Dipingi una natura morta (o in movimento): disegna un'immagine nel Gioco della vita


36

Ti viene data come input un'immagine in scala di grigi. Il tuo compito è trovare un modello statico o in loop nel gioco della vita di Conway che assomigli il più possibile all'immagine di input.

L'output può essere sia un'immagine statica o un'animazione a ciclo continuo in un formato che può essere convertito in GIF. Le dimensioni dell'immagine di output devono essere uguali all'input e devono contenere solo pixel in bianco e nero.

Se l'output è un'animazione, ogni fotogramma deve essere generato dal precedente in base alle regole del Gioco della vita, con una cella per pixel. L'animazione deve essere ripetuta, con il primo fotogramma generato dall'ultimo fotogramma dalle stesse regole.

Se l'output è un fermo immagine, l'applicazione delle regole del gioco della vita deve produrre la stessa immagine. Ciò significa che nessuna cellula "viva" può avere più di tre o meno di due vicini "vivi" e nessuna cellula "morta" può avere esattamente tre vicini "vivi". (Nota che questo è fondamentalmente lo stesso di un'animazione come descritto sopra, ma con un solo fotogramma.)

Regole extra e chiarimenti:

  • Tu (o il tuo programma) potete scegliere se le celle "vive" sono rappresentate come bianche e "morte" come nere, o viceversa. Cioè, puoi codificare questo o il tuo programma può sceglierlo in base all'immagine di input. (Ma deve essere lo stesso per ogni fotogramma dell'animazione.)

  • Le condizioni al contorno dovrebbero essere periodiche, nel senso che le celle nella colonna più a destra hanno dei vicini nella colonna più a sinistra, ecc.

  • Per le animazioni, il frame rate dipende da te (o dal tuo programma); Immagino che frame rate veloci funzioneranno bene per approssimare i pixel grigi.

  • Si prega di pubblicare almeno due risultati integrati nella risposta. Se puoi pubblicare risultati da tutte le immagini di input in basso, è preferibile.

  • È accettabile ridimensionare le immagini di prova se ciò è necessario al fine di ottenere gif con dimensioni file abbastanza piccole. Se vuoi collegare anche a file più grandi, va bene. Se vuoi metterti in mostra, sentiti libero di trovare alcuni file sorgente ad alta risoluzione.

  • Cerca di evitare di avere troppi parametri controllabili nel tuo codice: è meglio se l'unico input del tuo programma è l'immagine. L'eccezione è se si desidera avere un parametro per controllare il numero di fotogrammi di animazione, poiché ciò influirà sulla dimensione del file.

  • È possibile utilizzare programmi esterni per modificare il formato dei file di input e output e / o compilare frame di output in un'animazione, se lo si desidera. (Questa non è una sfida per la gestione del formato di file.)

  • Questo è , quindi vince la risposta con il maggior numero di voti.

Ecco una selezione di immagini di prova, per lo più tratte da altre domande su questo sito. (È possibile che aggiungerò ulteriori immagini di input "bonus" in seguito.)

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Giusto per iniziare, ecco un tentativo di riferimento molto stupido in Python 2, che sfrutta il fatto che un blocco di quattro quadrati è una struttura stabile nel Gioco della Vita. Ridimensiona l'immagine di input di un fattore 4, quindi disegna un blocco se il pixel corrispondente è più scuro di 0,5.

from skimage import io
from skimage import transform
import sys

img = io.imread(sys.argv[1],as_grey=True)

source = transform.resize(img, [i/4 for i in img.shape])

img[:]=1
for x in xrange(source.shape[0]):
    for y in xrange(source.shape[1]):
        if source[x,y]<0.5:
            img[x*4, y*4] = 0
            img[x*4+1, y*4] = 0
            img[x*4, y*4+1] = 0
            img[x*4+1, y*4+1] = 0

io.imsave(sys.argv[2], img)

Ecco alcuni output del codice di esempio. Sono sicuro che sono possibili risultati molto migliori.

