Aiuta Indiana Jones a ottenere il tesoro


45

Storia

Indiana Jones stava esplorando una grotta dove si trova un tesoro prezioso. All'improvviso, si è verificato un terremoto.

Quando il terremoto è terminato, ha notato che alcune rocce cadute dal soffitto si sono bloccate verso il tesoro. Notò anche che poteva spingere una pietra, ma poiché le pietre erano molto pesanti, non poteva spingere due pietre consecutive .

Il tuo obiettivo è aiutare Indiana Jones a ottenere il tesoro. Poiché è molto difficile spingere anche una sola pietra, il numero di spinte è molto importante.

Problema

Trova il modo migliore (dove Indiana Jones spinge le pietre il meno possibile), per trovare il tesoro.

Mappa (input)

La mappa è una matrice mdi n(entrambe più grandi di 1) che può contenere cinque tipi di celle:

  • 0 che significa la cella vuota,
  • 1 il che significa che il muro,
  • 2 in cui Indiana Jones si trova (ne esiste solo una),
  • 3 in cui si trova il tesoro (ne esiste solo uno),
  • e 4, che significa una roccia.

Nella prima riga della mappa, la dimensione della mappa viene specificata come 4 6, e dalla seconda riga all'ultima riga della mappa, la struttura della caverna viene specificata in questo modo.

110131
104040
100101
200000

Pertanto, la mappa completa è:

4 6
110131
104040
100101
200000

che significa

La mappa

La mappa è data da stdin, un file (è possibile specificare il nome del file) o un array nel codice che contiene solo le informazioni sopra.

Produzione

L'importo minimo che Indiana Jones dovrebbe spingere. Se non esiste, output X.

In questo caso , può spingere una pietra a sinistra verso l'alto, quindi può spingere una pietra a destra verso destra per ottenere il tesoro. Pertanto, l'output in questo caso è 2.

Però. in questo caso :

4 6
111131
104040
100101
200000

(guarda sotto la sezione) non può spingere la pietra giusta perché distruggerà il tesoro. Inoltre, spingendo la pietra sinistra verso destra non cambia nulla. Pertanto, l'output è X.

Regole

  • Può muoversi solo in quattro direzioni, su, giù, sinistra e destra.
  • Non può spingere due pietre consecutive .
  • Non può tirare nessuna pietra e può spingerla solo in una direzione ("avanti").
  • Non può attraversare i muri. Solo i posti dove può andare sono celle vuote e la cella del tesoro.
  • La pietra non può essere posizionata sul tesoro. Questo distruggerà il tesoro. :(
  • Non può uscire dalla mappa.

obiettivi

Programma in grado di gestire la maggior parte delle mappe (fornite nella sezione "Esempio" + altre) in un tempo ragionevole (in particolare, 10 secondi) e che genera la risposta giusta vince.

Qui "altri" indica input forniti nelle risposte. Ciò significa che dovresti creare un algoritmo intelligente in modo che altri programmi non possano risolvere le mappe che il tuo programma può risolvere e che le mappe risolte da altri programmi possano essere risolte dal tuo programma. Tuttavia, l'inserimento di soluzioni nel codice non sarà considerato valido.

Nota

Questo era originariamente un progetto a medio termine di una classe di intelligenza artificiale che ascoltavo, solo una cosa era diversa: si diceva che c'erano solo due pietre.

È stato detto che questo problema è NP, ma è stato anche detto che un buon algoritmo euristico può risolvere il problema in modo abbastanza efficiente. Ho usato alcune idee ed euristiche per risolvere il problema in modo efficiente e il mio codice è riuscito a trovare tutte le soluzioni di campioni molto rapidamente (meno di un secondo).

Tuttavia, quando c'erano più di due rocce, c'erano alcuni casi in cui il codice non riusciva a trovare la risposta in un tempo ragionevole. Avevo alcune idee, ma alcune erano "sbagliate" e non potevo esprimere altre idee nel codice. Volevo vedere quali algoritmi intelligenti esistono per risolvere questo problema, quindi ho scritto questo.

