programma che prende una gif o png di una piastrellatura e vi dà vita. La gif / png deve usare un solo colore per tutte le tessere.

package main

import (
    "flag"
    "image"
    "image/color"
    "image/gif"
    "image/png"
    "math/rand"
    "os"
    "strings"
)

func main() {
    flag.Parse()
    filename := flag.Args()[0]
    r, err := os.Open(filename)
    if err != nil {
        panic(err)
    }
    var i image.Image
    if strings.HasSuffix(filename, ".gif") {
        i, err = gif.Decode(r)
        if err != nil {
            panic(err)
        }
    }
    if strings.HasSuffix(filename, ".png") {
        i, err = png.Decode(r)
        if err != nil {
            panic(err)
        }
    }

    // find background color
    back := background(i)

    // find connected regions
    n, m := regions(i, back)

    // find edges between regions
    edges := graph(i, m)

    // run life on the tiling
    life(i, n, m, edges)
}

// Find the most-common occurring color.
// This is the "background" color.
func background(i image.Image) color.Color {
    hist := map[color.Color]int{}
    b := i.Bounds()
    for y := b.Min.Y; y < b.Max.Y; y++ {
        for x := b.Min.X; x < b.Max.X; x++ {
            hist[i.At(x, y)]++
        }
    }
    maxn := 0
    var maxc color.Color
    for c, n := range hist {
        if n > maxn {
            maxn = n
            maxc = c
        }
    }
    return maxc
}

// find connected regions.  Returns # of regions and a map from pixels to their region numbers.
func regions(i image.Image, back color.Color) (int, map[image.Point]int) {

    // m maps each background point to a region #
    m := map[image.Point]int{}

    // number regions consecutively
    id := 0

    b := i.Bounds()
    for y := b.Min.Y; y < b.Max.Y; y++ {
        for x := b.Min.X; x < b.Max.X; x++ {
            if i.At(x, y) != back {
                continue
            }
            p := image.Point{x, y}
            if _, ok := m[p]; ok {
                continue // already in a region
            }
            q := []image.Point{p}
            m[p] = id
            k := 0
            for k < len(q) {
                z := q[k]
                k++
                for _, n := range [4]image.Point{{z.X - 1, z.Y}, {z.X + 1, z.Y}, {z.X, z.Y - 1}, {z.X, z.Y + 1}} {
                    if !n.In(b) || i.At(n.X, n.Y) != back {
                        continue
                    }
                    if _, ok := m[n]; ok {
                        continue
                    }
                    m[n] = id
                    q = append(q, n)

                }
            }
            if len(q) < 10 {
                // really tiny region - probably junk in input data
                for _, n := range q {
                    delete(m, n)
                }
                continue
            }
            id++
        }
    }
    return id, m
}

// edge between two regions.  r < s.
type edge struct {
    r, s int
}

// returns a set of edges between regions.
func graph(i image.Image, m map[image.Point]int) map[edge]struct{} {
    // delta = max allowed spacing between adjacent regions
    const delta = 6
    e := map[edge]struct{}{}
    for p, r := range m {
        for dx := -delta; dx <= delta; dx++ {
            for dy := -delta; dy <= delta; dy++ {
                n := image.Point{p.X + dx, p.Y + dy}
                if _, ok := m[n]; !ok {
                    continue
                }
                if m[n] > r {
                    e[edge{r, m[n]}] = struct{}{}
                }
            }
        }
    }
    return e
}

// run life engine
// i = image
// n = # of regions
// m = map from points to their region #
// edges = set of edges between regions
func life(i image.Image, n int, m map[image.Point]int, edges map[edge]struct{}) {
    b := i.Bounds()
    live := make([]bool, n)
    nextlive := make([]bool, n)
    palette := []color.Color{color.RGBA{0, 0, 0, 255}, color.RGBA{128, 0, 0, 255}, color.RGBA{255, 255, 128, 255}} // lines, on, off
    var frames []*image.Paletted
    var delays []int

    // pick random starting lives
    for j := 0; j < n; j++ {
        if rand.Int()%2 == 0 {
            live[j] = true
            nextlive[j] = true
        }
    }
    for round := 0; round < 100; round++ {
        // count live neighbors
        neighbors := make([]int, n)
        for e := range edges {
            if live[e.r] {
                neighbors[e.s]++
            }
            if live[e.s] {
                neighbors[e.r]++
            }
        }

        for j := 0; j < n; j++ {
            nextlive[j] = neighbors[j] == 3 || (live[j] && neighbors[j] == 2)
        }

        // add a frame
        frame := image.NewPaletted(b, palette)
        for y := b.Min.Y; y < b.Max.Y; y++ {
            for x := b.Min.X; x < b.Max.X; x++ {
                frame.SetColorIndex(x, y, 0)
            }
        }
        for p, r := range m {
            if live[r] {
                frame.SetColorIndex(p.X, p.Y, 1)
            } else {
                frame.SetColorIndex(p.X, p.Y, 2)
            }
        }
        frames = append(frames, frame)
        delays = append(delays, 30)

        live, nextlive = nextlive, live
    }

    // write animated gif of result
    w, err := os.Create("animated.gif")
    if err != nil {
        panic(err)
    }
    gif.EncodeAll(w, &gif.GIF{Image: frames, Delay: delays, LoopCount: 100})
    w.Close()
}

Poi sono andato sul web, ho preso alcune immagini divertenti di piastrellatura e ho eseguito il programma su di esse.

go run life.go penrose1.go

Genera un file chiamato "animated.gif" che contiene una simulazione della vita in 100 passaggi della piastrellatura data.

Vita standard:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Piastrelle Penrose:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Sopra uno ha un oscillatore del periodo 12.

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Sopra uno ha un oscillatore del periodo 3.


7
Un'idea davvero fantastica, ma non credo che il tuo algoritmo gestisca correttamente i vicini di angolo, almeno nel tuo ultimo esempio. Quando l'oscillatore del periodo 3 ha 3 tessere vicine le altre 9 tessere in quel vertice dovrebbero diventare vive perché tutte vicine alle 3 tessere vive. Vedi le tessere blu su i.stack.imgur.com/veUA1.png .
Hobby di Calvin il

33

Java - 11 (ish) punti

Viene fornito con un ambiente interattivo (principalmente) perfettamente funzionante!

MODIFICARE

Difetto fatale scoperto :(

Il percorso delle regioni vive è delimitato dall'area in cui è originariamente formato. Per superare il quadrato - barriera a doppio pentagono, si deve avere una regione pre-ombreggiata sull'altro lato. Questo perché ogni forma sotto di essa tocca solo 2 delle regioni sopra di essa. Ciò significa che non ci sono navi spaziali o che espandono qualcosa, il che limita le possibilità. Proverò con uno schema diverso.

MA!!! se vuoi ancora provarlo ... provalo qui .

oscillatore

inserisci qui la descrizione dell'immagine

Non so come chiamare questo - un altro oscillatore

inserisci qui la descrizione dell'immagine

Questo sembra un po 'una stella ninja - natura morta

inserisci qui la descrizione dell'immagine

questo sembra una mosca - natura morta

inserisci qui la descrizione dell'immagine

un altro oscillatore

inserisci qui la descrizione dell'immagine

MODIFICARE

trovato un altro oscillatore. Sto nominando questa aquila.

inserisci qui la descrizione dell'immagine

Hey! un altro oscillatore! (periodo 4) Il mulino a vento.

inserisci qui la descrizione dell'immagine

Un periodo di 2 periodi.

inserisci qui la descrizione dell'immagine

Sembra che ci sia una struttura che isola l'esterno dall'interno. Questo (e l'esempio precedente) lo usa. L'unica cosa che può spezzare la scatola è se uno dei quadrati di confine è vivo all'inizio (finora). Questo, a proposito, è il lampeggiante - periodo 2.

inserisci qui la descrizione dell'immagine

L'ho costruito in eclipse e ci sono più file. Eccoli.

Classe principale -

import java.awt.Dimension;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.Point;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.util.ArrayList;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.Timer;
import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;

public class Main {

    public static void main(String[] args) {
        new Main();
    }

    Canvas canvas = new Canvas();
    JFrame frame = new JFrame();
    Timer timer;
    ShapeInfo info;
    int[][][] history;
    public Main() {
        JPanel panel = new JPanel();
        panel.setMinimumSize(new Dimension(500,500));
        panel.setLayout(new GridBagLayout());

        frame.setMinimumSize(new Dimension(500,500));
        frame.getContentPane().add(panel);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

        //frame.setResizable(false);
        canvas.setMinimumSize(new Dimension(200,200));
        GridBagConstraints c = new GridBagConstraints();
        c.gridx = 0;
        c.gridy = 2;
        c.weightx = 1;
        c.weighty = 1;
        c.gridwidth = 2;
        c.fill = GridBagConstraints.BOTH;
        panel.add(canvas,c);

        JButton startButton = new JButton();
        startButton.setText("click to start");
        startButton.setMaximumSize(new Dimension(100,50));
        GridBagConstraints g = new GridBagConstraints();
        g.gridx =0;
        g.gridy = 0;
        g.weightx = 1;
        panel.add(startButton,g);

        JButton restartButton = new JButton();
        restartButton.setText("revert");
        GridBagConstraints b = new GridBagConstraints();
        b.gridx = 0;
        b.gridy = 9;
        panel.add(restartButton,b);

        JButton clearButton = new JButton();
        clearButton.setText("Clear");
        GridBagConstraints grid = new GridBagConstraints();
        grid.gridx = 1;
        grid.gridy = 0;
        panel.add(clearButton,grid);

        clearButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) {
                info = new ShapeInfo(canvas.squaresWide,canvas.squaresHigh);
                restart();
            }
        });

        final JTextField scaleFactor = new JTextField();
        scaleFactor.setText("5");
        GridBagConstraints gh = new GridBagConstraints();
        gh.gridx  = 0;
        gh.gridy = 1;
        panel.add(scaleFactor,gh);
        scaleFactor.getDocument().addDocumentListener(new DocumentListener(){

            @Override
            public void changedUpdate(DocumentEvent arg0) {
                doSomething();
            }

            @Override
            public void insertUpdate(DocumentEvent arg0) {
                doSomething();
            }

            @Override
            public void removeUpdate(DocumentEvent arg0) {
                doSomething();
            }
            public void doSomething(){
                try{
                canvas.size = Integer.valueOf(scaleFactor.getText());
                canvas.draw(info.allShapes);
                }
                catch(Exception e){}
            }

        });
        timer = new Timer(1000, listener);
        frame.pack();
        frame.setVisible(true);
        info = new ShapeInfo(canvas.squaresWide, canvas.squaresHigh);
        info.width = canvas.squaresWide;
        info.height = canvas.squaresHigh;
        history = cloneArray(info.allShapes);
        //history[8][11][1] = 1;
        canvas.draw(info.allShapes);
        restartButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) {
                if(timer.isRunning() == true){
                    info.allShapes = cloneArray(history);
                    restart();
                }
            }
        });
        canvas.addMouseListener(new MouseListener(){
            @Override
            public void mouseClicked(MouseEvent e) {
                int x = e.getLocationOnScreen().x - canvas.getLocationOnScreen().x;
                int y = e.getLocationOnScreen().y - canvas.getLocationOnScreen().y;
                Point location = new Point(x,y);
                for(PolygonInfo p:canvas.polygons){
                    if(p.polygon.contains(location)){
                        if(info.allShapes[p.x][p.y][p.position-1] == 1){
                            info.allShapes[p.x][p.y][p.position-1] = 0;
                        }
                        else{
                            info.allShapes[p.x][p.y][p.position-1] = 1;
                        }
                    }
                }
                canvas.draw(info.allShapes);
                history = cloneArray(info.allShapes);
            }
            @Override
            public void mouseEntered(MouseEvent arg0) {
            }
            @Override
            public void mouseExited(MouseEvent arg0) {
            }
            @Override
            public void mousePressed(MouseEvent arg0) { 
            }
            @Override
            public void mouseReleased(MouseEvent arg0) {    
            }
        });
        startButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) {
                timer.start();
            }
        });
    }
    public int[][][] cloneArray(int[][][] array){
        int[][][] newArray = new int[array.length][array[0].length][array[0][0].length];
        for(int x = 0;x<array.length;x++){
            int[][] subArray = array[x];
            for(int y = 0; y < subArray.length;y++){
                int subSubArray[] = subArray[y];
                newArray[x][y] = subSubArray.clone();
            }
        }
        return newArray;
    }
    public void restart(){
        timer.stop();
        canvas.draw(info.allShapes);
    }
    public void setUp(){
        int[] boxes = new int[]{2,3,4,6,7,8};
        for(int box:boxes){
            info.allShapes[8][12][box-1] = 1;
            info.allShapes[9][13][box-1] = 1;
            info.allShapes[8][14][box-1] = 1;
            info.allShapes[9][15][box-1] = 1;
        }
    }
    public void update() {
        ArrayList<Coordinate> dieList = new ArrayList<Coordinate>();
        ArrayList<Coordinate> appearList = new ArrayList<Coordinate>();
        for (int x = 0; x < canvas.squaresWide; x++) {
            for (int y = 0; y < canvas.squaresHigh; y++) {
                for(int position = 0;position <9;position++){
                    int alive = info.allShapes[x][y][position];
                    int touching = info.shapesTouching(x, y, position+1);
                    if(touching!=0){
                    }
                    if(alive == 1){
                        if(touching < 2 || touching > 3){
                            //cell dies
                            dieList.add(new Coordinate(x,y,position));
                        }
                    }
                    else{
                        if(touching == 3){
                            //cell appears
                            appearList.add(new Coordinate(x,y,position));
                        }
                    }
                }
            }
        }
        for(Coordinate die:dieList){
            info.allShapes[die.x][die.y][die.position] = 0;
        }
        for(Coordinate live:appearList){
            info.allShapes[live.x][live.y][live.position] = 1;
        }
    }
    boolean firstDraw = true;
    int ticks = 0;
    ActionListener listener = new ActionListener() {
        @Override
        public void actionPerformed(ActionEvent arg0) {
            canvas.draw(info.allShapes);
            if(ticks !=0){
            update();
            }
            ticks++;
        }
    };
}