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine


2
Ecco alcuni segmenti di nature morte ad alta densità: en.wikipedia.org/wiki/… . Non puoi ottenere più della densità 1/2 nel limite.
xnor

Nel tuo esempio, non sono nate nuove celle all'incrocio di tre quadrati?
xnor

@xnor oh sì, hai ragione. Meglio rimuovere l'esempio per ora in quel caso. (Dovrei anche iniziare a scrivere un codice di verifica!)
Nathaniel,

3
Non sono sicuro di come ciò possa aiutare, dal momento che nessuno dei giardini di Eden è ancora vivo. (che li renderebbe il loro predecessore) Ragionamento simile sul perché neanche loro sono oscillatori.
Tally,

1
Qualche ulteriore ispirazione per i concorrenti: tlrobinson.net/blog/2009/02/game-of-life-generator
Abulafia

Risposte:


13

Pitone

import sys, random, itertools
from PIL import Image

filename, cutoff = sys.argv[1], int(sys.argv[2]) if len(sys.argv) > 2 else 128

# load command-line arg as image
src = Image.open(sys.argv[1]).convert("L") # grayscale
(w, h), src = src.size, src.load()
# flatten
src = bytearray(src[x, y] for y in range(h) for x in range(w))
size = len(src)
neighbour_offsets = (-w-1,-w,-w+1,-1,1,w-1,w,w+1)    

shapes = set()
max_shape_x, max_shape_y = 0, 0
for shape in (((1, 1), (1, 1), "b"), # block
    ((0,1,1,0),(1,0,0,1),(0,1,1,0), "h"), # hive
    ((0,0,1,0),(0,1,0,1),(1,0,0,1),(0,1,1,0), "l"), # loaf
    ((0,1,0),(1,0,1),(0,1,0), "t"), # tub
    ((1,1,0),(1,0,1),(0,1,0), "B"), # boat
    ((1,1,0),(1,0,1),(0,1,1), "s"), # ship
    ((1,1,0,1,1),(0,1,0,1,0),(0,1,0,1,0),(1,1,0,1,1), "I"), # II
    ((0,0,0,1,1),(0,0,0,0,1),(0,0,0,1,0),(1,0,1,0,0),(1,1,0,0,0), "c"), # canoe sinking
    ((1,1,0,0),(1,0,0,1),(0,0,1,1), "a"), # aircraft carrier
    ((0,1,1,0,0),(1,0,0,1,0),(0,1,0,0,1),(0,0,1,1,0), "m"), # mango
    ((0,1,1,0),(1,0,0,1),(1,0,0,1),(0,1,1,0), "p"), # pond
    ((0,0,0,1,1),(0,0,1,0,1),(0,0,1,0,0),(1,0,1,0,0),(1,1,0,0,0), "i"), # integral
    ((1,1,0,1),(1,0,1,1), "S"), # snake
    ((1,1,0,0),(1,0,1,0),(0,0,1,0),(0,0,1,1), "f"), # fish hook
    ):
    X, Y = len(shape[0]), len(shape)-1
    max_shape_x, max_shape_y = max(X, max_shape_x), max(Y, max_shape_y)
    shapes.add(((X, Y), tuple(y*w+x for y in range(Y) for x in range(X) if shape[y][x]), shape[:-1], shape[-1]))
    shapes.add(((X, Y), tuple(y*w+x for y in range(Y) for x in range(X-1,-1,-1) if shape[y][x]), shape[:-1], shape[-1]))
    shapes.add(((X, Y), tuple(y*w+x for y in range(Y-1,-1,-1) for x in range(X) if shape[y][x]), shape[:-1], shape[-1]))
    shapes.add(((X, Y), tuple(y*w+x for y in range(Y-1,-1,-1) for x in range(X-1,-1,-1) if shape[y][x]), shape[:-1], shape[-1]))