Da quando ho già completato il progetto (a proposito, le immagini non sono mie - ho cercato su Google quelle), non devi preoccupartene.

Esempi

Gli esempi sono disponibili qui. Puoi anche vedere esempi e testare i tuoi risultati qui (questo dovrebbe funzionare nei browser moderni). Puoi ottenere la mappa nel formato sopra descritto, digitando whatisthis()nella console JS.

http://bit.sparcs.org/~differ/sokoban/#0 ~ http://bit.sparcs.org/~differ/sokoban/#19 contiene esempi che originariamente era la classe fornita.

Risultato

Mi dispiace, ero in ritardo .. in realtà un bel po '. : P (Ero troppo pigro per segnare. Scusa.)

Di seguito è riportato il risultato. (X: sbagliato, O: giusto,?: Richiede almeno 10 secondi, si ferma)

Map#: 0 1 2 3 4 5 12 15 19 T1 T2 T3 T4 T5 T6 T7
Ruby: X O O ? O O  O  X  ?  ?  O  ?  ?  ?  ?  ?
Java: O O X O X X  O  O  ?  ?  O  O  O  X  O  O

(Java 19: ho impiegato 25 secondi, il risultato era corretto.) (Ho usato ruby ​​1.9.3 e javac 1.7.0_13)

Sembra che l'algoritmo Java fosse davvero migliore. (A proposito, ho pensato a un metodo simile, ma mi sono reso conto che esistono mappe come la mappa di test 5.)


7
È difficile.
FUZxxl,

8
Questo mi fa venir voglia di scrivere un generatore di numeri casuali basato sulla complessità del puzzle, sempre sotto tiro ... le persone si inventerebbero puzzle difficili, quindi grattarsi la testa per giorni chiedendosi come il mio programma lo abbia risolto con solo 4 spinte ...: )
Nathan Wheeler,

@NathanWheeler, sì, costruisci un risolutore indeterminato. Funziona, ma devi eseguirlo in un computer quantistico. : P
Neil,

Dovrebbe calcolarlo avviando Indiana Jones al tesoro e lavorando all'indietro, come se risolvessi un labirinto. La differenza è che lo stato non è determinato solo dalla posizione ma anche dal posizionamento della roccia (posso passare lo stesso posto due volte se le rocce sono state spostate). Hmm, dovrò pensare di più a questo ...
Neil,

Risposte:


11

Java - Un po 'più intelligente / più veloce

Un po 'di codice lì. Sto cercando di essere più veloce valutando le spinte in ordine di "quanto è probabile che questo liberi una strada per il tesoro", che a sua volta si basa su due attraversamenti Dijkstra (uno si ferma quando si incontrano le rocce, l'altro ignora le rocce). Funziona abbastanza bene, e l'unico esempio del pastebin che sembra essere problematico per l'autore è risolto in circa 2 secondi da questa implementazione. Alcuni altri esempi richiedono fino a 30-40 secondi, che trovo ancora troppo a lungo, ma non sono riuscito a trovare un modo per migliorarlo senza rompere il materiale :)

Ho diviso le mie cose in diversi file per ottenere una struttura migliore (anche perché sono passato a Java da Ruby):

Punto d'entrata:

import java.util.Date;    
public class IndianaJones {
    public static void main(final String[] args) throws Exception {
        final Maze maze = new Maze(System.in);
        final Date startAt = new Date();
        final int solution = maze.solve();
        final Date endAt = new Date();
        System.out.printf("Found solution: %s in %d ms.",
                          solution < Integer.MAX_VALUE ? solution : "X",
                          endAt.getTime() - startAt.getTime());
    }
}

