Riconoscimento vocale: "Sì" o "No"?


33

Compito

Implementa un programma in byte minimi di codice sorgente o binario che riconosca la voce di un campione vocale (io dico "sì", "sì" o "no" in voce o in sussurro, chiaramente o in modo bizzarro) basato su campioni di addestramento con la massima precisione .

Il programma dovrebbe leggere train/yes0.wav, train/no0.wav, train/yes1.wave così via (ci sono 400 sì e di 400 reti di eccellenza nel set di dati formazione), quindi iniziare la lettura inputs/0.wav, inputs/1.wavfino a quando non riesce a trovare il file, analizzandolo e l'output di "sì" o "no" (o altra parola per risposta intermedia).

Se lo desideri, puoi pre-addestrare il programma invece di leggere train/, ma la tabella dei dati risultante conta per il punteggio (e fai attenzione a non adattarti ai campioni di addestramento - non si sovrappongono a quelli dell'esame). Meglio includere il programma utilizzato per produrre la tabella di dati come addendum in questo caso.

Tutti i file di esempio sono file WAV stereo a 16 bit little endian, solo dal microfono del laptop, senza filtro / riduzione del rumore.

limiti

Funzionalità vietate:

  • Utilizzando la rete;
  • Cercando di raggiungere il file di risposte inputs/key;
  • Sovvertire il runnerprogramma che calcola la precisione;
  • Utilizzo delle librerie di riconoscimento esistenti. Collegamento all'implementazione FFT non consentito: sono consentite solo funzioni matematiche esterne che raccolgono una quantità costante di informazioni (come sino atan2); Se vuoi FFT, aggiungi semplicemente la sua implementazione al codice sorgente del tuo programma (può essere multilingue se necessario).

Limiti delle risorse:

  • Il programma non dovrebbe richiedere più di 30 minuti di tempo CPU sul mio laptop i5. Se ci vuole di più, viene contata solo la produzione prodotta nei primi 30 minuti e tutto il resto viene considerato un mezzo match;
  • Limite di memoria: 1 GB (inclusi eventuali file temporanei);

Utensili

Il tools/runnerprogramma esegue automaticamente la soluzione e calcola l'accuratezza.

$ tools/runner solutions/example train train/key 
Accuracy: 548 ‰

Può esaminare il programma utilizzando i dati di allenamento o utilizzando i dati di esame effettivi. Proverò le risposte inviate sul set di dati dell'esame e pubblicherò i risultati (percentuale di accuratezza) finché non renderò pubblico il set di dati.

punteggio

Esistono 5 classi di soluzione in base alla precisione:

  • Tutti i campioni hanno indovinato correttamente: Classe 0;
  • Precisione 950-999: Classe 1;
  • Precisione 835-950: Classe 2;
  • Precisione 720-834: Classe 3;
  • Precisione 615-719: Classe 4;

All'interno di ogni classe, il punteggio è il numero di byte che la soluzione accetta.

Risposta accettata: la più piccola soluzione nella migliore classe non vuota.

link

Tutti i campioni devono essere considerati CC-0 (dominio pubblico), script e programmi devono essere considerati MIT.

Soluzione di esempio

Fornisce una qualità di riconoscimento molto scarsa, mostra solo come leggere file e fornire risposte

#define _BSD_SOURCE
#include <stdio.h>
#include <assert.h>
#include <endian.h>


#define Nvols 30

#define BASS_WINDOW 60
#define MID_WINDOW 4

struct training_info {
    double bass_volumes[Nvols];
    double mid_volumes[Nvols];
    double treble_volumes[Nvols];
    int n;
};


struct training_info yes;
struct training_info no;

static int __attribute__((const)) mod(int n, int d) {
    int m = n % d;
    if (m < 0) m+=d;
    return m;
}