def torus(i, *indices):
    if len(indices) == 1:
        return (i + indices[0]) % size
    return [(i + n) % size for n in indices]

def iter_neighbours(i):
    return torus(i, *neighbour_offsets)

def conway(src, dest):
    for i in range(size):
        alive = count_alive(src, i)
        dest[i] = (alive == 2 or alive == 3) if src[i] else (alive == 3)

def calc_score(i, set):
    return 255-src[i] if not set else src[i]

def count_alive(board, i, *also):
    alive = 0
    for j in iter_neighbours(i):
        if board[j] or (j in also):
            alive += 1
    return alive

def count_dead(board, i, *also):
    dead = 0
    for j in iter_neighbours(i):
        if (not board[j]) and (j not in also):
            dead += 1
    return dead

def iter_alive(board, i, *also):
    for j in iter_neighbours(i):
        if board[j] or (j in also):
            yield j

def iter_dead(board, i, *also):
    for j in iter_neighbours(i):
        if (not board[j]) and (j not in also):
            yield j

def check(board):
    for i in range(size):
        alive = count_alive(board, i)
        if board[i]:
            assert alive == 2 or alive == 3, "alive %d has %d neighbours %s" % (i, alive, list(iter_alive(board, i)))
        else:
            assert alive != 3, "dead %d has 3 neighbours %s" % (i, list(iter_alive(board, i)))

dest = bytearray(size)

if False:
    # turn into contrast
    for i in range(size):
        mx = max(src[i], max(src[j] for j in iter_neighbours(i)))
        mn = min(src[i], min(src[j] for j in iter_neighbours(i)))
        dest[i] = int((0.5 * src[i]) + (128 * (1 - float(src[i] - mn) / max(1, mx - mn))))
    src, dest = dest, bytearray(size)

try:
    checked, bad, score_cache = set(), set(), {}
    next = sorted((calc_score(i, True), i) for i in range(size))
    while next:
        best, best_score = None, sys.maxint
        current, next = next, []
        for at, (score, i) in enumerate(current):
            if score > cutoff:
                break
            if best and best_score < score:
                break
            if not dest[i] and not count_alive(dest, i):
                do_nothing_score = calc_score(i, False)
                clean = True
                for y in range(-max_shape_y-1, max_shape_y+2):
                    for x in range(-max_shape_x-1, max_shape_x+2):
                        if dest[torus(i, y*w+x)]:
                            clean = False
                            break
                    if not clean:
                        break
                any_ok = False
                for (X, Y), shape, mask, label in shapes:
                    for y in range(Y):
                        for x in range(X):
                            if mask[y][x]:
                                pos, ok = torus(i, -y*w-x), True
                                if (pos, label) in bad:
                                    continue
                                if clean and (pos, label) in score_cache:
                                    score = score_cache[pos, label]
                                else:
                                    paint = torus(pos, *shape)
                                    for j in paint:
                                        for k in iter_alive(dest, j, *paint):
                                            if count_alive(dest, k, *paint) not in (2, 3):
                                                ok = False
                                                break
                                        if not ok:
                                            break
                                        for k in iter_dead(dest, j, *paint):
                                            if count_alive(dest, k, *paint) == 3:
                                                ok = False
                                                break
                                        if not ok:
                                            break
                                    if ok:
                                        score = 0
                                        any_ok = True
                                        for x in range(X):
                                            for y in range(Y):
                                                score += calc_score(torus(pos, y*w+x), mask[y][x])
                                            score /= Y*X
                                        if clean:
                                            score_cache[pos, label] = score
                                    else:
                                        bad.add((pos, label))
                                if ok and best_score > score and do_nothing_score > score:
                                    best, best_score = (pos, shape, label), score
                if any_ok:
                    next.append((score, i))
        if best:
            pos, shape, label = best
            shape = torus(pos, *shape)
            sys.stdout.write(label)
            sys.stdout.flush()
            for j in shape:
                dest[j] = True
            check(dest)
            next += current[at+1:]
        else:
            break
except KeyboardInterrupt:
    pass
print

if True:
    check(dest)
    anim = False
    while dest != src:
        if anim:
            raise Exception("animation!")
        else:
            anim = True
        sys.stdout.write("x"); sys.stdout.flush()
        conway(dest, src)
        dest, src = src, dest
        check(dest)