Direzione aiuto enum:

enum Direction {
    UP(-1, 0), DOWN(1, 0), LEFT(0, -1), RIGHT(0, 1);

    public final int drow;
    public final int dcol;

    private Direction(final int drow, final int dcol) {
        this.drow = drow;
        this.dcol = dcol;
    }

    public final Direction opposite() {
        switch (this) {
        case UP:
            return DOWN;
        case DOWN:
            return UP;
        case LEFT:
            return RIGHT;
        case RIGHT:
            return LEFT;
        }
        return null;
    }
}

Una classe astratta per rappresentare una parte situata del "labirinto":

abstract class PointOfInterest {
    public final int row;
    public final int col;

    protected PointOfInterest(final int row, final int col) {
        this.row = row;
        this.col = col;
    }

    public final boolean isAt(final int row, final int col) {
        return this.row == row && this.col == col;
    }

    @Override
    public final String toString() {
        return getClass().getSimpleName() + "(" + row + ", " + col + ")";
    }

    @Override
    public final int hashCode() {
        return row ^ col;
    }

    @Override
    public final boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (!(obj instanceof PointOfInterest))
            return false;
        if (!getClass().equals(obj.getClass()))
            return false;
        final PointOfInterest other = (PointOfInterest) obj;
        return row == other.row && col == other.col;
    }
}

E infine, il labirinto stesso:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
import java.util.SortedMap;
import java.util.TreeMap;

public class Maze {
    private static final char WALL = '1';
    private static final char INDY = '2';
    private static final char GOAL = '3';
    private static final char ROCK = '4';

    private final Maze parent;
    private final Set<Maze> visited;
    private final boolean[][] map;
    private final int[][] dijkstra;
    private int[][] dijkstraGhost;
    private String stringValue = null;

    private int shortestSolution = Integer.MAX_VALUE;

    private Goal goal = null;
    private Indy indy = null;
    private Set<Rock> rocks = new HashSet<>();

    private Maze(final Maze parent, final Rock rock, final Direction direction) {
        this.parent = parent;
        this.visited = parent.visited;
        map = parent.map;
        dijkstra = new int[map.length][map[rock.row].length];
        for (final int[] part : dijkstra)
            Arrays.fill(part, Integer.MAX_VALUE);
        goal = new Goal(parent.goal.row, parent.goal.col);
        indy = new Indy(rock.row, rock.col);
        for (final Rock r : parent.rocks)
            if (r == rock)
                rocks.add(new Rock(r.row + direction.drow, r.col + direction.dcol));
            else
                rocks.add(new Rock(r.row, r.col));
        updateDijkstra(goal.row, goal.col, 0, true);
    }

    public Maze(final InputStream is) {
        this.parent = null;
        this.visited = new HashSet<>();
        try (final BufferedReader br = new BufferedReader(new InputStreamReader(is))) {
            String line = br.readLine();
            final String[] sizeParts = line.split(" ");
            final int height = Integer.parseInt(sizeParts[0]);
            final int width = Integer.parseInt(sizeParts[1]);
            map = new boolean[height][width];
            dijkstra = new int[height][width];

            int row = 0;
            while ((line = br.readLine()) != null) {
                for (int col = 0; col < line.length(); col++) {
                    final char c = line.charAt(col);
                    map[row][col] = c == WALL;
                    dijkstra[row][col] = Integer.MAX_VALUE;
                    if (c == INDY) {
                        if (indy != null)
                            throw new IllegalStateException("Found a second indy!");
                        indy = new Indy(row, col);
                    } else if (c == GOAL) {
                        if (goal != null)
                            throw new IllegalStateException("Found a second treasure!");
                        goal = new Goal(row, col);
                    } else if (c == ROCK) {
                        rocks.add(new Rock(row, col));
                    }
                }
                row++;
            }

            updateDijkstra(goal.row, goal.col, 0, true);
        } catch (final IOException ioe) {
            throw new RuntimeException("Could not read maze from InputStream", ioe);
        }
    }

    public int getShortestSolution() {
        Maze ptr = this;
        while (ptr.parent != null)
            ptr = ptr.parent;
        return ptr.shortestSolution;
    }