// harccoded to 2 channel s16le
int get_file_info(const char* name, struct training_info *inf) {
    FILE* in = fopen(name, "rb");

    if (!in) return -1;

    setvbuf(in, NULL, _IOFBF, 65536);

    inf->n = 1;

    fseek(in, 0, SEEK_END);
    long filesize = ftell(in);
    fseek(in, 128, SEEK_SET);
    filesize -= 128; // exclude header and some initial samples

    int nsamples = filesize / 4; 

    double bass_a=0, mid_a=0;
    const int HISTSIZE  = 101;
    double xhistory[HISTSIZE];
    int histpointer=0;
    int histsize = 0;

    //FILE* out = fopen("debug.raw", "wb");

    int i;
    for (i=0; i<Nvols; ++i) {
        int j;

        double total_vol = 0;
        double bass_vol = 0;
        double mid_vol = 0;
        double treble_vol = 0;

        for (j=0; j<nsamples / Nvols; ++j) {
            signed short int l, r; // a sample
            if(fread(&l, 2, 1, in)!=1) break;
            if(fread(&r, 2, 1, in)!=1) break;
            double x = 1/65536.0 * ( le16toh(l) + le16toh(r) );


            bass_a += x;
            mid_a  += x;


            if (histsize == HISTSIZE-1) bass_a   -= xhistory[mod(histpointer-BASS_WINDOW,HISTSIZE)];
            if (histsize == HISTSIZE-1) mid_a    -= xhistory[mod(histpointer-MID_WINDOW ,HISTSIZE)];

            double bass = bass_a / BASS_WINDOW;
            double mid = mid_a / MID_WINDOW - bass;
            double treble = x - mid_a/MID_WINDOW;

            xhistory[histpointer++] = x;
            if(histpointer>=HISTSIZE) histpointer=0;
            if(histsize < HISTSIZE-1) ++histsize;

            total_vol  += bass*bass + mid*mid + treble*treble;
            bass_vol   += bass*bass;
            mid_vol    += mid*mid;
            treble_vol += treble*treble;


            /*
            signed short int y;
            y = 65536 * bass;

            y = htole16(y);
            fwrite(&y, 2, 1, out);
            fwrite(&y, 2, 1, out);
            */
        }

        inf->bass_volumes[i] = bass_vol / total_vol;
        inf->mid_volumes[i] = mid_vol / total_vol;
        inf->treble_volumes[i] = treble_vol / total_vol;

        //fprintf(stderr, "%lf %lf %lf    %s\n", inf->bass_volumes[i], inf->mid_volumes[i], inf->treble_volumes[i], name);
    }
    fclose(in);

    return 0;
}

static void zerotrdata(struct training_info *inf) {
    int i;
    inf->n = 0;
    for (i=0; i<Nvols; ++i) {
        inf->bass_volumes[i] = 0;
        inf->mid_volumes[i] = 0;
        inf->treble_volumes[i] = 0;
    }
}

static void train1(const char* prefix, struct training_info *inf) 
{
    char buf[50];

    int i;

    for(i=0;; ++i) {
        sprintf(buf, "%s%d.wav", prefix, i);
        struct training_info ti;
        if(get_file_info(buf, &ti)) break;

        ++inf->n;

        int j;
        for (j=0; j<Nvols; ++j) {
            inf->bass_volumes[j]   += ti.bass_volumes[j];
            inf->mid_volumes[j]    += ti.mid_volumes[j];
            inf->treble_volumes[j] += ti.treble_volumes[j];
        }
    }

    int j;
    for (j=0; j<Nvols; ++j) {
        inf->bass_volumes[j]   /= inf->n;
        inf->mid_volumes[j]    /= inf->n;
        inf->treble_volumes[j] /= inf->n;
    }
}

static void print_part(struct training_info *inf, FILE* f) {
    fprintf(f, "%d\n", inf->n);
    int j;
    for (j=0; j<Nvols; ++j) {
        fprintf(f, "%lf %lf %lf\n", inf->bass_volumes[j], inf->mid_volumes[j], inf->treble_volumes[j]);
    }
}

static void train() {
    zerotrdata(&yes);
    zerotrdata(&no);

    fprintf(stderr, "Training...\n");

    train1("train/yes", &yes);
    train1("train/no", &no);

    fprintf(stderr, "Training completed.\n");