Classe di tela -

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Polygon;
import java.util.ArrayList;

import javax.swing.JPanel;

public class Canvas extends JPanel {
    private static final long serialVersionUID = 1L;

    public int squaresWide = 30;
    public int squaresHigh = 30;
    public int size = 4;
    ArrayList<PolygonInfo> polygons = new ArrayList<PolygonInfo>();
    boolean drawTessalationOnly = true;
    private int[][][] shapes;

    public void draw(int[][][] shapes2) {
        shapes = shapes2;
        drawTessalationOnly = false;
        this.repaint();
    }

    @Override
    protected void paintComponent(Graphics g) {
        //System.out.println("drawing");
        polygons.clear();
        super.paintComponent(g);
        g.setColor(Color.black);
        // draw tessellation
        for (int x = 0; x < squaresWide; x++) {
            for (int y = 0; y < squaresHigh; y++) {
                for (int position = 1; position <= 9; position++) {
                    // System.out.println("position = " + position);
                    Polygon p = new Polygon();
                    int points = 0;
                    int[] xc = new int[] {};
                    int[] yc = new int[] {};
                    if (position == 1) {
                        xc = new int[] { 0, -2, 0, 2 };
                        yc = new int[] { 2, 0, -2, 0 };
                        points = 4;
                    }
                    if (position == 2) {
                        xc = new int[] { 2, 6, 7, 4, 1 };
                        yc = new int[] { 0, 0, 1, 2, 1 };
                        points = 5;
                    }
                    if (position == 3) {
                        xc = new int[] { 1, 4, 4, 2 };
                        yc = new int[] { 1, 2, 4, 4 };
                        points = 4;
                    }
                    if (position == 4) {
                        xc = new int[] { 4, 4, 7, 6 };
                        yc = new int[] { 4, 2, 1, 4 };
                        points = 4;
                    }
                    if (position == 5) {
                        xc = new int[] { 1, 2, 1, 0, 0 };
                        yc = new int[] { 1, 4, 7, 6, 2 };
                        points = 5;
                    }
                    if (position == 6) {
                        xc = new int[] { 7, 8, 8, 7, 6 };
                        yc = new int[] { 1, 2, 6, 7, 4 };
                        points = 5;
                    }
                    if (position == 7) {
                        xc = new int[] { 4, 2, 1, 4 };
                        yc = new int[] { 4, 4, 7, 6 };
                        points = 4;
                    }
                    if (position == 8) {
                        xc = new int[] { 4, 6, 7, 4 };
                        yc = new int[] { 4, 4, 7, 6 };
                        points = 4;
                    }
                    if (position == 9) {
                        xc = new int[] { 4, 7, 6, 2, 1 };
                        yc = new int[] { 6, 7, 8, 8, 7 };
                        points = 5;
                    }
                    int[] finalX = new int[xc.length];
                    int[] finalY = new int[yc.length];
                    for (int i = 0; i < xc.length; i++) {
                        int xCoord = xc[i];
                        xCoord = (xCoord + (8 * x)) * size;
                        finalX[i] = xCoord;
                    }
                    for (int i = 0; i < yc.length; i++) {
                        int yCoord = yc[i];
                        yCoord = (yCoord + (8 * y)) * size;
                        finalY[i] = yCoord;
                    }
                    p.xpoints = finalX;
                    p.ypoints = finalY;
                    p.npoints = points;
                    polygons.add(new PolygonInfo(p,x,y,position));
                    // for(int i = 0;i<p.npoints;i++){
                    // / System.out.println("(" + p.xpoints[i] + "," +
                    // p.ypoints[i] + ")");
                    // }
                    if (drawTessalationOnly == false) {
                        if (shapes[x][y][position - 1] == 1) {
                            g.fillPolygon(p);
                        } else {
                            g.drawPolygon(p);
                        }
                    } else {
                        g.drawPolygon(p);
                    }
                }

            }
        }
    }
}

Classe ShapeInfo -

public class ShapeInfo {
    int[][][] allShapes; //first 2 dimensions are coordinates of large square, last is boolean - if shaded
    int width = 20;
    int height = 20;
    public ShapeInfo(int width,int height){
        allShapes = new int[width][height][16];
        for(int[][] i:allShapes){
            for(int[] h:i){
                for(int g:h){
                    g=0;
                }
            }
        }
    }
    public int shapesTouching(int x,int y,int position){
        int t = 0;
        if(x>0 && y >0 && x < width-1 && y < height-1){
        if(position == 1){
            if(allShapes[x][y][2-1] == 1){t++;}
            if(allShapes[x][y][5-1] == 1){t++;}
            if(allShapes[x-1][y][6-1] == 1){t++;}
            if(allShapes[x-1][y][2-1] == 1){t++;}
            if(allShapes[x][y-1][5-1] == 1){t++;}
            if(allShapes[x][y-1][9-1] == 1){t++;}
            if(allShapes[x-1][y-1][9-1] == 1){t++;}
            if(allShapes[x-1][y-1][6-1] == 1){t++;}
            if(allShapes[x][y][3-1] == 1){t++;}
            if(allShapes[x-1][y][4-1] == 1){t++;}
            if(allShapes[x][y-1][7-1] == 1){t++;}
            if(allShapes[x-1][y-1][8-1] == 1){t++;}
        }
        if(position == 2){
            if(allShapes[x][y][3-1] == 1){t++;}
            if(allShapes[x][y][4-1] == 1){t++;}
            if(allShapes[x][y][1-1] == 1){t++;}
            if(allShapes[x][y-1][9-1] == 1){t++;}
            if(allShapes[x+1][y][1-1] == 1){t++;}
            if(allShapes[x][y][6-1] == 1){t++;}
            if(allShapes[x][y][5-1] == 1){t++;}
        }
        if(position == 3){
            if(allShapes[x][y][2-1] == 1){t++;}
            if(allShapes[x][y][5-1] == 1){t++;}
            if(allShapes[x][y][4-1] == 1){t++;}
            if(allShapes[x][y][7-1] == 1){t++;}
            if(allShapes[x][y][1-1] == 1){t++;}
            if(allShapes[x][y][8-1] == 1){t++;}
        }
        if(position == 4){
            if(allShapes[x][y][2-1] == 1){t++;}
            if(allShapes[x][y][6-1] == 1){t++;}
            if(allShapes[x][y][3-1] == 1){t++;}
            if(allShapes[x][y][8-1] == 1){t++;}
            if(allShapes[x][y][7-1] == 1){t++;}
            if(allShapes[x+1][y][1-1] == 1){t++;}
        }
        if(position == 5){
            if(allShapes[x][y][3-1] == 1){t++;}
            if(allShapes[x][y][7-1] == 1){t++;}
            if(allShapes[x][y][1-1] == 1){t++;}
            if(allShapes[x][y+1][1-1] == 1){t++;}
            if(allShapes[x-1][y][6-1] == 1){t++;}
            if(allShapes[x][y][2-1] == 1){t++;}
            if(allShapes[x][y][9-1] == 1){t++;}
        }
        if(position == 6){
            if(allShapes[x][y][4-1] == 1){t++;}
            if(allShapes[x][y][8-1] == 1){t++;}
            if(allShapes[x+1][y][1-1] == 1){t++;}
            if(allShapes[x+1][y][5-1] == 1){t++;}
            if(allShapes[x+1][y+1][1-1] == 1){t++;}
            if(allShapes[x][y][2-1] == 1){t++;}
            if(allShapes[x][y][9-1] == 1){t++;}
        }
        if(position == 7){
            if(allShapes[x][y][3-1] == 1){t++;}
            if(allShapes[x][y][8-1] == 1){t++;}
            if(allShapes[x][y][5-1] == 1){t++;}
            if(allShapes[x][y][9-1] == 1){t++;}
            if(allShapes[x][y][4-1] == 1){t++;}
            if(allShapes[x][y+1][1-1] == 1){t++;}
        }
        if(position == 8){
            if(allShapes[x][y][9-1] == 1){t++;}
            if(allShapes[x][y][6-1] == 1){t++;}
            if(allShapes[x][y][7-1] == 1){t++;}
            if(allShapes[x][y][4-1] == 1){t++;}
            if(allShapes[x][y][3-1] == 1){t++;}
            if(allShapes[x+1][y+1][1-1] == 1){t++;}
        }
        if(position == 9){
            if(allShapes[x][y][7-1] == 1){t++;}
            if(allShapes[x][y][8-1] == 1){t++;}
            if(allShapes[x+1][y+1][1-1] == 1){t++;}
            if(allShapes[x][y+1][2-1] == 1){t++;}
            if(allShapes[x][y+1][1-1] == 1){t++;}
            if(allShapes[x][y][6-1] == 1){t++;}
            if(allShapes[x][y][5-1] == 1){t++;}
        }
        }
        return t;
    }
}

Classe PolygonInfo -

import java.awt.Polygon;

public class PolygonInfo {
    public Polygon polygon;
    public int x;
    public int y;
    public int position;
    public PolygonInfo(Polygon p,int X,int Y,int Position){
        x = X;
        y = Y;
        polygon = p;
        position = Position;
    }
}

e infine ... Classe coordinata

public class Coordinate {
    int x;
    int y;
    int position;
    public Coordinate(int X,int Y, int Position){
        x=X;
        y=Y;
        position = Position;
    }
}

4
Quel secondo è sicuramente un piccolo sigillo felice.
Martin Ender,

Qualcuno sa come pubblicare un file jar in modo che le persone possano sperimentare (facilmente) il mio design?
Stretch Maniac

3
Mi piace il cursore nel Mulino a vento.
cjfaure,

10
Il "mulino a vento" è più simile alle formiche naziste in marcia
bebe

1
Anche il cursore è nell'aquila. All'inizio mi ha confuso.
mbomb007,

25

Pitone

Posiziono più punti su una metatile, che viene quindi periodicamente copiata in una piastrellatura rettangolare o esagonale (i metatili possono sovrapporsi). Dall'insieme di tutti i punti computo quindi il diagramma di Voronoi che costituisce la mia griglia.

Alcuni esempi più vecchi

Grafico casuale, viene mostrata la trinagulazione Delaunay che viene anche utilizzata internamente per trovare i vicini

Grafico della vita

Una piastrellatura periodica che incantesimi GoL

inserisci qui la descrizione dell'immagine

Alcune altre griglie che mostrano nature morte

inserisci qui la descrizione dell'immagine

Per tale griglia c'è un'enorme quantità di nature morte con una grande varietà di dimensioni e alcuni piccoli oscillatori a 2, 3 o 5 cicli, ma non ho trovato alianti, probabilmente a causa delle irregolarità della griglia . Penso di automatizzare la ricerca di forme di vita controllando le cellule per le oscillazioni periodiche.

import networkx as nx
from scipy.spatial import Delaunay, Voronoi
from scipy.spatial._plotutils import _held_figure, _adjust_bounds
from numpy import *
import matplotlib.pyplot as plt

# copied from scipy.spatial._plotutils
@_held_figure
def voronoi_plot_2d(vor, ax=None):
    for simplex in vor.ridge_vertices:
        simplex = asarray(simplex)
        if all(simplex >= 0):
            ax.plot(vor.vertices[simplex,0], vor.vertices[simplex,1], 'k-')
    center = vor.points.mean(axis=0)  
    _adjust_bounds(ax, vor.points)
    return ax.figure

def maketilegraph(tile, offsetx, offsety, numx, numy, hexa=0):
    # tile: list of (x,y) coordinates
    # hexa=0: rectangular tiling
    # hexa=1: hexagonal tiling
    R = array([offsetx,0])
    U = array([0,offsety]) - hexa*R/2
    points = concatenate( [tile+n*R for n in range(numx)])
    points = concatenate( [points+n*U for n in range(numy)])

    pos = dict(enumerate(points))
    D = Delaunay(points)

    graph = nx.Graph()
    for tri in D.vertices:
        graph.add_cycle(tri)    
    return graph, pos, Voronoi(points)

def rule(old_state, Nalive):
    if Nalive<2: old_state = 0
    if Nalive==3: old_state = 1
    if Nalive>3: old_state = 0
    return old_state

def propagate(graph):
    for n in graph: # compute the new state
        Nalive = sum([graph.node[m]['alive'] for m in graph.neighbors(n)])
        graph.node[n]['alive_temp'] = rule(graph.node[n]['alive'], Nalive)
    for n in graph: # apply the new state
        graph.node[n]['alive'] = graph.node[n]['alive_temp']

def drawgraph(graph):
    nx.draw_networkx_nodes(graph,pos,
                        nodelist=[n for n in graph if graph.node[n]['alive']],
                        node_color='k', node_size=150)
    # nx.draw_networkx_nodes(graph,pos,
                        # nodelist=[n for n in graph if not graph.node[n]['alive']],
                        # node_color='y', node_size=25, alpha=0.5)
    # nx.draw_networkx_edges(graph,pos, width=1, alpha=0.2, edge_color='b')

##################
# Lets get started
p_alive = 0.4   # initial fill ratio

#tile = random.random((6,2))
a = [.3*exp(2j*pi*n/5) for n in range(5)] +[.5+.5j, 0]
tile = array(zip(real(a), imag(a)))
grid, pos, vor = maketilegraph(tile, 1.,1.,8,8, hexa=1)

for n in grid: # initial fill
    grid.node[n]['alive'] = random.random() < p_alive #random fill
    # grid.node[n]['alive'] = n%5==0 or n%3==0    # periodic fill

for i in range(45):propagate(grid) # run until convergence

for i in range(7):
    print i
    voronoi_plot_2d(vor)
    drawgraph(grid)
    plt.axis('off')
    plt.savefig('GoL %.3d.png'%i, bbox_inches='tight')
    plt.close()
    propagate(grid)

3
Un'idea interessante ma una piastrellatura casuale non avrebbe finitamente molti prototipi. Per la tua piastrellatura periodica devi selezionare una disposizione e mostrare esplicitamente come possono essere fatti tutti gli oscillatori e le cose.
Calvin's Hobbies

Sarebbe bello se il grafico fosse basato sulla mappa del mondo (ad esempio, le città)
Ming-Tang

@SHiNKiROU Ottima idea, ricordo di aver visto un pacchetto Python per lavorare con le mappe geografiche, quindi lo farò, soprattutto perché non riesco a sistemarmi su un'unica griglia.
DenDenDo

Penso che stai trattando le celle come vicine quando condividono un limite mentre un vertice condiviso dovrebbe essere sufficiente anche se il grafico di connessione potrebbe non essere planare in questi casi. Per esempio. 5 celle che condividono un vertice formano un K_5 nel grafico delle connessioni.
esempio

In effetti, a volte sono collegati da un vertice a volte non sono celle + collegamenti Quando ho costruito per la prima volta il grafico dei collegamenti, volevo assicurarmi che fosse planare, cioè non ci sono incroci, ma non è così quando più di 3 bordi si incontrano in un vertice. Ma per fortuna questo è facile da evitare rendendo le cellule leggermente asimmetriche.
DenDenDo

21

Javascript [25+?]

http://jsfiddle.net/Therm/dqb2h2oc/

inserisci qui la descrizione dell'immagine

Tessellazioni domestiche! Ci sono due forme: "House" e "Upsidedown House", ognuna con 7 vicini.