    public void setShortestSolution(int shortestSolution) {
        Maze ptr = this;
        while (ptr.parent != null)
            ptr = ptr.parent;
        ptr.shortestSolution = Math.min(ptr.shortestSolution, shortestSolution);
    }

    private final boolean isRepeat(final Maze maze) {
        return this.visited.contains(maze);
    }

    private final void updateDijkstra(final int row, final int col, final int value, final boolean force) {
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return;
        if (map[row][col] || isRockPresent(row, col))
            return;
        if (dijkstra[row][col] <= value && !force)
            return;

        dijkstra[row][col] = value;
        updateDijkstra(row - 1, col, value + 1, false);
        updateDijkstra(row + 1, col, value + 1, false);
        updateDijkstra(row, col - 1, value + 1, false);
        updateDijkstra(row, col + 1, value + 1, false);
    }

    private final void updateDijkstraGhost(final int row, final int col, final int value, final boolean force) {
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return;
        if (map[row][col] || isRockPresent(row, col))
            return;
        if (dijkstraGhost[row][col] <= value && !force)
            return;

        dijkstraGhost[row][col] = value;
        updateDijkstraGhost(row - 1, col, value + 1, false);
        updateDijkstraGhost(row + 1, col, value + 1, false);
        updateDijkstraGhost(row, col - 1, value + 1, false);
        updateDijkstraGhost(row, col + 1, value + 1, false);
    }

    private final int dijkstraScore(final int row, final int col) {
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return Integer.MAX_VALUE;
        return dijkstra[row][col];
    }

    private final int dijkstraGhostScore(final int row, final int col) {
        if (dijkstraGhost == null) {
            dijkstraGhost = new int[map.length][map[indy.row].length];
            for (final int[] part : dijkstraGhost)
                Arrays.fill(part, Integer.MAX_VALUE);
            updateDijkstraGhost(goal.row, goal.col, 0, true);
        }
        if (row < 0 || col < 0 || row >= dijkstra.length || col >= dijkstra[row].length)
            return Integer.MAX_VALUE;
        return dijkstraGhost[row][col];
    }

    private boolean isRockPresent(final int row, final int col) {
        for (final Rock rock : rocks)
            if (rock.isAt(row, col))
                return true;
        return false;
    }

    public boolean isEmpty(final int row, final int col) {
        if (row < 0 || col < 0 || row >= map.length || col >= map[row].length)
            return false;
        return !map[row][col] && !isRockPresent(row, col) && !goal.isAt(row, col);
    }

    public int solve() {
        return solve(0);
    }

    private int solve(final int currentDepth) {
        System.out.println(toString());
        visited.add(this);
        if (isSolved()) {
            setShortestSolution(currentDepth);
            return 0;
        }
        if (currentDepth >= getShortestSolution()) {
            System.out.println("Aborting at depth " + currentDepth + " because we know better: "
                               + getShortestSolution());
            return Integer.MAX_VALUE;
        }
        final Map<Rock, Set<Direction>> nextTries = indy.getMoveableRocks();
        int shortest = Integer.MAX_VALUE - 1;
        for (final Map.Entry<Rock, Set<Direction>> tries : nextTries.entrySet()) {
            final Rock rock = tries.getKey();
            for (final Direction dir : tries.getValue()) {
                final Maze next = new Maze(this, rock, dir);
                if (!isRepeat(next)) {
                    final int nextSolution = next.solve(currentDepth + 1);
                    if (nextSolution < shortest)
                        shortest = nextSolution;
                }
            }
        }
        return shortest + 1;
    }