    //print_part(&yes, stderr);
    //print_part(&no, stderr);

    int j;
    for (j=0; j<Nvols; ++j) {
        if (yes.bass_volumes[j]   > no.bass_volumes[j]) {   yes.bass_volumes[j] = 1;   no.bass_volumes[j] = 0; }
        if (yes.mid_volumes[j]    > no.mid_volumes[j]) {    yes.mid_volumes[j] = 1;    no.mid_volumes[j] = 0; }
        if (yes.treble_volumes[j] > no.treble_volumes[j]) { yes.treble_volumes[j] = 1; no.treble_volumes[j] = 0; }
    }
}


double delta(struct training_info *t1, struct training_info *t2) {
    int j;
    double d = 0;
    for (j=0; j<Nvols; ++j) {
        double rb = t1->bass_volumes[j] - t2->bass_volumes[j];
        double rm = t1->mid_volumes[j] - t2->mid_volumes[j];
        double rt = t1->treble_volumes[j] - t2->treble_volumes[j];
        d += rb*rb + rm*rm + rt*rt;
    }
    return d;
}

int main(int argc, char* argv[])
{
    (void)argc; (void)argv;

    train();


    int i;

    int yes_count = 0;
    int no_count = 0;

    for (i=0;; ++i) {
        char buf[60];
        sprintf(buf, "inputs/%d.wav", i);

        struct training_info ti;

        if(get_file_info(buf, &ti)) break;

        double dyes = delta(&yes, &ti);
        double dno = delta(&no, &ti);

        //printf("%lf %lf %s ", dyes, dno, buf);

        if (dyes > dno) {
            printf("no\n");
            ++no_count;
        } else  {
            printf("yes\n");
            ++yes_count;
        }
    }

    fprintf(stderr, "yeses: %d noes: %d\n", yes_count, no_count);

}

5
nessuna libreria fft? Perché?
John Dvorak,

1
Che dire delle funzioni FFT integrate? Cosa conta esattamente come esterno? Inoltre, ciò che conta come una funzione di libreria matematica? Ci è permesso usare sumo dobbiamo usare foldl (+) 0(foldl non è specifico per la matematica e +non è variadico)?
John Dvorak,

1
comunque ... stai effettivamente vietando sum. Immagino non sia questa la tua intenzione?
John Dvorak,

1
Qual è la definizione esatta delle funzioni matematiche? Quelli che sono specializzati per operare sui numeri? Che dire di una generica funzione "somma" che utilizza l'addizione per i numeri, ma la concatenazione per le stringhe? Questa somma è ora consentita?
John Dvorak,

1
E le operazioni vettoriali di J? Sono vietati?
John Dvorak,

Risposte:


27

C ++ 11 (gcc; 1639 1625 1635 byte, Classe 1, punteggio = 983, 960)

Cominciamo. È probabilmente il codice più lungo che abbia mai abbreviato ...