# canvas
out = Image.new("1", (w, h))
out.putdata([not i for i in dest])

# tk UI
Tkinter = None
try:
    import Tkinter
    from PIL import ImageTk
    root = Tkinter.Tk()
    root.bind("<Button>", lambda event: event.widget.quit())
    root.geometry("%dx%d" % (w, h))
    show = ImageTk.PhotoImage(out)
    label = Tkinter.Label(root, image=show)
    label.pack()
    root.loop()
except Exception as e:
    print "(no Tkinter)", e
    Tkinter = False

if len(sys.argv) > 3:
    out.save(sys.argv[3])

if not Tkinter:
    out.show()

Per favore strizza gli occhi:

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine inserisci qui la descrizione dell'immagine

Il codice timbra sui pixel più bianchi con la natura morta standard più adatta . C'è un argomento interrotto, quindi puoi decidere dove va l'arrotondamento alla soglia bianco-nero. Ho sperimentato il vivere-è-bianco e il risultato è più o meno lo stesso.


9
È meglio includere il tuo codice nel tuo post e nominare il tuo post con il nome della lingua. ad es.#Python
Calvin's Hobbies,

Il mio script di validazione dice che hai dei pixel cattivi sui bordi sinistro e destro. Sembra che quando i pixel si spostano da destra a sinistra, si spostano anche di un pixel verso il basso.
Nathaniel,

+1 però - grazie per la risposta molto veloce!
Nathaniel,

@Nathaniel thx per avermi fatto conoscere l'implementazione di GoL. Un equivoco piuttosto semplice. L'output sarebbe più o meno lo stesso e non ho nessun desiderio di aspettare che ritorni da capo :( Questa sfida ha lo stesso difetto della mia animazione - la gente immagina davvero di voler vedere i risultati, ma ci vuole molto molti investimenti per entrare realmente. Lo spazio di complessità di questo particolare problema rende i concorsi di azspcs.net sembrano mansueti. È un peccato che GoL sia monocromatico e, a dire il vero, una scarsità per le immagini fisse. SmoothLife sembra divertente; ma non per disegnare foto con.
Will

@Non c'è bisogno di preoccuparsi di sistemare il bug, mi sono sentito obbligato a menzionarlo da quando ero andato in difficoltà a scrivere un programma per controllarlo!
Nathaniel,

8

Giava

Un approccio basato sul rilevamento dei bordi. Richiede questo file di testo nella directory di esecuzione.

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.util.*;

import javax.imageio.ImageIO;