Attualmente ho un punteggio di 25.

still life                  : +2
2-stage oscillator "beacon" : +3  (Credit to isaacg)
Spaceship "Toad"            : +10 (Credit to isaacg)
Glider                      : +10 (Credit to Martin Büttner)

Diritti di denominazione per i modelli in palio se li trovi: p

Natura morta - Stella
Stella

Oscillatore a 2 stadi - "Beacon": trovato da isaacg
2stagOscillator

Nave spaziale - "Rospo": trovato da isaacg
inserisci qui la descrizione dell'immagine

Aliante - Senza nome: Trovato da Martin Büttner
inserisci qui la descrizione dell'immagine

Il violino è attualmente impostato per popolare casualmente il mondo come stato iniziale.

Codice:

// An animation similar to Conway's Game of Life, using house-tessellations.
// B2/S23

var world;
var worldnp1;
var intervalTime = 2000;

var canvas = document.getElementById('c');
var context = canvas.getContext('2d');

var x = 32;
var y = 32;

var width = 20; // width of house
var height = 15; // height of house base
var theight = 5; // height of house roof
var deadC = '#3300FF';
var aliveC = '#00CCFF';

function initWorld() {
    world = new Array(x * y);

    /* Still life - box
        world[x/2 * y + y/2 + 1] = 1;
        world[x/2 * y + y/2] = 1;
        world[x/2 * y + y/2 + y] = 1;
        world[x/2 * y + y/2 + y + 1] = 1;
    */

    /* Still life - House
        world[x/2 * y + y/2 - y] = 1;
        world[x/2 * y + y/2 + 1] = 1;
        world[x/2 * y + y/2 - 1] = 1;
        world[x/2 * y + y/2 + y] = 1;
        world[x/2 * y + y/2 + y+1] = 1;
    */

    /* Oscillator on an infinite plane :(
    for(var i=0; i<y; i++) {
        world[y/2 * y + i] = 1 ^ (i%2);
        world[y/2 * y + y + i] = 1 ^ (i%2);
    } */

    // Random state 
    for(var i=0; i<x*y; i++) {
        world[i] = Math.round(Math.random());
    }

    drawGrid();
}

animateWorld = function () {
    computeNP1();
    drawGrid();
};

function computeNP1() {
    worldnp1 = new Array(x * y);
    var buddies;
    for (var i = 0; i < x * y; i++) {
        buddies = getNeighbors(i);
        var aliveBuddies = 0;
        for (var j = 0; j < buddies.length; j++) {
            if (world[buddies[j]]) {
                aliveBuddies++;
            }
        }
        if (world[i]) {
            if (aliveBuddies === 2 || aliveBuddies === 3) {
                worldnp1[i] = 1;
            }
        }
        else {
            if (aliveBuddies === 3) {
                worldnp1[i] = 1;
            }
        }
    }
    world = worldnp1.slice(0);
}

function drawGrid() {
    var dx = 0;
    var dy = 0;
    var shiftLeft = 0;
    var pointDown = 0;
    for (var i = 0; i < y; i++) {
        // yay XOR
        shiftLeft ^= pointDown;
        pointDown ^= 1;
        if (shiftLeft) {
            dx -= width / 2;
        }
        for (var j = 0; j < x; j++) {
            var c = world[i * y + j] ? aliveC : deadC ;
            draw5gon(dx, dy, pointDown, c);
            outline5gon(dx, dy, pointDown);
            dx += width;
        }
        dx = 0;
        if (pointDown) {
            dy += 2 * height + theight;
        }
    }
}

function getNeighbors(i) {
    neighbors = [];

    // Everybody has a L/R neighbor
    if (i % x !== 0) {
        neighbors.push(i - 1);
    }
    if (i % x != x - 1) {
        neighbors.push(i + 1);
    }

    // Everybody has "U/D" neighbor
    neighbors.push(i - x);
    neighbors.push(i + x);

    // Down facers (R1)
    if (Math.floor(i / x) % 4 === 0) {
        if (i % x !== 0) {
            neighbors.push(i - x - 1);
        }
        if (i % x != x - 1) {
            neighbors.push(i - x + 1);
            neighbors.push(i + x + 1);
        }
    }

    // Up facers (R2)
    else if (Math.floor(i / x) % 4 === 1) {
        if (i % x !== 0) {
            neighbors.push(i - x - 1);
            neighbors.push(i + x - 1);
        }
        if (i % x != x - 1) {
            neighbors.push(i + x + 1);
        }
    }

    // Down facers (R3)
    else if (Math.floor(i / x) % 4 === 2) {
        if (i % x !== 0) {
            neighbors.push(i - x - 1);
            neighbors.push(i + x - 1);
        }
        if (i % x != x - 1) {
            neighbors.push(i - x + 1);
        }
    }

    // Up facers (R4)
    // else if ( Math.floor(i/x) % 4 === 3 )
    else {
        if (i % x !== 0) {
            neighbors.push(i + x - 1);
        }
        if (i % x != x - 1) {
            neighbors.push(i - x + 1);
            neighbors.push(i + x + 1);
        }
    }

    return neighbors.filter(function (val, ind, arr) {
        return (0 <= val && val < x * y);
    });
}

// If pointdown, x,y refer to top left corner
// If not pointdown, x,y refers to lower left corner
function draw5gon(x, y, pointDown, c) {
    if (pointDown) {
        drawRect(x, y, width, height, c);
        drawTriangle(x, y + height, x + width, y + height, x + width / 2, y + height + theight);
    } else {
        drawRect(x, y - height, width, height, c);
        drawTriangle(x, y - height, x + width / 2, y - height - theight, x + width, y - height);
    }
}

function outline5gon(x, y, pointDown) {
    context.beginPath();
    context.moveTo(x, y);
    if (pointDown) {
        context.lineTo(x + width, y);
        context.lineTo(x + width, y + height);
        context.lineTo(x + width / 2, y + height + theight);
        context.lineTo(x, y + height);
    } else {
        context.lineTo(x, y - height);
        context.lineTo(x + width / 2, y - height - theight);
        context.lineTo(x + width, y - height);
        context.lineTo(x + width, y);
    }
    context.lineWidth = 3;
    context.strokeStyle = '#000000';
    context.stroke();
}

function drawRect(x, y, w, h, c) {
    context.fillStyle = c;
    context.fillRect(x, y, w, h);
}

function drawTriangle(x1, y1, x2, y2, x3, y3, c) {
    context.beginPath();
    context.moveTo(x1, y1);
    context.lineTo(x2, y2);
    context.lineTo(x3, y3);
    context.fillStyle = c;
    context.fill();
}

$(document).ready(function () {
    initWorld();
    intervalID = window.setInterval(animateWorld, intervalTime);
});

2
Ho trovato un oscillatore, basato sul faro GoL. Incolla quanto segue nel violino:world[x/2 * y + y/2 + 1] = 1; world[x/2 * y + y/2] = 1; world[x/2 * y + y/2 - y] = 1; world[x/2 * y + y/2 - y + 1] = 1; world[x/2 * y + y/2 + 1*y + 2] = 1; world[x/2 * y + y/2 + 1*y + 3] = 1; world[x/2 * y + y/2 + 2*y + 2] = 1; world[x/2 * y + y/2 + 2*y + 3] = 1;
isaacg

@isaacg Foto aggiunta e inclusa nel violino. Vuoi nominarlo?
Kevin L,

Lo definirei il faro. È troppo simile al faro GoL per chiamarlo in qualsiasi altro modo.
isaacg,

5
Ho trovato un aliante! Vorrei chiamarlo rospo, perché sembra il corpo di un rospo in una delle sue fasi. world[x / 2 * y - y / 2 -1] = 1; world[x / 2 * y - y / 2] = 1; world[x / 2 * y + y / 2] = 1; world[x / 2 * y + y / 2 + 1] = 1; world[x / 2 * y + y / 2 + 1 * y] = 1; world[x / 2 * y + y / 2 + 1 * y + 1] = 1; world[x / 2 * y + y / 2 + 2 * y] = 1; world[x / 2 * y + y / 2 + 2 * y + 1] = 1; world[x / 2 * y + y / 2 + 3 * y] = 1; world[x / 2 * y + y / 2 + 3 * y + 1] = 1; world[x / 2 * y + y / 2 + 4 * y] = 1; world[x / 2 * y + y / 2 + 4 * y-1] = 1;
isaacg,

3
@isaacg Trovato di nuovo! E questa volta l'ho preso;). È davvero solo una tua variante, però, con altre due cellule vive finali: world[x/2*y - y/2 -1] = 1;world[x/2*y - y/2] = 1;world[x/2*y + y/2 -2] = 1;world[x/2*y + y/2] = 1;world[x/2*y + y/2 +1] = 1;world[x/2*y + y/2 + 1*y] = 1;world[x/2*y + y/2 + 1*y +1] = 1;world[x/2*y + y/2 + 2*y] = 1;world[x/2*y + y/2 + 2*y +1] = 1;world[x/2*y + y/2 + 3*y -2] = 1;world[x/2*y + y/2 + 3*y] = 1;world[x/2*y + y/2 + 3*y +1] = 1;world[x/2*y + y/2 + 4*y] = 1;world[x/2*y + y/2 + 4*y -1] = 1;penso che per le regole sia comunque un'astronave distinta.
Martin Ender,

20

Javascript [27+?]

http://jsfiddle.net/Therm/5n53auja/

Turno 2! Ora con esagoni, quadrati e triangoli. E interattività

Questa versione supporta i clic sui riquadri per cambiare il loro stato, per i cacciatori di schemi là fuori. Nota: parte della gestione dei clic potrebbe essere un po 'complicata, specialmente per valori bassi di s, poiché gli eventi clic vengono monitorati come numeri interi ma i calcoli vengono eseguiti con valori in virgola mobile

inserisci qui la descrizione dell'immagine

Punteggio attuale - 24

Still life           : +2
Period 2 oscillator  : +3
Period 4 oscillator  : +3
Period 6 oscillator  : +3
Period 10 oscillator : +3
Period 12 oscillator : +3
Spaceship            : +10

Oscillatore Periodo 4: Trovato da Martin Büttner
inserisci qui la descrizione dell'immagine

Oscillatore Periodo 6: Trovato da Martin Büttner
inserisci qui la descrizione dell'immagine

Oscillatore periodo 10: trovato da Martin Büttner
inserisci qui la descrizione dell'immagine

Oscillatore periodo 12: trovato da Martin Büttner
inserisci qui la descrizione dell'immagine

Nave spaziale del periodo 20: trovata da Martin Büttner
inserisci qui la descrizione dell'immagine


6
Trovato un aliante / astronave con periodo 20:world[36].e = 1; world[37].d = 1; world[37].e = 1; world[52].a = 1; world[52].e = 1; world[53].c = 1; world[53].e = 1;
Martin Ender

Un'altra forma di partenza piuttosto interessante per la stessa astronave è world[36].d=1; world[52].a=1; world[52].c=1; world[69].b=1; world[69].a=1; world[70].a=1; world[68].d=1; world[84].a=1; world[84].c=1;perché consiste solo di 3 oscillatori di periodo 2.
Martin Ender,

Oscillatore del periodo 4, nel caso sia di aiuto:world[53].e=1; world[54].e=1; world[54].c=1; world[54].d=1; world[54].e=1; world[71].e=1; world[71].b=1; world[71].c=1;
Martin Ender

E il più vicino a cui sono arrivato a qualcosa che sembra una crescita illimitata o un'astronave verticale è world[87].d=1; world[102].b=1; world[103].a=1; world[103].b=1; world[103].c=1; world[118].b=1; world[119].a=1; world[119].b=1; world[119].c=1; world[119].d=1;. Forse questo aiuterà qualcuno a trovare una variante che funzioni. Basta per ora ...
Martin Ender

Oscillatore periodo 6: world[68].e=1; world[100].e=1; world[99].b=1; world[100].a=1; world[99].e=1; world[70].e=1; world[102].e=1; world[103].a=1; world[103].b=1; world[103].e=1;funziona anche con la metà delle dimensioni se si trova al limite.
Martin Ender,

16

Piastrellatura pentagonale del Cairo (+ quadro generico), 17+ punti

Questa piastrellatura è sorprendentemente facile da disegnare: la chiave è che l'unico numero irrazionale che è importante per disegnarlo sqrt(3), è molto vicino al numero razionale 7/4, che ha il vantaggio aggiuntivo che se si sottrae 1dal numeratore e dal denominatore che si ottiene 6/3 = 2, quindi che le linee non allineate sull'asse siano ben simmetriche.