#include <bits/stdc++.h>
#define $ complex<double>
#define C vector<$>
#define I int
#define D double
#define P pair<D,I>
#define Q pair<D,D>
#define E vector<D>
#define V vector<P>
#define W vector<Q>
#define S char*
#define Z(x)if(fread(&x,2,1,y)!=1)break;
#define B push_back
#define F(i,f,t)for(I i=f;i<t;i++)
#define _ return
#define J first
#define L second
const I K=75,O=16384;using namespace std;C R(C&i,I s,I o=0,I d=1){if(!s)_ C(1,i[o]);C l=R(i,s/2,o,d*2),h=R(i,s/2,o+d,d*2);C r(s*2);$ b=exp($(0,-M_PI/s)),f=1;F(k,0,s){r[k]=l[k]+f*h[k];r[k+s]=l[k]-f*h[k];f*=b;}_ r;}C T(C&i){_ R(i,i.size()/2);}char b[O];E U(S m){FILE*y;if(!(y=fopen(m,"r")))_ E();setvbuf(y,b,0,O);fseek(y,0,2);I z=ftell(y)/4-32;fseek(y,128,0);C p;F(i,0,z){short l,r;Z(l);Z(r);if(i&1)p.B($(0.5/O*le16toh(l),0));}p.resize(O);E h(O),n(O);p=T(p);F(j,0,O)h[j]=norm(p[j])/O;F(i,1,O-1)n[i]=(h[i-1]+h[i+1]+h[i]*8)/10;fclose(y);_ n;}W G(E&d){V p;F(i,3,O/2-3)if(d[i]==*max_element(d.begin()+i-3,d.begin()+i+4))p.B({d[i],i});sort(p.begin(),p.end(),greater<P>());W r;F(i,3,K+3)r.B({D(p[i].L)/O*22050,log(p[i].J)+10});D s=0;F(i,0,K)s+=r[i].L;F(i,0,K)r[i].L/=s;_ r;}char m[O];I X(S p,W&r){E t(O),h(t);I f=0;while(1){sprintf(m,"%s%d.wav",p,f++);h=U(m);if(!h.size())break;F(j,0,O)t[j]+=h[j];}F(j,0,O)t[j]/=f;r=G(t);}D Y(W&a,W&b){D r=0;F(i,0,K){D d=b[i].L;F(j,0,K)if(abs((b[i].J-a[j].J)/b[i].J)<0.015)d=min(d,abs(b[i].L-a[j].L));r+=d;}_ r;}I H(S p,W&y,W&n){I f=0;while(1){sprintf(m,"%s%d.wav",p,f++);E h=U(m);if(!h.size())break;W p=G(h);D q=Y(p,y),r=Y(p,n);printf(abs(q-r)<=0.01?"?\n":q<r?"yes\n":"no\n");}}I main(){W y,n;X("train/yes",y);X("train/no",n);H("inputs/",y,n);}

"Ungolfed" (anche se è difficile chiamare un codice sorgente di oltre 1,5 K giocato a golf):

#include <iostream>
#include <stdio.h>
#include <string>
#include <algorithm>
#include <vector>
#include <math.h>
#include <complex>
#include <endian.h>
#include <functional>

using namespace std;

typedef complex<double> CD;

vector<CD> run_fft(vector<CD>& input, int offset, int size, int dist){
    if(size == 1){
        return vector<CD>(1, input[offset]);
    }
    vector<CD> partLow = run_fft(input, offset, size/2, dist*2),
               partHi  = run_fft(input, offset+dist, size/2, dist*2);

    vector<CD> result(size);
    CD factorBase = exp(CD(0, (inv?2:-2)*M_PI/size)), factor = 1;

    for(int k = 0; k < size/2; k++){
        result[k] = partLow[k] + factor*partHi[k];
        result[k+size/2] = partLow[k] - factor*partHi[k];
        factor *= factorBase;
    }
    return result;
}

vector<CD> fft(vector<CD>& input){
    int N = input.size();
    return run_fft(input, 0, N, 1);
}



const int MAX_BUF = 65536;
const int PWR_TWO = 16384;
const int NUM_CHECK = 75;
int sampling;

char buf[MAX_BUF];
vector<double> read_data(char* filenam){
    FILE* fp = fopen(filenam, "r");
    if(!fp)
        return vector<double>();
    setvbuf(fp, buf, _IOFBF, MAX_BUF);

    fseek(fp, 0, SEEK_END);
    int filesiz = ftell(fp);
    fseek(fp, 128, SEEK_SET);
    filesiz -= 128;

    int insamp = filesiz / 4;
    int freqsamp = 2,
        act_mod = 0;
    sampling = 44100 / freqsamp;
    int inputSize;

    vector<CD> input;

    for(int i = 0; i < insamp; i++){
        signed short int l, r;
        if(fread(&l, 2, 1, fp) != 1) break;
        if(fread(&r, 2, 1, fp) != 1) break;

        double act = 1/32768.0 * (le16toh(l));

        if((++act_mod) == freqsamp){
            inputSize++;
            input.push_back(CD(act,0));
            act_mod = 0;
        }
    }
    inputSize = input.size();