public class StillLifer{
    private static List<boolean[][]>patterns=new ArrayList<>();
    private static boolean[][] copy(boolean[][]b,int x,int y){
        boolean[][]r=new boolean[6][6];
        for(int i=0;i<6;i++){
            for(int j=0;j<6;j++){
                r[i][j]=b[y+i][x+j];
            }
        }
        return r;
    }
    private static void paste(boolean[][]from,boolean[][]to,int x,int y){
        for(int i=0;i<from.length;i++)for(int j=0;j<from[0].length;j++){
            to[y+i][x+j]=from[i][j];
        }
    }
    private static boolean[][]findClosest(boolean[][]b){
        boolean[][]c=null;
        int d=999999;
        for(boolean[][]k:patterns){
            int d2=editDistance(b,k);
            if(d2<d){
                c=k;
                d=d2;
            }
        }
        return c;
    }
    private static boolean[][]decode(String s){
        char[]a=s.toCharArray();
        boolean[][]r=new boolean[6][6];
        int k=0;
        for(int i=0;i<6;i++){
            for(int j=0;j<6;j++){
                r[i][j]=a[k++]=='1';
            }
        }
        return r;
    }
    private static class EdgeDetectEntry{
        int l;
        int x;
        int y;
        public EdgeDetectEntry(int m,int x,int y){
            this.l=m;
            this.x=x;
            this.y=y;
        }
    }
    private static Random rand;
    private static int w,h;
    private static BufferedImage img;
    private static boolean[][]grid;
    private static File file;
    private static int editDistance(boolean[][]from,boolean[][]to){
        int w=from.length;
        int h=from[0].length;
        int k=0;
        for(int x=0;x<w;x++){
            for(int y=0;y<h;y++){
                k+=from[y][x]^to[y][x]?1:0;
            }
        }
        return k;
    }
    private static int colorDistance(Color from,Color to){
        return from.getRed()-to.getRed();
    }
    private static int edgeDetectWeight(int x,int y){
        int k=0;
        Color c=new Color(img.getRGB(x, y));
        for(int x2=Math.max(0,x-1);x2<Math.min(w,x+2);x2++){
            for(int y2=Math.max(0,y-1);y2<Math.min(h,y+2);y2++){
                int l=colorDistance(c,new Color(img.getRGB(x2, y2)));
                k+=l*l;
            }
        }
        return k;
    }
    private static void save() throws Exception{
        int bk=Color.BLACK.getRGB();
        int wt=Color.WHITE.getRGB();
        for(int x=0;x<w;x++){
            for(int y=0;y<h;y++){
                img.setRGB(x,y,grid[y][x]?wt:bk);
            }
        }
        String k=file.getName().split("\\.")[0];
        ImageIO.write(img,"png",new File(k="out_"+k+".png"));
    }
    private static String rle(boolean[][]grid){
        StringBuilder st=new StringBuilder();
        for(boolean[]row:grid){
            for(int j=0;j<row.length;j++){
                int k=1;
                for(;j<row.length-1&&row[j]==row[j+1];j++)k++;
                if(k!=1)st.append(Integer.toString(k,36));
                st.append(row[j]?'@':'-');
            }
        }
        return st.toString();
    }
    private static int getVal(boolean[][]grid,int x,int y){
        if(x<0)x+=w;
        if(y<0)y+=h;
        if(x==w)x=0;
        if(y==h)y=0;
        return grid[y][x]?1:0;
    }
    private static boolean newState(boolean[][]grid,int x,int y,String rule){
        String[]r=rule.split("/");
        int k=0;
        for(int a=-1;a<=1;a++)for(int b=-1;a<=1;a++)k+=(a|b)==0?0:getVal(grid,x+a,y+b);
        String s=Integer.toString(k);
        return grid[y][x]?r[1].contains(s):r[0].contains(s);
    }
    private static boolean[][] next(boolean[][]grid,String rule){
        boolean[][]r=new boolean[h][w];
        for(int x=0;x<w;x++){
            for(int y=0;y<h;y++){
                r[y][x]=newState(grid,x,y,rule);
            }
        }
        return r;
    }
    private static void loadPatterns() throws Exception{
        Scanner reader=new Scanner(new File("lib.txt"));
        while(reader.hasNext()){
            String line=reader.nextLine();
            if(line.startsWith("--"))continue;
            patterns.add(decode(line));
        }
        reader.close();
    }
    public static void main(String[]a) throws Exception{
        loadPatterns();
        Scanner in=new Scanner(System.in);
        img=ImageIO.read(file=new File(in.nextLine()));
        in.close();
        w=img.getWidth();
        h=img.getHeight();
        grid=new boolean[h][w];
        final int npix=w*h;
        rand=new Random(npix*(long)img.hashCode());
        List<EdgeDetectEntry> list=new ArrayList<>();
        for(int x=0;x<w;x++){
            for(int y=0;y<h;y++){
                list.add(new EdgeDetectEntry(edgeDetectWeight(x,y),x,y));
            }
        }
        list.sort((one,two)->{int k=two.l-one.l;if(k>0)return 1;if(k<0)return -1;return 0;});
        for(int i=Math.max(Math.min(3,npix),npix/5);i>0;i--){
            EdgeDetectEntry e=list.get(i);
            grid[e.y][e.x]=rand.nextDouble()<0.9;
        }
        grid=next(grid,"/2345678");
        boolean[][]d=new boolean[h][w];
        for(int i=0;i<w/6;i++){
            for(int j=0;j<h/6;j++){
                paste(findClosest(copy(grid,i*6,j*6)),d,i*6,j*6);
            }
        }
        grid=d;
        assert(rle(next(grid,"3/23")).equals(rle(grid)));
        save();
    }
}