    public boolean isSolved() {
        return indy.canReachTreasure();
    }

    @Override
    public String toString() {
        if (stringValue == null) {
            final StringBuilder out = new StringBuilder();
            for (int row = 0; row < map.length; row++) {
                if (row == 0) {
                    out.append('\u250C');
                    for (int col = 0; col < map[row].length; col++)
                        out.append('\u2500');
                    out.append("\u2510\n");
                }
                out.append('\u2502');
                for (int col = 0; col < map[row].length; col++) {
                    if (indy.isAt(row, col))
                        out.append('*');
                    else if (goal.isAt(row, col))
                        out.append("$");
                    else if (isRockPresent(row, col))
                        out.append("@");
                    else if (map[row][col])
                        out.append('\u2588');
                    else
                        out.append(base64(dijkstra[row][col]));
                }
                out.append("\u2502\n");
                if (row == map.length - 1) {
                    out.append('\u2514');
                    for (int col = 0; col < map[row].length; col++)
                        out.append('\u2500');
                    out.append("\u2518\n");
                }
            }
            stringValue = out.toString();
        }
        return stringValue;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (!obj.getClass().equals(getClass()))
            return false;
        final Maze other = (Maze) obj;
        if (other.map.length != map.length)
            return false;
        for (int row = 0; row < map.length; row++) {
            if (other.map[row].length != map[row].length)
                return false;
            for (int col = 0; col < map[row].length; col++)
                if (other.map[row][col] != map[row][col])
                    return false;
        }
        return indy.equals(other.indy) && rocks.equals(other.rocks) && goal.equals(other.goal);
    }

    @Override
    public int hashCode() {
        return getClass().hashCode() ^ indy.hashCode() ^ goal.hashCode() ^ rocks.hashCode();
    }

    private final class Goal extends PointOfInterest {
        public Goal(final int row, final int col) {
            super(row, col);
        }
    }

    private final class Indy extends PointOfInterest {
        public Indy(final int row, final int col) {
            super(row, col);
        }

        public boolean canReachTreasure() {
            return dijkstraScore(row, col) < Integer.MAX_VALUE;
        }

        public SortedMap<Rock, Set<Direction>> getMoveableRocks() {
            final SortedMap<Rock, Set<Direction>> out = new TreeMap<>();
            @SuppressWarnings("unchecked")
            final Set<Direction> checked[][] = new Set[map.length][map[row].length];
            lookForRocks(out, checked, row, col, null);
            return out;
        }

        private final void lookForRocks(final Map<Rock, Set<Direction>> rockStore,
                                        final Set<Direction>[][] checked,
                                        final int row,
                                        final int col,
                                        final Direction comingFrom) {
            if (row < 0 || col < 0 || row >= checked.length || col >= checked[row].length)
                return;
            if (checked[row][col] == null)
                checked[row][col] = EnumSet.noneOf(Direction.class);
            if (checked[row][col].contains(comingFrom))
                return;
            for (final Rock rock : rocks) {
                if (rock.row == row && rock.col == col) {
                    if (rock.canBeMoved(comingFrom) && rock.isWorthMoving(comingFrom)) {
                        if (!rockStore.containsKey(rock))
                            rockStore.put(rock, EnumSet.noneOf(Direction.class));
                        rockStore.get(rock).add(comingFrom);
                    }
                    return;
                }
            }
            if (comingFrom != null)
                checked[row][col].add(comingFrom);
            for (final Direction dir : Direction.values())
                if (comingFrom == null || dir != comingFrom.opposite())
                    if (isEmpty(row + dir.drow, col + dir.dcol) || isRockPresent(row + dir.drow, col + dir.dcol))
                        lookForRocks(rockStore, checked, row + dir.drow, col + dir.dcol, dir);
        }
    }

    private final class Rock extends PointOfInterest implements Comparable<Rock> {
        public Rock(final int row, final int col) {
            super(row, col);
        }

        public boolean canBeMoved(final Direction direction) {
            return isEmpty(row + direction.drow, col + direction.dcol);
        }

        public boolean isWorthMoving(final Direction direction) {
            boolean worthIt = false;
            boolean reachable = false;
            int emptyAround = 0;
            for (final Direction dir : Direction.values()) {
                reachable |= (dijkstraScore(row, col) < Integer.MAX_VALUE);
                emptyAround += (isEmpty(row + dir.drow, col + dir.dcol) ? 1 : 0);
                if (dir != direction && dir != direction.opposite()
                    && dijkstraScore(row + dir.drow, col + dir.dcol) < Integer.MAX_VALUE)
                    worthIt = true;
            }
            return (emptyAround < 4) && (worthIt || !reachable);
        }