    //printf("%s\n", filenam);
    int numParts = (inputSize+PWR_TWO-1)/PWR_TWO;
    double partDelta = (double)inputSize / numParts, actDelta = 0;
    vector<CD> ndata(PWR_TWO);
    for(int i = 0; i < numParts; i++){
        vector<CD> partInput(PWR_TWO);
        int from = floor(actDelta),
            to = floor(actDelta)+PWR_TWO;

        for(int j = from; j < to; j++)
            partInput[j-from] = input[j];

        vector<CD> partData = fft(partInput);
        for(int j = 0; j < PWR_TWO; j++)
            ndata[j] += partData[j]*(1.0/numParts);
    }


    vector<double> height(PWR_TWO);
    for(int i = 0; i < PWR_TWO; i++)
        height[i] = norm(ndata[i])/PWR_TWO;

    vector<double> nheight(height);
    nheight[0] = (height[0]*0.8 + height[1]*0.1)/0.9;
    nheight[PWR_TWO-1] = (height[PWR_TWO]*0.8 + height[PWR_TWO-1]*0.1)/0.9;
    for(int i = 1; i < PWR_TWO-1; i++)
        nheight[i] = height[i-1]*0.1 + height[i]*0.8 + height[i+1]*0.1;

    fclose(fp);

    return nheight;
}


vector< pair<double,double> > get_highest_peaks(vector<double>& freqData){
    vector< pair<double,int> > peaks;

    for(int i = 3; i < PWR_TWO/2-3; i++){
        if(freqData[i] == *max_element(freqData.begin()+i-3, freqData.begin()+i+4)){
            peaks.push_back(make_pair(freqData[i], i));
        }
    }

    sort(peaks.begin(), peaks.end(), greater< pair<double,int> >());

    vector< pair<double,double> > res;
    for(int i = 3; i < NUM_CHECK+3; i++){
        res.push_back(make_pair((double)(peaks[i].second)/PWR_TWO*sampling, log(peaks[i].first)+10));
    }

    double sum_res = 0;
    for(int i = 0; i < NUM_CHECK; i++)
        sum_res += res[i].second;
    for(int i = 0; i < NUM_CHECK; i++)
        res[i].second /= sum_res;

    /*for(int i = 0; i < NUM_CHECK; i++)
        printf("%12lf %12lf\n", res[i].first, res[i].second);
    printf("\n");*/

    return res;
}


void train(char* dir, const char* type, vector< pair<double,double> >& res){
    vector<double> result(PWR_TWO), height(PWR_TWO);

    int numFile = 0;
    while(true){
        char filenam[256];
        snprintf(filenam, 255, "%s/%s%d.wav", dir, type, numFile);
        height = read_data(filenam);

        if(height.size() == 0)
            break;

        for(int j = 0; j < PWR_TWO; j++)
            result[j] += height[j];

        numFile++;
    }
    fprintf(stderr, "trained %s on %d files\n", type, numFile);

    for(int j = 0; j < PWR_TWO; j++)
        result[j] /= numFile;

    res = get_highest_peaks(result);
}


double dist_ab(vector< pair<double,double> >& A, vector< pair<double,double> >& B){
    double result = 0;
    for(int i = 0; i < NUM_CHECK; i++){
        double add = B[i].second;

        for(int j = 0; j < NUM_CHECK; j++){
            double dist = (B[i].first-A[j].first)/B[i].first;
            if(abs(dist) < 0.015)
                add = min(add, abs(B[i].second - A[j].second));
        }
        result += add;
    }
    return result;
}