Se vuoi carta millimetrata, ho creato una sintesi PostScript per A4. Sentiti libero di bucarlo per altri formati di carta.

Il codice è abbastanza generico da supportare altri limiti. L'interfaccia che deve essere implementata è:

import java.util.Set;

interface Tiling<Cell> {
    /** Calculates the neighbourhood, which should not include the cell itself. */
    public Set<Cell> neighbours(Cell cell);
    /** Gets an array {xs, ys} of polygon vertices. */
    public int[][] bounds(Cell cell);
    /** Starting cell for random generation. This doesn't need to be consistent. */
    public Cell initialCell();
    /** Allows exclusion of common oscillations in random generation. */
    public boolean isInterestingOscillationPeriod(int period);
    /** Parse command-line input. */
    public Set<Cell> parseCells(String[] data);
}

Quindi la piastrellatura del Cairo è:

import java.awt.Point;
import java.util.*;

/**
 * http://en.wikipedia.org/wiki/Cairo_pentagonal_tiling
 */
class CairoTiling implements Tiling<Point> {
    private static final int[][] SHAPES_X = new int[][] {
        { 0, 4, 11, 11, 4 },
        { 11, 4, 8, 14, 18 },
        { 11, 18, 14, 8, 4 },
        { 22, 18, 11, 11, 18 }
    };
    private static final int[][] SHAPES_Y = new int[][] {
        { 0, 7, 3, -3, -7 },
        { 3, 7, 14, 14, 7 },
        { -3, -7, -14, -14, -7 },
        { 0, -7, -3, 3, 7 }
    };

    public Set<Point> neighbours(Point cell) {
        Set<Point> neighbours = new HashSet<Point>();
        int exclx = (cell.y & 1) == 0 ? -1 : 1;
        int excly = (cell.x & 1) == 0 ? -1 : 1;
        for (int dx = -1; dx <= 1; dx++) {
            for (int dy = -1; dy <= 1; dy++) {
                if (dx == 0 && dy == 0) continue;
                if (dx == exclx && dy == excly) continue;
                neighbours.add(new Point(cell.x + dx, cell.y + dy));
            }
        }

        return neighbours;
    }

    public int[][] bounds(Point cell) {
        int x = cell.x, y = cell.y;

        int[] xs = SHAPES_X[(x & 1) + 2 * (y & 1)].clone();
        int[] ys = SHAPES_Y[(x & 1) + 2 * (y & 1)].clone();
        int xoff = 7 * (x & ~1) + 7 * (y & ~1);
        int yoff = 7 * (x & ~1) - 7 * (y & ~1);

        for (int i = 0; i < 5; i++) {
            xs[i] += xoff;
            ys[i] += yoff;
        }

        return new int[][] { xs, ys };
    }

    public Point initialCell() { return new Point(0, 0); }

    public boolean isInterestingOscillationPeriod(int period) {
        // Period 6 oscillators are extremely common, and period 2 fairly common.
        return period != 2 && period != 6;
    }

    public Set<Point> parseCells(String[] data) {
        if ((data.length & 1) == 1) throw new IllegalArgumentException("Expect pairs of integers");

        Set<Point> cells = new HashSet<Point>();
        for (int i = 0; i < data.length; i += 2) {
            cells.add(new Point(Integer.parseInt(data[i]), Integer.parseInt(data[i + 1])));
        }

        return cells;
    }
}

e il codice di controllo è

import java.awt.*;
import java.awt.image.*;
import java.io.*;
import java.util.*;
import java.util.List;
import javax.imageio.*;
import javax.imageio.metadata.*;
import javax.imageio.stream.*;
import org.w3c.dom.Node;

/**
 * Implements a Life-like cellular automaton on a generic grid.
 * http://codegolf.stackexchange.com/q/35827/194
 *
 * TODOs:
 *  - Allow a special output format for gliders which moves the bounds at an appropriate speed and doesn't extend the last frame
 *  - Allow option to control number of generations
 */
public class GenericLife {
    private static final Color GRIDCOL = new Color(0x808080);
    private static final Color DEADCOL = new Color(0xffffff);
    private static final Color LIVECOL = new Color(0x0000ff);

    private static final int MARGIN = 15;

    private static void usage() {
        System.out.println("Usage: java GenericLife <tiling> [<output.gif> <cell-data>]");
        System.out.println("For CairoTiling, cell data is pairs of integers");
        System.out.println("For random search, supply just the tiling name");
        System.exit(1);
    }

    // Unchecked warnings due to using reflection to instantation tiling over unknown cell type
    @SuppressWarnings("unchecked")
    public static void main(String[] args) throws Exception {
        if (args.length == 0 || args[0].equals("--help")) usage();

        Tiling tiling = (Tiling)Class.forName(args[0]).newInstance();
        if (args.length > 1) {
            String[] cellData = new String[args.length - 2];
            System.arraycopy(args, 2, cellData, 0, cellData.length);
            Set alive;
            try { alive = tiling.parseCells(cellData); }
            catch (Exception ex) { usage(); return; }

            createAnimatedGif(args[1], tiling, evolve(tiling, alive, 100));
        }
        else search(tiling);
    }

    private static <Cell> void search(Tiling<Cell> tiling) throws IOException {
        while (true) {
            // Build a starting generation within a certain radius of the initial cell.
            // This is a good place to tweak.
            Set<Cell> alive = new HashSet<Cell>();
            double density = Math.random();
            Set<Cell> visited = new HashSet<Cell>();
            Set<Cell> boundary = new HashSet<Cell>();
            boundary.add(tiling.initialCell());
            for (int r = 0; r < 10; r++) {
                visited.addAll(boundary);
                Set<Cell> nextBoundary = new HashSet<Cell>();
                for (Cell cell : boundary) {
                    if (Math.random() < density) alive.add(cell);
                    for (Cell neighbour : tiling.neighbours(cell)) {
                        if (!visited.contains(neighbour)) nextBoundary.add(neighbour);
                    }
                }

                boundary = nextBoundary;
            }

            final int MAX = 1000;
            List<Set<Cell>> gens = evolve(tiling, alive, MAX);
            // Long-lived starting conditions might mean a glider, so are interesting.
            boolean interesting = gens.size() == MAX;
            String desc = "gens-" + MAX;
            if (!interesting) {
                // We hit some oscillator - but was it an interesting one?
                int lastGen = gens.size() - 1;
                gens = evolve(tiling, gens.get(lastGen), gens.size());
                if (gens.size() > 1) {
                    int period = gens.size() - 1;
                    desc = "oscillator-" + period;
                    interesting = tiling.isInterestingOscillationPeriod(period);
                    System.out.println("Oscillation of period " + period);
                }
                else {
                    String result = gens.get(0).isEmpty() ? "Extinction" : "Still life";
                    System.out.println(result + " at gen " + lastGen);
                }
            }

            if (interesting) {
                String filename = System.getProperty("java.io.tmpdir") + "/" + tiling.getClass().getSimpleName() + "-" + System.nanoTime() + "-" + desc + ".gif";
                createAnimatedGif(filename, tiling, gens);
                System.out.println("Wrote " + gens.size() + " generations to " + filename);
            }
        }
    }

    private static <Cell> List<Set<Cell>> evolve(Tiling<Cell> tiling, Set<Cell> gen0, int numGens) {
        Map<Set<Cell>, Integer> firstSeen = new HashMap<Set<Cell>, Integer>();
        List<Set<Cell>> gens = new ArrayList<Set<Cell>>();
        gens.add(gen0);
        firstSeen.put(gen0, 0);

        Set<Cell> alive = gen0;
        for (int gen = 1; gen < numGens; gen++) {
            if (alive.size() == 0) break;

            Set<Cell> nextGen = nextGeneration(tiling, alive);
            Integer prevSeen = firstSeen.get(nextGen);
            if (prevSeen != null) {
                if (gen - prevSeen > 1) gens.add(nextGen); // Finish the loop.
                break;
            }

            alive = nextGen;
            gens.add(alive);
            firstSeen.put(alive, gen);
        }

        return gens;
    }

    private static <Cell> void createAnimatedGif(String filename, Tiling<Cell> tiling, List<Set<Cell>> gens) throws IOException {
        OutputStream out = new FileOutputStream(filename);
        ImageWriter imgWriter = ImageIO.getImageWritersByFormatName("gif").next();
        ImageOutputStream imgOut = ImageIO.createImageOutputStream(out);
        imgWriter.setOutput(imgOut);
        imgWriter.prepareWriteSequence(null);

        Rectangle bounds = bbox(tiling, gens);
        Set<Cell> gen0 = gens.get(0);
        int numGens = gens.size();

        for (int gen = 0; gen < numGens; gen++) {
            Set<Cell> alive = gens.get(gen);

            // If we have an oscillator which loops cleanly back to the start, skip the last frame.
            if (gen > 0 && alive.equals(gen0)) break;

            writeGifFrame(imgWriter, render(tiling, bounds, alive), gen == 0, gen == numGens - 1);
        }

        imgWriter.endWriteSequence();
        imgOut.close();
        out.close();
    }

    private static <Cell> Rectangle bbox(Tiling<Cell> tiling, Collection<? extends Collection<Cell>> gens) {
        Rectangle bounds = new Rectangle(-1, -1);
        Set<Cell> allGens = new HashSet<Cell>();
        for (Collection<Cell> gen : gens) allGens.addAll(gen);
        for (Cell cell : allGens) {
            int[][] cellBounds = tiling.bounds(cell);
            int[] xs = cellBounds[0], ys = cellBounds[1];
            for (int i = 0; i < xs.length; i++) bounds.add(xs[i], ys[i]);
        }

        bounds.grow(MARGIN, MARGIN);
        return bounds;
    }

    private static void writeGifFrame(ImageWriter imgWriter, BufferedImage img, boolean isFirstFrame, boolean isLastFrame) throws IOException {
        IIOMetadata metadata = imgWriter.getDefaultImageMetadata(new ImageTypeSpecifier(img), null);

        String metaFormat = metadata.getNativeMetadataFormatName();
        Node root = metadata.getAsTree(metaFormat);

        IIOMetadataNode grCtlExt = findOrCreateNode(root, "GraphicControlExtension");
        grCtlExt.setAttribute("delayTime", isLastFrame ? "1000" : "30"); // Extra delay for last frame
        grCtlExt.setAttribute("disposalMethod", "doNotDispose");

        if (isFirstFrame) {
            // Configure infinite looping.
            IIOMetadataNode appExts = findOrCreateNode(root, "ApplicationExtensions");
            IIOMetadataNode appExt = findOrCreateNode(appExts, "ApplicationExtension");
            appExt.setAttribute("applicationID", "NETSCAPE");
            appExt.setAttribute("authenticationCode", "2.0");
            appExt.setUserObject(new byte[] { 1, 0, 0 });
        }

        metadata.setFromTree(metaFormat, root);
        imgWriter.writeToSequence(new IIOImage(img, null, metadata), null);
    }

    private static IIOMetadataNode findOrCreateNode(Node parent, String nodeName) {
        for (Node child = parent.getFirstChild(); child != null; child = child.getNextSibling()) {
            if (child.getNodeName().equals(nodeName)) return (IIOMetadataNode)child;
        }

        IIOMetadataNode node = new IIOMetadataNode(nodeName);
        parent.appendChild(node);
        return node ;
    }

    private static <Cell> Set<Cell> nextGeneration(Tiling<Cell> tiling, Set<Cell> gen) {
        Map<Cell, Integer> neighbourCount = new HashMap<Cell, Integer>();
        for (Cell cell : gen) {
            for (Cell neighbour : tiling.neighbours(cell)) {
                Integer curr = neighbourCount.get(neighbour);
                neighbourCount.put(neighbour, 1 + (curr == null ? 0 : curr.intValue()));
            }
        }

        Set<Cell> nextGen = new HashSet<Cell>();
        for (Map.Entry<Cell, Integer> e : neighbourCount.entrySet()) {
            if (e.getValue() == 3 || (e.getValue() == 2 && gen.contains(e.getKey()))) {
                nextGen.add(e.getKey());
            }
        }

        return nextGen;
    }

    private static <Cell> BufferedImage render(Tiling<Cell> tiling, Rectangle bounds, Collection<Cell> alive) {
        // Create a suitable paletted image
        int width = bounds.width;
        int height = bounds.height;
        byte[] data = new byte[width * height];
        int[] pal = new int[]{ GRIDCOL.getRGB(), DEADCOL.getRGB(), LIVECOL.getRGB() };
        ColorModel colourModel = new IndexColorModel(8, pal.length, pal, 0, false, -1, DataBuffer.TYPE_BYTE);
        DataBufferByte dbb = new DataBufferByte(data, width * height);
        WritableRaster raster = Raster.createPackedRaster(dbb, width, height, width, new int[]{0xff}, new Point(0, 0));
        BufferedImage img = new BufferedImage(colourModel, raster, true, null);
        Graphics g = img.createGraphics();

        // Render the tiling.
        // We assume that either one of the live cells or the "initial cell" is in bounds.
        Set<Cell> visited = new HashSet<Cell>();
        Set<Cell> unvisited = new HashSet<Cell>(alive);
        unvisited.add(tiling.initialCell());
        while (!unvisited.isEmpty()) {
            Iterator<Cell> it = unvisited.iterator();
            Cell current = it.next();
            it.remove();
            visited.add(current);

            Rectangle cellBounds = new Rectangle(-1, -1);
            int[][] cellVertices = tiling.bounds(current);
            int[] xs = cellVertices[0], ys = cellVertices[1];
            for (int i = 0; i < xs.length; i++) {
                cellBounds.add(xs[i], ys[i]);
                xs[i] -= bounds.x;
                ys[i] -= bounds.y;
            }

            if (!bounds.intersects(cellBounds)) continue;

            g.setColor(alive.contains(current) ? LIVECOL : DEADCOL);
            g.fillPolygon(xs, ys, xs.length);
            g.setColor(GRIDCOL);
            g.drawPolygon(xs, ys, xs.length);

            for (Cell neighbour : tiling.neighbours(current)) {
                if (!visited.contains(neighbour)) unvisited.add(neighbour);
            }
        }

        return img;
    }
}

Qualsiasi vertice genera una natura morta (2 punti):

java GenericLife CairoTiling stilllife.gif 0 0 0 1 1 1 3 2 3 3 4 2 4 3

Natura morta

Oscillatori (15 punti): in senso orario da in alto a sinistra abbiamo ordini 2, 3, 4, 6, 11, 12.