        public int proximityIndice() {
            final int ds = min(dijkstraScore(row - 1, col),
                               dijkstraScore(row + 1, col),
                               dijkstraScore(row, col - 1),
                               dijkstraScore(row, col + 1));
            if (ds < Integer.MAX_VALUE)
                return ds;
            else
                return min(dijkstraGhostScore(row - 1, col),
                           dijkstraGhostScore(row + 1, col),
                           dijkstraGhostScore(row, col - 1),
                           dijkstraGhostScore(row, col + 1));
        }

        @Override
        public int compareTo(Rock o) {
            return new Integer(proximityIndice()).compareTo(o.proximityIndice());
        }
    }

    private static final char base64(final int i) {
        if (i >= 0 && i <= 9)
            return (char) ('0' + i);
        else if (i < 36)
            return (char) ('A' + (i - 10));
        else
            return ' ';
    }

    private static final int min(final int i1, final int i2, final int... in) {
        int min = Math.min(i1, i2);
        for (final int i : in)
            min = Math.min(min, i);
        return min;
    }
}

12

Rubino - Enorme e blostered

Un'implementazione un po 'ingenua che le forze brute si fanno strada attraverso il labirinto. Non è super veloce in alcuni casi (non così) strani. Può essere migliorato trovando un'euristica migliore del semplice "se è più vicino al tesoro, vorremmo investigare prima", ma le idee generali ci sono.

Ti mostrerà anche come Indiana ha messo le mani sul tesoro nel caso in cui potesse, questo è un bonus.

EMPTY = '0'
WALL = '1'
INDY = '2'
GOAL = '3'
ROCK = '4'

map=%q|8 8
00001000
00000100
00000010
00000010
03004040
10000010
10000100
10000102|

def deep_dup(arr)
  dupl = arr.dup
  (0..dupl.size-1).to_a.each do |i|
    dupl[i] = dupl[i].dup
  end
  return dupl
end

class Map
  @@visited = []
  attr_reader :mapdata, :indy_r, :indy_c, :prev

  def self.parse(str)
    lines = str.split("\n")
    mapdata = []
    indy_r = -1
    indy_c = -1
    lines[1..-1].each_with_index do |line, idx|
      row = ((mapdata ||= [])[idx] ||= [])
      line.split(//).each_with_index do |c, cidx|
        if c==INDY
          indy_r = idx
          indy_c = cidx
          row[cidx] = EMPTY
        else
          row[cidx] = c
        end
      end
    end
    return Map.new(mapdata, indy_r, indy_c)
  end

  def initialize(mapdata, indy_r, indy_c, prev = nil, pushed = false)
    @mapdata = mapdata
    @mapdata.freeze
    @mapdata.each {|x| x.freeze}
    @indy_r = indy_r
    @indy_c = indy_c
    @prev = prev
    @pushed = pushed
  end

  def visit!
    @@visited << self
  end

  def visited?
    @@visited.include?(self)
  end

  def pushes
    pushes = @pushed ? 1 : 0
    if @prev
      pushes += @prev.pushes
    end
    return pushes
  end

  def history
    return @prev ? 1+@prev.history : 0
  end

  def next_maps
    maps = []
    [[-1, 0], [1, 0], [0, -1], [0, 1]].each do |dr, dc|
      new_i_r = self.indy_r + dr
      new_i_c = self.indy_c + dc
      if new_i_r >= 0 && new_i_r < @mapdata.size && new_i_c >= 0 && new_i_c < @mapdata[0].size
        new_map = nil
        pushed = false
        case @mapdata[new_i_r][new_i_c]
        when EMPTY, GOAL then new_map = @mapdata
        when ROCK then
          if @mapdata[new_i_r+dr] && @mapdata[new_i_r+dr][new_i_c+dc] == EMPTY
            new_map = deep_dup(@mapdata)
            new_map[new_i_r][new_i_c] = EMPTY
            new_map[new_i_r+dr][new_i_c+dc] = ROCK
            pushed = true
          end
        end
        if new_map && !@@visited.include?(new_map = Map.new(new_map, new_i_r, new_i_c, self, pushed))
          maps << new_map
        end
      end
    end
    return maps
  end