Alcuni risultati:

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine


5

C ++

Approccio di pixelizzazione semplice utilizzando la media di ciascuna griglia 8x8 per selezionare una griglia di output 8x8 (una "trama di colore"). Ogni griglia di output 8x8 ha un separatore a 2 celle in alto a destra. Sono state progettate griglie che vanno da 4 nature morte a 18 celle a vita entro i restanti 6x6 pixel.

Il programma funge da filtro dal PGM binario al PBM binario. Per impostazione predefinita, le immagini sono "scure"; il nero è morte e il bianco è vita; -iinverte questo. -g [value]aggiunge una gamma, che viene utilizzata per pre-ponderare le medie prima di selezionare le trame dei colori.

#include <iostream>
#include <vector>
#include <string>
#include <sstream>
#include <cmath>

// colors 4 through 18 have 4 through 18 live cells
// colors 1-3 are repetitions of 0 or 4 used
// as artificially weighted bins
unsigned char gol_colors[]={
      0,  0,  0,  0,  0,  0,  0,  0 // Color  0
   ,  0,  0,  0,  0,  0,  0,  0,  0 // Color  1
   ,  0,  0,  0, 16, 40, 16,  0,  0 // Color  2
   ,  0,  0,  0, 16, 40, 16,  0,  0 // Color  3
   ,  0,  0,  0, 16, 40, 16,  0,  0 // Color  4
   ,  0,  0,  0, 24, 40, 16,  0,  0 // Color  5
   ,  0,  0,  0, 16, 40, 80, 32,  0 // Color  6
   ,  0,  0,  0, 48, 72, 40, 16,  0 // Color  7
   ,  0,  0,  8, 20,  8, 64,160, 64 // Color  8
   ,  0,  0,  8, 20,  8, 64,160, 96 // Color  9
   ,  0,  0, 12, 20,  8, 64,160, 96 // Color 10
   ,  0,  0, 12, 20,  8,192,160, 96 // Color 11
   ,  0,  0,204,204,  0,  0, 48, 48 // Color 12
   ,  0,  0,204,204,  0,192,160, 64 // Color 13
   ,  0,  0,  0,108,168,168,108,  0 // Color 14
   ,  0,  0, 96,144,104, 40,172,192 // Color 15
   ,  0,  0,204,204,  0,  0,204,204 // Color 16
   ,  0,  0,216,216,  0,216,212,  8 // Color 17
   ,  0,  0,204,164, 40, 80,148,204 // Color 18
};

enum { gol_bins = sizeof(gol_colors)/(sizeof(*gol_colors))/8 };

bool inverted=false;

bool applygamma=false;
double gammasetting=0.0;

unsigned int corrected(unsigned int i, unsigned int r) {
   return static_cast<unsigned int>(r*std::pow(i/static_cast<double>(r), gammasetting));
}

int main(int argc, char** argv) {
   std::vector<unsigned short> pgm_data;
   unsigned pgm_width;
   unsigned pgm_height;
   unsigned pgm_vpp;