Oscillatori assortiti


Non riesco a vedere la tartaruga.
Quentin,

@Quentin, il mio soprannome per l'oscillatore p3 è ebola. Hai la testa e la coda aggrovigliate.
Peter Taylor,

Stavo pensando a quello p2. Sembra una tartaruga che gira perpetuamente.
Quentin,

Anche quello p4 sembra una tartaruga da nuoto.
Ross Presser,

16

Rhombille (30+ punti)

Questa griglia ha una connettività piuttosto elevata (ogni cella ha 10 vicini) e, curiosamente, questo sembra contribuire più efficacemente alla nascita che alla morte. La maggior parte delle griglie casuali sembrano innescare una crescita infinita (25 punti); ad es. questa posizione iniziale a 5 celle:

Posizione di partenza

evolve oltre 300 generazioni in qualcosa di enorme:

Evoluzione di quella posizione iniziale

e la popolazione cresce quadraticamente con la generazione per almeno 3000 generazioni.

Forse è per questo che ho trovato un solo oscillatore , del periodo 2 (3 punti):

Oscillatore a 3 celle

Per quanto riguarda la natura morta (2 punti): prendi 4 celle qualsiasi attorno a un singolo vertice.

Il codice (utilizzare con il framework generico e le AbstractLatticeclassi che ho pubblicato nelle risposte precedenti):

public class Rhombille extends AbstractLattice {
    public Rhombille() {
        super(14, 0, 7, 12, new int[][] {
                {0, 7, 14, 7},
                {0, 7, 7, 0},
                {7, 14, 14, 7}
            }, new int[][] {
                {0, 4, 0, -4},
                {0, -4, -12, -8},
                {-4, 0, -8, -12}
            });
    }

    @Override
    public boolean isInterestingOscillationPeriod(int period) {
        return period != 2;
    }
}

14

Piastrellatura rombitriesagonale , 17+ punti

Come richiesto da Martin Büttner.

Still life (2 punti):

Una catena con due anelli

Oscillatori di periodi (in senso orario da in alto a sinistra) 2, 4, 5, 6, 11 (15 punti):

Vari oscillatori

In generale un oscillatore ha un insieme di celle che cambiano (il nucleo ), un insieme di celle che confina con il nucleo (il rivestimento ) e un insieme di celle che impediscono al rivestimento di cambiare (il supporto ). Con questa piastrellatura, il supporto degli oscillatori può talvolta sovrapporsi: ad es

4 oscillatori e 5 oscillatori con supporto sovrapposto

Se l'oscillatore 4 fosse rimosso, il supporto dell'oscillatore 5 fallirebbe e alla fine si evolverebbe in un oscillatore 2. Ma se l'oscillatore 5 fosse rimosso, il supporto dell'oscillatore 4 aggiungerebbe semplicemente un esagono e si stabilizzerebbe, quindi questo non è realmente un oscillatore 20.


Il codice che implementa questa piastrellatura è estremamente generico: basandomi sulla mia esperienza con una piastrellatura aperiodica, mi sono reso conto che espandersi fino a un limite noto e fare una ricerca per vertice è una tecnica molto flessibile, sebbene possibilmente non efficiente per reticoli semplici. Ma poiché siamo interessati a reticoli più complessi, ho adottato questo approccio qui.

Ogni piastrellatura periodica è un reticolo ed è possibile identificare un'unità fondamentale (nel caso di questa piastrellatura è un esagono, due triangoli e tre quadrati) che si ripete lungo due assi. Quindi basta fornire gli offset degli assi e le coordinate delle celle primitive di un'unità fondamentale e il gioco è fatto.

Tutto questo codice può essere scaricato come zip all'indirizzo https://gist.github.com/pjt33/becd56784480ddd751bf e questo include anche un file GenericLifeGuiche non ho pubblicato in questa pagina.

public class Rhombitrihexagonal extends AbstractLattice {
    public Rhombitrihexagonal() {
        super(22, 0, 11, 19, new int[][] {
                {-7, 0, 7, 7, 0, -7},
                {0, 4, 11, 7},
                {7, 11, 15},
                {7, 15, 15, 7},
                {7, 15, 11},
                {7, 11, 4, 0},
            }, new int[][] {
                {4, 8, 4, -4, -8, -4},
                {8, 15, 11, 4},
                {4, 11, 4},
                {4, 4, -4, -4},
                {-4, -4, -11},
                {-4, -11, -15, -8},
            });
    }

    @Override
    public boolean isInterestingOscillationPeriod(int period) {
        return period != 2 && period != 4 && period != 5 && period != 6 && period != 10 && period != 12 && period != 15 && period != 30;
    }
}

Il supporto per questo è il mio framework generico precedentemente pubblicato più la AbstractLatticeclasse:

import java.awt.Point;
import java.util.*;

public abstract class AbstractLattice implements Tiling<AbstractLattice.LatticeCell> {
    // Use the idea of expansion and vertex mapping from my earlier aperiod tiling implementation.
    private Map<Point, Set<LatticeCell>> vertexNeighbourhood = new HashMap<Point, Set<LatticeCell>>();
    private int scale = -1;

    // Geometry
    private final int dx0, dy0, dx1, dy1;
    private final int[][] xs;
    private final int[][] ys;

    protected AbstractLattice(int dx0, int dy0, int dx1, int dy1, int[][] xs, int[][] ys) {
        this.dx0 = dx0;
        this.dy0 = dy0;
        this.dx1 = dx1;
        this.dy1 = dy1;
        // Assume sensible subclasses, so no need to clone the arrays to prevent modification.
        this.xs = xs;
        this.ys = ys;
    }

    private void expand() {
        scale++;
        // We want to enumerate all lattice cells whose extreme coordinate is +/- scale.
        // Corners:
        insertLatticeNeighbourhood(-scale, -scale);
        insertLatticeNeighbourhood(-scale, scale);
        insertLatticeNeighbourhood(scale, -scale);
        insertLatticeNeighbourhood(scale, scale);

        // Edges:
        for (int i = -scale + 1; i < scale; i++) {
            insertLatticeNeighbourhood(-scale, i);
            insertLatticeNeighbourhood(scale, i);
            insertLatticeNeighbourhood(i, -scale);
            insertLatticeNeighbourhood(i, scale);
        }
    }

    private void insertLatticeNeighbourhood(int x, int y) {
        for (int sub = 0; sub < xs.length; sub++) {
            LatticeCell cell = new LatticeCell(x, y, sub);
            int[][] bounds = bounds(cell);
            for (int i = 0; i < bounds[0].length; i++) {
                Point p = new Point(bounds[0][i], bounds[1][i]);

                Set<LatticeCell> adj = vertexNeighbourhood.get(p);
                if (adj == null) vertexNeighbourhood.put(p,  adj = new HashSet<LatticeCell>());
                adj.add(cell);
            }
        }
    }

    public Set<LatticeCell> neighbours(LatticeCell cell) {
        Set<LatticeCell> rv = new HashSet<LatticeCell>();

        // +1 because we will border cells from the next scale.
        int requiredScale = Math.max(Math.abs(cell.x), Math.abs(cell.y)) + 1;
        while (scale < requiredScale) expand();

        int[][] bounds = bounds(cell);
        for (int i = 0; i < bounds[0].length; i++) {
            Point p = new Point(bounds[0][i], bounds[1][i]);
            Set<LatticeCell> adj = vertexNeighbourhood.get(p);
            rv.addAll(adj);
        }

        rv.remove(cell);
        return rv;
    }

    public int[][] bounds(LatticeCell cell) {
        int[][] bounds = new int[2][];
        bounds[0] = xs[cell.sub].clone();
        bounds[1] = ys[cell.sub].clone();
        for (int i = 0; i < bounds[0].length; i++) {
            bounds[0][i] += cell.x * dx0 + cell.y * dx1;
            bounds[1][i] += cell.x * dy0 + cell.y * dy1;
        }

        return bounds;
    }

    public LatticeCell initialCell() {
        return new LatticeCell(0, 0, 0);
    }

    public abstract boolean isInterestingOscillationPeriod(int period);

    public Set<LatticeCell> parseCells(String[] data) {
        Set<LatticeCell> rv = new HashSet<LatticeCell>();
        if (data.length % 3 != 0) throw new IllegalArgumentException("Data should come in triples");
        for (int i = 0; i < data.length; i += 3) {
            if (data[i + 2].length() != 1) throw new IllegalArgumentException("Third data item should be a single letter");
            rv.add(new LatticeCell(Integer.parseInt(data[i]), Integer.parseInt(data[i + 1]), data[i + 2].charAt(0) - 'A'));
        }
        return rv;
    }

    public String format(Set<LatticeCell> cells) {
        StringBuilder sb = new StringBuilder();
        for (LatticeCell cell : cells) {
            if (sb.length() > 0) sb.append(' ');
            sb.append(cell.x).append(' ').append(cell.y).append(' ').append((char)(cell.sub + 'A'));
        }

        return sb.toString();
    }

    static class LatticeCell {
        public final int x, y, sub;

        LatticeCell(int x, int y, int sub) {
            this.x = x;
            this.y = y;
            this.sub = sub;
        }

        @Override
        public int hashCode() {
            return (x * 0x100025) + (y * 0x959) + sub;
        }

        @Override
        public boolean equals(Object obj) {
            if (!(obj instanceof LatticeCell)) return false;
            LatticeCell other = (LatticeCell)obj;
            return x == other.x && y == other.y && sub == other.sub;
        }

        @Override
        public String toString() {
            return x + " " + y + " " + (char)('A' + sub);
        }
    }
}

Dopo alcune ore di CPU ho aggiunto un 7 oscillatore e un 15 oscillatore, oltre ad alcune interessanti coppie di oscillatori in cui condividono alcune celle che le mantengono stabili.
Peter Taylor,

E modificando manualmente l'oscillatore 7 ho accidentalmente creato un oscillatore 3, che ti dice qualcosa sull'efficacia della ricerca casuale ... Ora, pensa a come gestire la simmetria in modo generico.
Peter Taylor,

13

Piastrellatura Aperiodic Labyrinth (45+ punti)

Questo utilizza il framework generico della mia precedente risposta.

Still life (2 punti):

Labirinto ancora in vita: quattro triangoli si incontrano in un vertice di ordine 12

Oscillatore (3 punti):

Immagine dell'oscillatore

Questo oscillatore è estremamente comune, presentandosi nel risultato della maggior parte dei punti di partenza casuali.