  def wins?
    return @mapdata[@indy_r][@indy_c] == GOAL
  end

  def to_s
    str = ''
    @mapdata.each_with_index do |row, r|
      row.each_with_index do |col, c|
        if r == @indy_r and c == @indy_c then
          str += 'I'
        else
          case col
          when EMPTY then str += '_'
          when WALL then str+= '#'
          when ROCK then str += 'O'
          when GOAL then str += '$'
          end
        end
      end
      str += "\n"
    end
    return str
  end

  def ==(other)
    return (self.mapdata == other.mapdata) &&
      (self.indy_r == other.indy_r) &&
      (self.indy_c == other.indy_c)
  end

  def dist_to_treasure
    if @distance.nil?
      @mapdata.each_with_index do |r, ri|
        r.each_with_index do |c, ci|
          if c == GOAL
            @distance = Math.sqrt((ri - @indy_r)**2 + (ci - @indy_c)**2)
            return @distance
          end
        end
      end
    end
    return @distance
  end

  def <=>(other)
    dist_diff = self.dist_to_treasure <=> other.dist_to_treasure
    if dist_diff != 0
      return dist_diff
    else
      return self.pushes <=> other.pushes
    end
  end
end

scored = nil
root = Map.parse(map)
to_visit = [root]
until to_visit.empty?
  state = to_visit.pop
  next if state.visited?
  if state.wins? && (scored.nil? || scored.pushes > state.pushes)
    scored = state
  end
  state.visit!
  to_visit += state.next_maps
  to_visit.reject! {|x| x.visited? || (scored && scored.pushes <= x.pushes) }
  to_visit.sort!
  to_visit.reverse!
end

puts scored ? scored.pushes : 'X'
exit(0) unless scored
steps = [scored]
curr = scored
while curr = curr.prev
  steps << curr
end
puts "\nDetails of the path:"
steps.reverse.each_with_index do |step, idx|
  puts "Step ##{idx} (history: #{step.history}, pushes so far: #{step.pushes})"
  puts step
  puts
end

Modifica: ho pensato a modi per migliorare notevolmente le prestazioni di questo in situazioni non ovvie (dove attualmente succhia le uova verdi) lasciando cadere una semplice valutazione del movimento (ad esempio preoccuparsi solo di quando indy spinge le rocce e / o arriva al tesoro). Probabilmente aggiornerò il codice in seguito, una volta che avrò avuto il tempo di implementarlo.


10

C ++ 14 su 16

L'algoritmo è inefficiente e affamato di memoria. Inoltre non potevo permettermi il tempo di riordinare, ma lo farò quando avrò più tempo;) Un punto interessante è che il mio algoritmo fallisce nelle stesse mappe di test dell'interrogatore. Sul mio antico taccuino il processo inizia a scambiare le mappe T4 e T6. La mappa 3 richiede abbastanza tempo, ma è risolta nel tempo. Tutti gli altri sono risolti quasi all'istante. Quindi dovrò capire come risolvere T4 e T6 e provare l'algoritmo su una macchina con più memoria. Alla fine riesco a risolvere T4 e T6 lì. Terrò il post aggiornato ...