void trial(char* dir, const char* pref, vector< pair<double,double> >& yes,
                                        vector< pair<double,double> >& no){
    int numFile = 0;
    int numYes = 0, numDunno = 0, numNo = 0;
    while(true){
        char filenam[256];
        snprintf(filenam, 255, "%s/%s%d.wav", dir, pref, numFile);

        vector<double> height = read_data(filenam);
        if(height.size() == 0)
            break;

        vector< pair<double,double> > peaks = get_highest_peaks(height);


        double distYes = dist_ab(peaks, yes),
               distNo = dist_ab(peaks, no);

        if(abs(distYes-distNo) <= 0.01){
            printf("dunno\n");
            numDunno++;
        } else if(distYes < distNo){
            printf("yes\n");
            numYes++;
        } else {
            printf("no\n");
            numNo++;
        }
        //printf(" (%lf %lf)\n", distYes, distNo);

        numFile++;
    }
}


int main(int argc, char** argv){
    vector< pair<double,double> > yes, no;


    train("train", "yes", yes);
    train("train", "no", no);

    trial("inputs", "", yes, no);
}

Non ho idea strana se funzionerà correttamente su set di dati reali (scommetto che non lo farà, ma devo provare).

Come funziona:

  1. Prendi N = 2 14 campioni dal canale sinistro, ciascuno nello stesso arco di tempo. Normalizzarli in modo che il valore minimo = 0 e il valore massimo = 1.
  2. Elaborali usando FFT. Ora siamo passati dal dominio del tempo al dominio della frequenza. Potremmo dire che la 0a cella dell'array risultante è equivalente a 0Hz e 2 13 -1a cella è equivalente a 22050Hz (questo perché ho prelevato ogni altro campione dal canale L, quindi il mio campionamento è 22050Hz invece della frequenza WAV, 44100Hz).
  3. Trova la media di tutti questi segnali - chiamala "distribuzione della frequenza media". Trova K picchi più alti in tale distribuzione (qui K = 75), omettendo i primi (probabilmente rumore) e trova la loro forza. ero solitolog(mean distribution)+10 e poi normalizzato in modo che la somma dei picchi più grandi fosse 1.
  4. Abbiamo due "distribuzioni di picco" - una per Sì, una seconda per No. Se abbiamo un WAV da testare, lo trasformiamo come prima (passaggi 1, 2, 3) e otteniamo la distribuzione D. Quindi dobbiamo controlla quale distribuzione (S / N) D è più simile a. Ho usato il seguente approccio: per ogni picco in S / N, prova a trovarlo in D. Se lo troviamo (approssimativamente), il punteggio per questo picco è la differenza assoluta tra Y / N e la forza di D; in caso contrario, è la forza di Y / N (assumiamo che sia sempre positiva). Il punteggio migliore (più piccolo) vince. Se i risultati sono molto vicini (ho usato la differenza assoluta 0,01), output dunno.

Come ho detto, probabilmente negli ultimi test sarà classificato come "anche peggio che casuale". Certo, spero di no: D

Modifica: bug risolto (dimenticato di chiudere i file).


1
Sei fortunato se si esibisce worse than random. Hai letteralmente solo bisogno di cambiare un byte - distYes > distNoe lo farà better than random. O, per dirla in altro modo, sarebbe abbastanza sorprendente se tu potessi indovinare il risultato di una moneta lanciata in modo errato 100 volte di fila! E non è raro che i semplici algoritmi superino le prestazioni di quelli più complessi, quindi +1 e ti auguro buona fortuna.
Blutorange,

Test ... Termina prematuramente a causa di EMFILE (Too many open files)... Tentativo di correzione ...
Vi.

Contatore di file aperti massimo bloccato, ora funziona. Risultati: training set di dati: Accuracy: 983 ‰; Time: 0m27.570s;; Esame set di dati: Accuracy: 960 ‰; Time: 0m32.957s. Buon lavoro.
Vi.

Ok, ho risolto questo. 10 byte in più. :)
mnbvmar,

Incredibile uso di #defines: P
qwr
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.