Codice:

import java.awt.Point;
import java.util.*;

public class LabyrinthTiling implements Tiling<String> {
    private Map<Point, Point> internedPoints = new HashMap<Point, Point>();
    private Map<String, Set<Point>> vertices = new HashMap<String, Set<Point>>();
    private Map<Point, Set<String>> tris = new HashMap<Point, Set<String>>();

    private int level = 0;
    // 3^level
    private int scale = 1;

    public LabyrinthTiling() {
        linkSymmetric("", new Point(-8, 0));
        linkSymmetric("", new Point(8, 0));
        linkSymmetric("", new Point(0, 14));
    }

    private void linkSymmetric(String suffix, Point p) {
        int ay = Math.abs(p.y);
        link("+" + suffix, new Point(p.x, ay));
        link("-" + suffix, new Point(p.x, -ay));
    }

    private void link(String tri, Point p) {
        Point p2 = internedPoints.get(p);
        if (p2 == null) internedPoints.put(p, p);
        else p = p2;

        Set<Point> ps = vertices.get(tri);
        if (ps == null) vertices.put(tri, ps = new HashSet<Point>());

        Set<String> ts = tris.get(p);
        if (ts == null) tris.put(p, ts = new HashSet<String>());

        ps.add(p);
        ts.add(tri);
    }

    private void expand() {
        level++;
        scale *= 3;
        subdivideEq("", new Point(-8 * scale, 0), new Point(8 * scale, 0), new Point(0, 14 * scale), level, true);
    }

    private static Point avg(Point p0, Point p1, Point p2) {
        return new Point((p0.x + p1.x + p2.x) / 3, (p0.y + p1.y + p2.y) / 3);
    }

    private void subdivideEq(String suffix, Point p0, Point p1, Point p2, int level, boolean skip0) {
        if (level == 0) {
            linkSymmetric(suffix, p0);
            linkSymmetric(suffix, p1);
            linkSymmetric(suffix, p2);
            return;
        }

        Point p01 = avg(p0, p0, p1), p10 = avg(p0, p1, p1);
        Point p02 = avg(p0, p0, p2), p20 = avg(p0, p2, p2);
        Point p12 = avg(p1, p1, p2), p21 = avg(p1, p2, p2);
        Point c = avg(p0, p1, p2);
        level--;

        if (!skip0) subdivideEq(suffix + "0", p01, p10, c, level, false);
        subdivideIso(suffix + "1", p0, c, p01, level);
        subdivideIso(suffix + "2", p0, c, p02, level);
        subdivideEq(suffix + "3", p02, c, p20, level, false);
        subdivideIso(suffix + "4", p2, c, p20, level);
        subdivideIso(suffix + "5", p2, c, p21, level);
        subdivideEq(suffix + "6", c, p12, p21, level, false);
        subdivideIso(suffix + "7", p1, c, p12, level);
        subdivideIso(suffix + "8", p1, c, p10, level);
    }

    private void subdivideIso(String suffix, Point p0, Point p1, Point p2, int level) {
        if (level == 0) {
            linkSymmetric(suffix, p0);
            linkSymmetric(suffix, p1);
            linkSymmetric(suffix, p2);
            return;
        }

        Point p01 = avg(p0, p0, p1), p10 = avg(p0, p1, p1);
        Point p02 = avg(p0, p0, p2), p20 = avg(p0, p2, p2);
        Point p12 = avg(p1, p1, p2), p21 = avg(p1, p2, p2);
        Point c = avg(p0, p1, p2);
        level--;

        subdivideIso(suffix + "0", p0, p01, p02, level);
        subdivideEq(suffix + "1", p01, p02, p20, level, false);
        subdivideIso(suffix + "2", p01, p2, p20, level);
        subdivideIso(suffix + "3", p01, p2, c, level);
        subdivideIso(suffix + "4", p01, p10, c, level);
        subdivideIso(suffix + "5", p10, p2, c, level);
        subdivideIso(suffix + "6", p10, p2, p21, level);
        subdivideEq(suffix + "7", p10, p12, p21, level, false);
        subdivideIso(suffix + "8", p1, p10, p12, level);
    }

    public Set<String> neighbours(String cell) {
        Set<String> rv = new HashSet<String>();

        Set<Point> cellVertices;
        while ((cellVertices = vertices.get(cell)) == null) expand();
        for (Point p : cellVertices) {
            // If the point is on the edge of the current level, we need to expand once more.
            if (Math.abs(p.x) / 8 + Math.abs(p.y) / 14 == scale) expand();

            Set<String> adj = tris.get(p);
            rv.addAll(adj);
        }

        rv.remove(cell);
        return rv;
    }

    public int[][] bounds(String cell) {
        Set<Point> cellVertices;
        while ((cellVertices = vertices.get(cell)) == null) expand();

        int[][] bounds = new int[2][3];
        int off = 0;
        for (Point p : cellVertices) {
            bounds[0][off] = p.x;
            bounds[1][off] = p.y;
            off++;
        }

        return bounds;
    }

    public String initialCell() {
        return "+";
    }

    public boolean isInterestingOscillationPeriod(int period) {
        return period != 4;
    }

    public Set<String> parseCells(String[] data) {
        Set<String> rv = new HashSet<String>();
        for (String cell : data) rv.add(cell);
        return rv;
    }

    public String format(Set<String> cells) {
        StringBuilder sb = new StringBuilder();
        for (String cell : cells) {
            if (sb.length() > 0) sb.append(' ');
            sb.append(cell);
        }

        return sb.toString();
    }
}

13

Proiezione a reticolo di reticolo a 7 dimensioni (64+ punti)

Questo è simile alla piastrellatura Penrose (per ottenere una piastrellatura Penrose sostituirla N = 7con N = 5) e si qualifica per il bonus aperiodico (40 punti).

Still life (2 punti): banale perché le protocellule sono convesse, quindi è sufficiente qualsiasi vertice di ordine 3 o più. (Scegli tutte le sue facce se è l'ordine 3, o qualsiasi 4 di esse altrimenti).

Oscillatori a breve periodo (15 punti):

Questa piastrellatura è ricca di oscillatori. Il periodo più piccolo per il quale ho trovato un solo oscillatore è 11, e il periodo più piccolo per il quale non ho trovato nessuno è 13.

p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Oscillatore a lungo termine (7 punti):

Ho deliberatamente scelto una delle varianti di questa piastrellatura che ha una simmetria rotazionale e che si è rivelata utile per l'oscillatore a lungo periodo. Fa un settimo di una rotazione attorno al punto centrale ogni 28 generazioni, rendendolo un p196.

P196

Il codice utilizza il framework che ho pubblicato nelle risposte precedenti insieme alla seguente classe di piastrellatura:

import java.awt.geom.Point2D;
import java.util.*;

public class Penrose7Tiling implements Tiling<Penrose7Tiling.Rhomb> {
    private Map<String, Rhomb> rhombs = new HashMap<String, Rhomb>();

    private static final int N = 7;
    private double scale = 16;
    private double[] gamma;
    // Nth roots of unity.
    private Point2D.Double[] zeta;

    public Penrose7Tiling() {
        gamma = new double[N];
        zeta = new Point2D.Double[N];
        for (int i = 0; i < N; i++) {
            gamma[i] = 1.0 / N; // for global rotational symmetry
            zeta[i] = new Point2D.Double(Math.cos(2 * i * Math.PI / N), Math.sin(2 * i * Math.PI / N));
        }
    }

    private Rhomb getRhomb(int r, int s, int k_r, int k_s) {
        String key = String.format("%d,%d,%d,%d", r, s, k_r, k_s);
        Rhomb rhomb = rhombs.get(key);
        if (rhomb == null) rhombs.put(key, rhomb = new Rhomb(r, s, k_r, k_s));
        return rhomb;
    }

    private int round(double val) {
        return (int)Math.round(scale * val);
    }

    public class Rhomb {
        public int[] k;
        public int r, s;

        private int[] xs = new int[4];
        private int[] ys = new int[4];
        private Set<Rhomb> neighbours;

        public Rhomb(int r, int s, int k_r, int k_s) {
            assert 0 <= r && r < s && s < N;

            this.r = r;
            this.s = s;

            // z_0 satisfies z_0 * zeta_{r,s} + gamma_{r,s} = k_{r,s}
            Point2D.Double z_0 = solveLinear(zeta[r].x, -zeta[r].y, gamma[r] - k_r, zeta[s].x, -zeta[s].y, gamma[s] - k_s);

            // Find base lattice point.
            Point2D.Double p = new Point2D.Double();
            k = new int[N];
            for (int i = 0; i < N; i++) {
                int k_i;
                if (i == r) k_i = k_r;
                else if (i == s) k_i = k_s;
                else k_i = (int)Math.ceil(z_0.x * zeta[i].x - z_0.y * zeta[i].y + gamma[i]);

                k[i] = k_i;
                p.x += zeta[i].x * (k_i + gamma[i]);
                p.y += zeta[i].y * (k_i + gamma[i]);
            }

            xs[0] = round(p.x);
            ys[0] = round(p.y);
            xs[1] = round(p.x + zeta[r].x);
            ys[1] = round(p.y + zeta[r].y);
            xs[2] = round(p.x + zeta[r].x + zeta[s].x);
            ys[2] = round(p.y + zeta[r].y + zeta[s].y);
            xs[3] = round(p.x + zeta[s].x);
            ys[3] = round(p.y + zeta[s].y);
        }

        public Set<Rhomb> neighbours() {
            if (neighbours == null) {
                neighbours = new HashSet<Rhomb>();

                // There are quite a few candidates, but we have to check them...
                for (int nr = 0; nr < N - 1; nr++) {
                    for (int ns = nr + 1; ns < N; ns++) {
                        if (nr == r && ns == s) continue; // Can't happen.
                        for (int nk_r = k[nr] - 1; nk_r <= k[nr]; nk_r++) {
                            for (int nk_s = k[ns] - 1; nk_s <= k[ns]; nk_s++) {
                                Rhomb candidate = getRhomb(nr, ns, nk_r, nk_s);

                                // Our lattice points are (k) plus one or both of vec[r] and vec[s]
                                // where vec[0] = (1, 0, 0, ...), vec[1] = (0, 1, 0, ...), etc.
                                // Candidate has a similar set of 4 lattice points. Is there any agreement?
                                boolean isNeighbour = true;
                                for (int i = 0; i < N; i++) {
                                    int myMin = k[i], myMax = k[i] + ((i == r || i == s) ? 1 : 0);
                                    int cMin = candidate.k[i], cMax = candidate.k[i] + ((i == nr || i == ns) ? 1 : 0);
                                    if (myMin > cMax || cMin > myMax) isNeighbour = false;
                                }
                                if (isNeighbour) neighbours.add(candidate);
                            }
                        }
                    }
                }
            }

            return neighbours;
        }

        @Override
        public String toString() {
            return String.format("%d,%d,%d,%d", r, s, k[r], k[s]);
        }
    }

    // Solves ax + by + c = dx + ey + f = 0
    private Point2D.Double solveLinear(double a, double b, double c, double d, double e, double f) {
        double det = a*e - b*d;
        double x = (b*f - c*e) / det;
        double y = (c*d - a*f) / det;
        return new Point2D.Double(x, y);
    }

    public Set<Rhomb> neighbours(Rhomb cell) {
        return cell.neighbours();
    }

    public int[][] bounds(Rhomb cell) {
        // Will be modified. Copy-clone for safety.
        return new int[][]{ cell.xs.clone(), cell.ys.clone() };
    }

    public Rhomb initialCell() {
        return getRhomb(0, 1, 0, 0);
    }

    public boolean isInterestingOscillationPeriod(int period) {
        return period == 11 || period == 13 || (period > 14 && period != 26);
    }

    public Set<Rhomb> parseCells(String[] data) {
        Set<Rhomb> rv = new HashSet<Rhomb>();
        for (String key : data) {
            String[] parts = key.split(",");
            int r = Integer.parseInt(parts[0]);
            int s = Integer.parseInt(parts[1]);
            int k_r = Integer.parseInt(parts[2]);
            int k_s = Integer.parseInt(parts[3]);
            rv.add(getRhomb(r, s, k_r, k_s));
        }
        return rv;
    }

    public String format(Set<Rhomb> cells) {
        StringBuilder sb = new StringBuilder();
        for (Rhomb cell : cells) {
            if (sb.length() > 0) sb.append(' ');
            sb.append(cell);
        }

        return sb.toString();
    }
}

10

java, punti-attualmente 11

Questa è la versione nuova e migliorata di quella sopra, tranne senza un difetto fatale!

provalo qui , ora con pulsante casuale! (premere più volte per ottenere più riempimento) Incluso anche il pulsante di velocità.

Primo, oscillatore periodo 4, 3 punti

inserisci qui la descrizione dell'immagine

Successivamente, 2 3 periodi 2 oscillatori - 3 punti

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

2 altri 2 oscillatori di periodo, per gentile concessione di Martin Büttner (oooohhhhhhh ... color)

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

Ho creato un programma per eseguirlo in modo casuale e continuo, alla ricerca di oscillazioni. Ha trovato questo. periodo 5 +3 punti

inserisci qui la descrizione dell'immagine

E un altro periodo 5, trovato dal randomizzatore.

inserisci qui la descrizione dell'immagine

E, naturalmente, una natura morta (ad esempio, ci sono molti) 2 punti

inserisci qui la descrizione dell'immagine

Codice: classe principale

import java.awt.Dimension;
import java.awt.GridBagConstraints;
import java.awt.GridBagLayout;
import java.awt.Point;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.util.ArrayList;

import javax.swing.JApplet;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.Timer;
import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;

public class Main{
    public static void main(String[] args) {
        new Main();
    }

    Canvas canvas = new Canvas();
    JFrame frame = new JFrame();
    Timer timer;
    ShapeInfo info;
    int[][][] history;
    public Main() {
        JPanel panel = new JPanel();
        panel.setMinimumSize(new Dimension(500,500));
        panel.setLayout(new GridBagLayout());

        frame.setMinimumSize(new Dimension(500,500));
        frame.getContentPane().add(panel);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

        //frame.setResizable(false);
        canvas.setMinimumSize(new Dimension(200,200));
        GridBagConstraints c = new GridBagConstraints();
        c.gridx = 0;
        c.gridy = 2;
        c.weightx = 1;
        c.weighty = 1;
        c.gridwidth = 3;
        c.fill = GridBagConstraints.BOTH;
        panel.add(canvas,c);

        JButton startButton = new JButton();
        startButton.setText("click to start");
        startButton.setMaximumSize(new Dimension(100,50));
        GridBagConstraints g = new GridBagConstraints();
        g.gridx =0;
        g.gridy = 0;
        g.weightx = 1;
        panel.add(startButton,g);

        JButton restartButton = new JButton();
        restartButton.setText("revert");
        GridBagConstraints b = new GridBagConstraints();
        b.gridx = 0;
        b.gridy = 9;
        panel.add(restartButton,b);

        JButton clearButton = new JButton();
        clearButton.setText("Clear");
        GridBagConstraints grid = new GridBagConstraints();
        grid.gridx = 1;
        grid.gridy = 0;
        panel.add(clearButton,grid);

        JButton randomButton = new JButton();
        randomButton.setText("fill randomly");
        GridBagConstraints rt = new GridBagConstraints();
        rt.gridx = 2;
        rt.gridy = 0;
        panel.add(randomButton,rt);

        JLabel speedLabel = new JLabel();
        speedLabel.setText("speed");
        GridBagConstraints rt2 = new GridBagConstraints();
        rt2.gridx = 3;
        rt2.gridy = 0;
        panel.add(speedLabel,rt2);

        final JTextField speed = new JTextField();
        speed.setText("300");
        GridBagConstraints rt21 = new GridBagConstraints();
        rt21.gridx = 4;
        rt21.gridy = 0;
        panel.add(speed,rt21);

        speed.getDocument().addDocumentListener(new DocumentListener(){

            @Override
            public void changedUpdate(DocumentEvent arg0) {
                doSomething();