   std::vector<unsigned char> pbm_data;
   unsigned pbm_width;
   unsigned pbm_height;

   unsigned int doublings=0;

   std::vector<std::string> args(argv+1, argv+argc);
   for (unsigned int i=0, e=args.size(); i<e; ++i) {
      if (args[i]=="-i") { inverted=true; continue; }
      if (args[i]=="-g") {
         if (i+1==e) continue;
         std::stringstream ss;
         ss << args[++i];
         if (ss >> gammasetting) applygamma = true;
         continue;
      }
   }

   std::string line;
   std::getline(std::cin, line);
   if (line!="P5") return 1;
   enum { nothing, have_w, have_h, have_bpp } readstate = nothing;
   while (std::cin) {
      std::getline(std::cin, line);
      if (line.empty()) continue;
      if (line[0]=='#') continue;
      std::stringstream ss; ss << line;
      for(;;) {
         switch (readstate) {
         case nothing: if (ss >> pgm_width) readstate = have_w; break;
         case have_w:  if (ss >> pgm_height) readstate = have_h; break;
         case have_h:  if (ss >> pgm_vpp) readstate = have_bpp; break;
         }
         if (readstate==have_bpp) break;
         if (ss) continue;
         break;
      }
      if (readstate==have_bpp) break;
   }
   if (readstate!=have_bpp) return 1;
   // Fill pgm data
   pgm_data.resize(pgm_width*pgm_height);
   for (unsigned i=0, e=pgm_width*pgm_height; i<e; ++i) {
      int v = std::cin.get();
      if (v==std::char_traits<char>::eof()) return 1;
      pgm_data[i] = static_cast<unsigned int>(std::char_traits<char>::to_char_type(v))&0xFFU;
   }
   pbm_width  = pgm_width/8*8;
   pbm_height = pgm_height/8*8;
   pbm_data.resize(pbm_width*pbm_height/8);
   for (unsigned x=0, xe=pbm_width/8; x<xe; ++x) {
      for (unsigned y=0, ye=pbm_height/8; y<ye; ++y) {
         // Calculate the average of this 8x8 area
         unsigned int total=0;
         for (unsigned int xd=0; xd<8; ++xd) {
            for (unsigned int yd=0; yd<8; ++yd) {
               unsigned int c = x+xd+(y+yd)*pgm_width;
               unsigned int pv = pgm_data[x*8+xd+(y*8+yd)*pgm_width];
               // Apply gamma prior to averaging
               if (applygamma) pv=corrected(pv, pgm_vpp);
               total += pv;
            }
         }
         total /= 64;
         // Invert average if inverting colors (white on black)
         if (inverted) total=pgm_vpp-total;
         total *= gol_bins;
         total /= (pgm_vpp+1);
         // Fill 8x8 areas with gol color texture
         for (unsigned int yd=0; yd<8; ++yd) {
            pbm_data[x+(y*8+yd)*pbm_width/8] = gol_colors[total*8+yd];
         }
      }
   }
   // Now, write a pbm
   std::cout
      << "P4\n"
      << "# generated by pgm2gol\n"
      << pbm_width << " " << pbm_height << "\n";
   for (unsigned i=0, e=pbm_data.size(); i<e; ++i) {
      unsigned char data=pbm_data[i];
      if (!inverted) { data=pbm_data[i]^0xFF; }
      std::cout.put(data);
   }
}

Risultati selezionati (nota: tutti i pbm sono stati convertiti in png usando un programma di terze parti per il caricamento):

Escher, gamma 2.2
Escher

Mona Lisa, gamma 2.2
Mona

Oceano, gamma 2.2 invertito
Oceano

Cucciolo, gamma 2.2
Cucciolo

Tradimento delle immagini, gamma 2.2 invertita
Tradimento

Mona Lisa gamma 2.2, invertita, per confronto
Mona

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.