            }
            @Override
            public void insertUpdate(DocumentEvent arg0) {
                doSomething();

            }
            @Override
            public void removeUpdate(DocumentEvent arg0) {
                doSomething();

            }   
            public void doSomething(){
                try{int s = Integer.valueOf(speed.getText());
                timer.setDelay(s);}
                catch(Exception e){}
            }
        });

        randomButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) { 
                for(int i = 0; i< canvas.squaresHigh*canvas.squaresWide/2;i++){
                    double rx = Math.random();
                    double ry = Math.random();
                    int position = (int) Math.floor(Math.random() * 13);
                    int x = (int)(rx * canvas.squaresWide);
                    int y = (int)(ry * canvas.squaresHigh);
                    if(x!=0&&x!=canvas.squaresWide-1&&y!=0&&y!=canvas.squaresHigh-1){
                        info.allShapes[x][y][position] = 1;
                    }
                }
                history = cloneArray(info.allShapes);
                canvas.draw(info.allShapes);
            }
        });

        clearButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) {
                info = new ShapeInfo(canvas.squaresWide,canvas.squaresHigh);
                restart();
            }
        });

        final JTextField scaleFactor = new JTextField();
        scaleFactor.setText("5");
        GridBagConstraints gh = new GridBagConstraints();
        gh.gridx  = 0;
        gh.gridy = 1;
        panel.add(scaleFactor,gh);
        scaleFactor.getDocument().addDocumentListener(new DocumentListener(){

            @Override
            public void changedUpdate(DocumentEvent arg0) {
                doSomething();
            }

            @Override
            public void insertUpdate(DocumentEvent arg0) {
                doSomething();
            }

            @Override
            public void removeUpdate(DocumentEvent arg0) {
                doSomething();
            }
            public void doSomething(){
                try{
                canvas.size = Integer.valueOf(scaleFactor.getText());
                canvas.draw(info.allShapes);
                }
                catch(Exception e){}
            }

        });
        timer = new Timer(300, listener);
        frame.pack();
        frame.setVisible(true);
        info = new ShapeInfo(canvas.squaresWide, canvas.squaresHigh);
        info.width = canvas.squaresWide;
        info.height = canvas.squaresHigh;
        history = cloneArray(info.allShapes);
        //history[8][11][1] = 1;
        canvas.draw(info.allShapes);
        restartButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) {
                if(timer.isRunning() == true){
                    info.allShapes = cloneArray(history);
                    restart();
                }
            }
        });
        canvas.addMouseListener(new MouseListener(){
            @Override
            public void mouseClicked(MouseEvent e) {
                int x = e.getLocationOnScreen().x - canvas.getLocationOnScreen().x;
                int y = e.getLocationOnScreen().y - canvas.getLocationOnScreen().y;
                Point location = new Point(x,y);
                for(PolygonInfo p:canvas.polygons){
                    if(p.polygon.contains(location)){
                        if(info.allShapes[p.x][p.y][p.position] == 1){
                            info.allShapes[p.x][p.y][p.position] = 0;
                        }
                        else{
                            info.allShapes[p.x][p.y][p.position] = 1;
                        }
                    }
                }
                canvas.draw(info.allShapes);
                history = cloneArray(info.allShapes);
            }
            @Override
            public void mouseEntered(MouseEvent arg0) {
            }
            @Override
            public void mouseExited(MouseEvent arg0) {
            }
            @Override
            public void mousePressed(MouseEvent arg0) { 
            }
            @Override
            public void mouseReleased(MouseEvent arg0) {    
            }
        });
        startButton.addActionListener(new ActionListener(){
            @Override
            public void actionPerformed(ActionEvent arg0) {
                timer.start();
            }
        });
    }
    public int[][][] cloneArray(int[][][] array){
        int[][][] newArray = new int[array.length][array[0].length][array[0][0].length];
        for(int x = 0;x<array.length;x++){
            int[][] subArray = array[x];
            for(int y = 0; y < subArray.length;y++){
                int subSubArray[] = subArray[y];
                newArray[x][y] = subSubArray.clone();
            }
        }
        return newArray;
    }
    public void restart(){
        timer.stop();
        canvas.draw(info.allShapes);
    }
    public void setUp(){
        int[] boxes = new int[]{2,3,4,6,7,8};
        for(int box:boxes){
            info.allShapes[8][12][box-1] = 1;
            info.allShapes[9][13][box-1] = 1;
            info.allShapes[8][14][box-1] = 1;
            info.allShapes[9][15][box-1] = 1;
        }
    }
    public void update() {
        ArrayList<Coordinate> dieList = new ArrayList<Coordinate>();
        ArrayList<Coordinate> appearList = new ArrayList<Coordinate>();
        for (int x = 0; x < canvas.squaresWide; x++) {
            for (int y = 0; y < canvas.squaresHigh; y++) {
                for(int position = 0;position <13;position++){
                    int alive = info.allShapes[x][y][position];
                    int touching = info.shapesTouching(x, y, position);
                    if(touching!=0){
                    }
                    if(alive == 1){
                        if(touching < 2 || touching > 3){
                            //cell dies
                            dieList.add(new Coordinate(x,y,position));
                        }
                    }
                    else{
                        if(touching == 3){
                            //cell appears
                            appearList.add(new Coordinate(x,y,position));
                        }
                    }
                }
            }
        }
        for(Coordinate die:dieList){
            info.allShapes[die.x][die.y][die.position] = 0;
        }
        for(Coordinate live:appearList){
            info.allShapes[live.x][live.y][live.position] = 1;
        }
    }
    boolean firstDraw = true;
    int ticks = 0;
    ActionListener listener = new ActionListener() {
        @Override
        public void actionPerformed(ActionEvent arg0) {
            canvas.draw(info.allShapes);
            if(ticks !=0){
            update();
            }
            ticks++;
        }
    };
}

Tela -

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Polygon;
import java.util.ArrayList;

import javax.swing.JPanel;

public class Canvas extends JPanel {
    private static final long serialVersionUID = 1L;

    public int squaresWide = 30;
    public int squaresHigh = 30;
    public int size = 6;
    ArrayList<PolygonInfo> polygons = new ArrayList<PolygonInfo>();
    boolean drawTessalationOnly = true;
    private int[][][] shapes;

    public void draw(int[][][] shapes2) {
        shapes = shapes2;
        drawTessalationOnly = false;
        this.repaint();
    }

    @Override
    protected void paintComponent(Graphics g) {
        //System.out.println("drawing");
        polygons.clear();
        super.paintComponent(g);
        g.setColor(Color.black);
        // draw tessellation
        for (int x = 0; x < squaresWide; x++) {
            for (int y = 0; y < squaresHigh; y++) {
                for (int position = 0; position < 13; position++) {
                    // System.out.println("position = " + position);
                    Polygon p = new Polygon();
                    int points = 0;
                    int[] xc = new int[] {};
                    int[] yc = new int[] {};
                    if (position == 0) {
                        xc = new int[] {-2,0,2,0};
                        yc = new int[] {0,-2,0,2};
                        points = 4;
                    }
                    if (position == 1) {
                        xc = new int[] {2,4,4,1};
                        yc = new int[] {0,0,2,1};
                        points = 4;
                    }
                    if (position == 2) {
                        xc = new int[] {4,6,7,4};
                        yc = new int[] {0,0,1,2};
                        points = 4;
                    }
                    if (position == 3) {
                        xc = new int[] {1,2,0,0};
                        yc = new int[] {1,4,4,2};
                        points = 4;
                    }
                    if (position == 4) {
                        xc = new int[] {1,4,4,2};
                        yc = new int[] {1,2,4,4};
                        points = 4;
                    }
                    if (position == 5) {
                        xc = new int[] {7,6,4,4};
                        yc = new int[] {1,4,4,2};
                        points = 4;
                    }
                    if (position == 6) {
                        xc = new int[] {7,8,8,6};
                        yc = new int[] {1,2,4,4};
                        points = 4;
                    }
                    if (position == 7) {
                        xc = new int[] {0,2,1,0};
                        yc = new int[] {4,4,7,6};
                        points = 4;
                    }
                    if (position == 8) {
                        xc = new int[] {1,2,4,4};
                        yc = new int[] {7,4,4,6};
                        points = 4;
                    }
                    if (position == 9) {
                        xc = new int[] {7,6,4,4};
                        yc = new int[] {7,4,4,6};
                        points = 4;
                    }
                    if (position == 10) {
                        xc = new int[] {8,6,7,8};
                        yc = new int[] {4,4,7,6};
                        points = 4;
                    }
                    if (position == 11) {
                        xc = new int[] {4,4,2,1};
                        yc = new int[] {6,8,8,7};
                        points = 4;
                    }
                    if (position == 12) {
                        xc = new int[] {4,4,6,7};
                        yc = new int[] {6,8,8,7};
                        points = 4;
                    }
                    int[] finalX = new int[xc.length];
                    int[] finalY = new int[yc.length];
                    for (int i = 0; i < xc.length; i++) {
                        int xCoord = xc[i];
                        xCoord = (xCoord + (8 * x)) * size;
                        finalX[i] = xCoord;
                    }
                    for (int i = 0; i < yc.length; i++) {
                        int yCoord = yc[i];
                        yCoord = (yCoord + (8 * y)) * size;
                        finalY[i] = yCoord;
                    }
                    p.xpoints = finalX;
                    p.ypoints = finalY;
                    p.npoints = points;
                    polygons.add(new PolygonInfo(p,x,y,position));
                    // for(int i = 0;i<p.npoints;i++){
                    // / System.out.println("(" + p.xpoints[i] + "," +
                    // p.ypoints[i] + ")");
                    // }
                    if (drawTessalationOnly == false) {
                        if (shapes[x][y][position] == 1) {
                            g.setColor(Color.black);
                            g.fillPolygon(p);
                        } else {
                            g.setColor(Color.black);
                            g.drawPolygon(p);
                        }
                    } else {
                        g.drawPolygon(p);
                    }
                }

            }
        }
    }
}

ShapeInfo -

public class ShapeInfo {
    int[][][] allShapes; // first 2 dimensions are coordinates of large square,
                            // last is boolean - if shaded
    int width = 30;
    int height = 30;

    public ShapeInfo(int width, int height) {
        allShapes = new int[width][height][13];
        for (int[][] i : allShapes) {
            for (int[] h : i) {
                for (int g : h) {
                    g = 0;
                }
            }
        }
    }

    public int shapesTouching(int x, int y, int position) {
        int t = 0;
        if (x > 0 && y > 0 && x < width - 1 && y < height - 1) {
            int[] inShape = new int[]{};
            int[] rightOfShape = new int[]{};
            int[] aboveShape = new int[]{};
            int[] leftOfShape = new int[]{};
            int[] belowShape = new int[]{};
            int[] aboveRightOfShape = new int[]{};
            int[] aboveLeftOfShape = new int[]{};
            int[] belowRightOfShape = new int[]{};
            int[] belowLeftOfShape = new int[]{};
            if (position == 0) {
                inShape = new int[]{1,3,4};
                aboveShape = new int[]{7,8,11};
                leftOfShape = new int[]{2,5,6};
                aboveLeftOfShape = new int[]{10,12,9};
            }
            if (position == 1) {
                inShape = new int[]{0,3,4,5,2};
                aboveShape = new int[]{11,12};
            }
            if (position == 2) {
                inShape = new int[]{1,4,5,6};
                rightOfShape = new int[]{0};
                aboveShape = new int[]{12,11};
            }
            if (position == 3) {
                inShape = new int[]{0,1,4,8,7};
                leftOfShape = new int[]{6,10};
            }
            if (position == 4) {
                inShape = new int[]{0,1,3,2,7,5,8,9};
            }
            if (position == 5) {
                inShape = new int[]{2,6,1,10,4,9,8};
                rightOfShape = new int[]{0};
            }
            if (position == 6) {
                inShape = new int[]{2,5,9,10};
                rightOfShape = new int[]{0,3,7};
            }
            if (position == 7) {
                inShape = new int[]{3,4,8,11};
                leftOfShape =new int[]{6,10};
                belowShape = new int[]{0};
            }
            if (position == 8) {
                inShape = new int[]{5,4,9,3,12,7,11};
                belowShape = new int[]{0};
            }
            if (position == 9) {
                inShape = new int[]{4,5,8,6,11,12,10};
                belowRightOfShape = new int[]{0};
            }
            if (position == 10) {
                inShape = new int[]{6,5,9,12};
                rightOfShape = new int[]{3,7};
                belowRightOfShape = new int[]{0};
            }
            if (position == 11) {
                inShape = new int[]{7,8,9,12};
                belowShape = new int[]{0,1,2};
            }
            if (position == 12) {
                inShape = new int[]{11,8,9,10};
                belowShape = new int[]{1,2};
                belowRightOfShape = new int[]{0};
            }
            for(int a:inShape){
                if(allShapes[x][y][a] == 1){t++;}
            }
            for(int a:rightOfShape){
                if(allShapes[x+1][y][a] == 1){t++;}
            }
            for(int a:leftOfShape){
                if(allShapes[x-1][y][a] == 1){t++;}
            }
            for(int a:aboveShape){
                if(allShapes[x][y-1][a] == 1){t++;}
            }
            for(int a:belowShape){
                if(allShapes[x][y+1][a] == 1){t++;}
            }
            for(int a:aboveRightOfShape){
                if(allShapes[x+1][y-1][a] == 1){t++;}
            }
            for(int a:aboveLeftOfShape){
                if(allShapes[x-1][y-1][a] == 1){t++;}
            }
            for(int a:belowRightOfShape){
                if(allShapes[x+1][y+1][a] == 1){t++;}
            }
            for(int a:belowLeftOfShape){
                if(allShapes[x-1][y+1][a] == 1){t++;}
            }
        }
        return t;
    }
}

Coordinare -

public class Coordinate {
    int x;
    int y;
    int position;
    public Coordinate(int X,int Y, int Position){
        x=X;
        y=Y;
        position = Position;
    }
}

PolygonInfo

import java.awt.Polygon;

public class PolygonInfo {
    public Polygon polygon;
    public int x;
    public int y;
    public int position;
    public PolygonInfo(Polygon p,int X,int Y,int Position){
        x = X;
        y = Y;
        polygon = p;
        position = Position;
    }
}

Se qualcuno lo trova, verrà menzionato. (Il che mi ricorda: mio fratello ha trovato i primi 2 oscillatori)



10

Javascript, HexagonSplit

Dichiarazione di non responsabilità: è piuttosto lenta a causa di molte manipolazioni del dom e probabilmente ha bisogno di un bugfix affinché l'asse x non si avvolga.

Violino

http://jsfiddle.net/16bhsr52/9/

Il violino ora consente di attivare / disattivare le celle attive.

Ancora vivo

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Oscillatore

2 fasi 2 fasi

Astronave (2 fasi, due varianti)

2 fasi variante di prima

Spacehip (4 fasi)

inserisci qui la descrizione dell'immagine

Javascript

//--  Prepare  --
var topX = 0;
var topY = 0;
var sizeX = 40;
var sizeY = 10;
var patternSizeX = 17;
var patternSizeY = 43;
var patternElements = 3;
var neighbourTopLeft = -(sizeX + 1) * patternElements;
var neighbourTop = -(sizeX) * patternElements;
var neighbourTopRight = -(sizeX - 1) * patternElements;
var neighbourLeft = -patternElements;
var neighbourRight = +patternElements;
var neighbourBottomLeft = +(sizeX - 1) * patternElements;
var neighbourBottom = +(sizeX) * patternElements;
var neighbourBottomRight = +(sizeX + 1) * patternElements;
var patternNeighbours = [
    [neighbourTopLeft + 2, neighbourTop + 2, neighbourTopRight + 2, neighbourLeft, neighbourLeft + 1, 1, neighbourRight],
    [neighbourLeft + 1, 0, 2, neighbourRight, neighbourRight + 1, neighbourRight + 2],
    [neighbourLeft + 1, neighbourLeft + 2, 1, neighbourRight + 2, neighbourBottomLeft, neighbourBottom, neighbourBottomRight]
];

for (i = 0; i < sizeX; i++) {
    for (j = 0; j < sizeY; j++) {
        var tileId = (j * sizeX + i) * patternElements;
        $("body").append('<div id="t' + (tileId) + '" class="shapeDown" style="left:' + topX + patternSizeX * i + 'px;top:' + topY + patternSizeY * j + 'px;">');
        $("body").append('<div id="t' + (tileId + 1) + '" class="shapeHexagon" style="left:' + (8 + topX + patternSizeX * i) + 'px;top:' + (17 + topY + patternSizeY * j) + 'px;">');
        $("body").append('<div id="t' + (tileId + 2) + '" class="shapeUp" style="left:' + topX + patternSizeX * i + 'px;top:' + (34 + topY + patternSizeY * j) + 'px;">');
    }
}

//--  Populate  --
for (i = 0; i < (patternElements * sizeX * sizeY) / 5; i++) {
    $("#t" + Math.floor((Math.random() * (patternElements * sizeX * sizeY)))).addClass("shapeAlive");
};

//--  Animate  --
setInterval(progress, 1000);

function progress() {
    var dying = [];
    var rising = [];

    for (i = 0; i < sizeX; i++) {
        for (j = 0; j < sizeY; j++) {
            var tileBaseId = (j * sizeX + i) * patternElements;
            for (k = 0; k < patternElements; k++) {
                var tileSelect = "#t" + (tileBaseId + k);
                var alive = $(tileSelect).filter(".shapeAlive").length;
                var nbSelect = $.map(patternNeighbours[k], function (n, i) {
                    return ("#t" + (tileBaseId + n));
                }).join();
                var count = $(nbSelect).filter(".shapeAlive").length;
                if (alive && (count < 2 || count > 3)) {
                    dying.push(tileSelect);
                };
                if (!alive && count == 3) {
                    rising.push(tileSelect);
                };
            }
        }
    }

    $(dying.join()).removeClass("shapeAlive");
    $(rising.join()).addClass("shapeAlive");
};

CSS

.shapeHexagon {
    background-color: black;
    height: 8px;
    width: 16px;
    position: absolute;
}
.shapeUp {
    background-color: black;
    height: 8px;
    width: 16px;
    position: absolute;
}
.shapeUp:after, .shapeHexagon:before {
    content:"";
    position: absolute;
    top: -8px;
    left: 0px;
    width: 0;
    height: 0;
    border-style: solid;
    border-color: transparent transparent black;
    border-width: 0px 8px 8px 8px;
}
.shapeAlive.shapeUp {
    background-color: green;
}
.shapeAlive.shapeUp:after {
    border-color: transparent transparent green;
}
.shapeDown {
    background-color: black;
    height: 8px;
    width: 16px;
    position: absolute;
}
.shapeDown:after, .shapeHexagon:after {
    content:"";
    position: absolute;
    top: 8px;
    left: 0px;
    width: 0;
    height: 0;
    border-style: solid;
    border-color: black transparent transparent transparent;
    border-width: 8px 8px 0 8px;
}
.shapeAlive.shapeUp:after, .shapeAlive.shapeHexagon:before {
    border-color: transparent transparent green;
}
.shapeAlive.shapeDown, .shapeAlive.shapeHexagon {
    background-color: green;
}
.shapeAlive.shapeDown:after, .shapeAlive.shapeHexagon:after {
    border-color: green transparent transparent transparent;
}

10

"Hex Medley 3" (24+ punti *)

Ispirato alla piastrellatura pentagonale dell'ornamento: un blocco di 7 esagoni piastrella il piano e possiamo tagliare gli esagoni in molti modi diversi. Come suggerisce il nome, questa è la terza variazione del genere che ho provato, ma vale la pena pubblicare perché è la prima piastrellatura a rivendicare i 7 punti per un oscillatore p30 +.

La piastrellatura è:

L'interno dei 7 esagoni è diviso in 6 triangoli equilateri;  i sei esterni in 3 rombi ciascuno, con parità alternata

Poiché le protocellule sono convesse, qualsiasi vertice di ordine 3 dà una natura morta (2 punti).

Ho trovato cinque oscillatori di piccolo periodo (15 punti): periodi 2, 3, 4, 6, 12.

oscillatore p2 oscillatore p3 oscillatore p4 oscillatore p6 oscillatore p12

E la pièce de résistance : un oscillatore p48 (7 punti) che ruota di 60 gradi ogni 8 generazioni:

oscillatore p48

* Data la natura di questa piastrellatura, potrei scegliere un singolo esagono che è diviso in rombi e ruotarlo di 60 gradi. Ciò renderebbe la piastrellatura aperiodica senza infrangere tecnicamente alcuna regola e non romperebbe nessuno degli oscillatori. Ma non credo sia nello spirito della domanda, quindi non proverò a rivendicare quei 40 punti.

Il codice si basa su molto codice che ho pubblicato in altre risposte; la parte unica è

public class HexMedley3 extends AbstractLattice {
    public HexMedley3() {
        super(35, -12, 28, 24, new int[][] {
                {0, 0, 7},
                {0, 7, 7},
                {0, 7, 0},
                {0, 0, -7},
                {0, -7, -7},
                {0, -7, 0},

                {0, 0, 7, 7},
                {7, 7, 14, 14},
                {7, 14, 7, 0},

                {7, 14, 21, 14},
                {14, 21, 21, 14},
                {14, 14, 7, 7},

                {7, 14, 14, 7},
                {7, 14, 7, 0},
                {7, 0, 0, 7},

                {0, 0, -7, -7},
                {-7, -7, -14, -14},
                {-7, -14, -7, 0},

                {-7, -14, -21, -14},
                {-14, -21, -21, -14},
                {-14, -14, -7, -7},

                {-7, -14, -14, -7},
                {-7, -14, -7, 0},
                {-7, 0, 0, -7},

            }, new int[][] {
                {0, 8, 4},
                {0, 4, -4},
                {0, -4, -8},
                {0, -8, -4},
                {0, -4, 4},
                {0, 4, 8},
                {8, 16, 20, 12},
                {12, 20, 16, 8},
                {12, 8, 4, 8},
                {4, 8, 4, 0},
                {0, 4, -4, -8},
                {0, -8, -4, 4},
                {-4, -8, -16, -12},
                {-12, -16, -20, -16},
                {-12, -16, -8, -4},

                {-8, -16, -20, -12},
                {-12, -20, -16, -8},
                {-12, -8, -4, -8},
                {-4, -8, -4, 0},
                {0, -4, 4, 8},
                {0, 8, 4, -4},
                {4, 8, 16, 12},
                {12, 16, 20, 16},
                {12, 16, 8, 4},
            });
    }

    @Override
    public boolean isInterestingOscillationPeriod(int period) {
        return period != 2 && period != 4;
    }
}

0

Rettangoli di larghezza 2 righe in Python 3, +2

La forma di questa griglia è la seguente:

 ______________
[______________]
[______][______]
[__][__][__][__]
[][][][][][][][]

Per coincidenza, ogni cella in questa griglia ha 8 vicini, proprio come la piastrellatura quadrata originale del Gioco della Vita.

Sfortunatamente, questa piastrellatura ha la proprietà terribile che ogni cella abbia solo due vicini del nord. Ciò significa che un modello non può mai propagarsi verso sud, incluso sud-est o sud-ovest. Questa proprietà porta a una situazione che rende piuttosto improbabile gli oscillatori, anche se uno potrebbe esistere del tipo che ha pareti su due lati e celle lampeggianti nel mezzo.

Sembra anche avere la proprietà (non sono ancora sicuro al 100%) che nessun modello può crescere mentre ci si sposta verso nord. Una riga non crescerà mai fino a un numero di celle massimo maggiore rispetto alla riga sottostante. Penso che ciò non significhi alianti o forme più complicate.

Questo ci lascia con un misero bonus di +2 per un'ampia varietà di nature morte, di cui queste sono solo un piccolo campione:

AA__
_BC_

AABB
_CD_

AA__BB
_CXXD_ <-- XX can be any multiple of 2 wide

____YYYY____
__AA____BB__
___CXXXXD___ <-- XX can be any multiple of 4 wide

____YYYYOOOO <-- OOOO can continue to the right and could be the bottom of a stack of this pattern
__AA____BB__
___CXXXX____ <-- XX can be any multiple of 4 wide

OOOOYYYYOOOO <-- same stackability as above
__AA____BB__
____XXXX____ <-- XX can be any multiple of 4 wide

Ecco il codice, che una volta eseguito disegna una griglia di 8 righe (1 cella nella riga superiore, 128 celle nella riga inferiore). Qualsiasi tasto avanzerà di un passo, tranne rche casualmente la scheda e quscirà dal programma.

#!/usr/bin/env python3

import random
import readchar

class board:
  def __init__(self, rows = 8):
    if rows>10:
      raise ValueError("Too many rows!")
    self.rows = rows
    self.cells = [[cell() for c in range(int(2**(r)))] for r in range(rows)]
  def __str__(self):
    out = []
    for r,row in enumerate(self.cells):
      out.append(''.join([str(row[c])*(2**(self.rows-r-1)) for c in range(len(row))]))
    return "\n".join(out)
  def randomize(self):
    for row in self.cells:
      for c,cel in enumerate(row):
        row[c].state = random.choice([True,False])
  def state_at(self,r,c):
    if r==None or c==None:
      raise TypeError()
    if r<0 or c<0:
      return False
    if r>=self.rows:
      return False
    if c>=len(self.cells[r]):
      return False
    return self.cells[r][c].state
  def tick(self):
    new_cells = [[cell() for c in range(int(2**(r)))] for r in range(self.rows)]
    for r,row in enumerate(self.cells):
      for c,cel in enumerate(row):
        # print(f"cell {r} {c}")
        cur = cel.state
        # print(cur)
        neighbors = 0
        # same row, left and right
        neighbors += self.state_at(r,c-1)
        neighbors += self.state_at(r,c+1)
        # straight up
        neighbors += self.state_at(r-1,int(c/2))
        # straight down
        neighbors += self.state_at(r+1,c*2)
        neighbors += self.state_at(r+1,c*2+1)
        # down left
        neighbors += self.state_at(r+1,c*2-1)
        # down right
        neighbors += self.state_at(r+1,c*2+2)
        if c%2==0:
          # up left
          neighbors += self.state_at(r-1,int(c/2)-1)
        else:
          # up right
          neighbors += self.state_at(r-1,int(c/2)+1)
        # print(neighbors)
        if cur:
          if neighbors<2 or neighbors>3:
            # print("turn off")
            new_cells[r][c].state = False
          else:
            new_cells[r][c].state = True
          continue
        if neighbors==3:
          # print("turn on")
          new_cells[r][c].state = True
          continue
        new_cells[r][c].state = False
        continue
    self.cells = new_cells

class cell:
  def __init__(self, state = False):
    self.state = state
  def __str__(self):
    return self.state and "X" or "_"

b = board(8)
b.randomize()
print(b)
while(1):
  i = readchar.readchar()
  if i=='q':
    break
  if i=='r':
    b.randomize()
  b.tick()
  print()
  print(b)

PS: questa griglia è l'equivalente del normale in uno spazio non euclideo particolarmente sagomato :)

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.