Di seguito è riportato il risultato. (X: sbagliato, O: giusto,?: Richiede almeno 10 secondi, si ferma)

Map#         : 0 1 2 3 4 5 12 15 19 T1 T2 T3 T4 T5 T6 T7
C++  (foobar): O O O O O O  O  O  O  O  O  O  ?  O  ?  O
Ruby (Romain): X O O ? O O  O  X  ?  ?  O  ?  ?  ?  ?  ?
Java (Romain): O O X O X X  O  O  ?  ?  O  O  O  X  O  O

Dato che il codice sorgente è piuttosto lungo e non molto carino da leggere ... Fondamentalmente cerca solo tutti gli scogli che possono essere raggiunti da Indiana Jones. Per le rocce che possono essere raggiunte, memorizza le informazioni in quali direzioni possono essere spostate. Quindi viene creato un elenco di possibili mosse per la mappa corrente. Per ciascuna di queste possibili mosse viene creata una copia della mappa e applicata la mossa. Per le mappe appena create, l'algoritmo controllerà di nuovo quali mosse possono essere applicate ... Questo viene fatto fino a quando non sono possibili ulteriori mosse o viene trovata una strada per la cassa del tesoro. Quando l'algoritmo prova prima tutte le mosse che richiederebbero solo un movimento per raggiungere il torace, quindi tutto ciò che richiederebbe due, e così via ... il primo modo trovato è automaticamente anche il più breve. Per evitare loop, l'algoritmo ricorda per ogni mappa quali mosse potrebbero essere applicate. Se viene creata un'altra mappa che risulta in un elenco di mosse che erano già state trovate in precedenza, vengono silenziosamente eliminate, poiché sono già in fase di elaborazione. Sfortunatamente non è possibile eseguire ogni mossa una sola volta, poiché potrebbero esserci mappe che richiedono che una roccia venga spostata più volte sullo stesso campo. Altrimenti potrei risparmiare molta memoria. Inoltre per risolvere mappe come la mappa 3 nel tempo, l'algoritmo ignora tutte le rocce che possono essere percorse ... Quindi sulla mappa 3 la roccia nel mezzo del nulla verrà spostata, ma solo fino a quando non ci saranno più muri attorno. Il codice può essere compilato con g ++ --std = c ++ 0x con g ++ versione 4.4.3 o successive. Non è possibile eseguire ogni mossa una sola volta, poiché potrebbero esserci mappe che richiedono che una roccia venga spostata più volte sullo stesso campo. Altrimenti potrei risparmiare molta memoria. Inoltre per risolvere mappe come la mappa 3 nel tempo, l'algoritmo ignora tutte le rocce che possono essere percorse ... Quindi sulla mappa 3 la roccia nel mezzo del nulla verrà spostata, ma solo fino a quando non ci saranno più muri attorno. Il codice può essere compilato con g ++ --std = c ++ 0x con g ++ versione 4.4.3 o successive. Non è possibile eseguire ogni mossa una sola volta, poiché potrebbero esserci mappe che richiedono che una roccia venga spostata più volte sullo stesso campo. Altrimenti potrei risparmiare molta memoria. Inoltre per risolvere mappe come la mappa 3 nel tempo, l'algoritmo ignora tutte le rocce che possono essere percorse ... Quindi sulla mappa 3 la roccia nel mezzo del nulla verrà spostata, ma solo fino a quando non ci saranno più muri attorno. Il codice può essere compilato con g ++ --std = c ++ 0x con g ++ versione 4.4.3 o successive. ma solo fino a quando non ci saranno più muri attorno. Il codice può essere compilato con g ++ --std = c ++ 0x con g ++ versione 4.4.3 o successive. ma solo fino a quando non ci saranno più muri attorno. Il codice può essere compilato con g ++ --std = c ++ 0x con g ++ versione 4.4.3 o successive.

#include <vector>
#include <iostream>
#include <iterator>
#include <sstream>
#include <unordered_set>
#include <utility>

enum class dir : char {
    up, down, left, right
};

enum class field : char {
    floor, wall, indiana, treasure, rock, border, visited
};

class pos {
    private:
        int x, y;
        field f_type;


    public:
        pos() : x{-1}, y{-1}, f_type{field::border} {}
        pos(int x, int y, field f_type) : x{x}, y{y}, f_type{f_type} {}

        const field& get() {
            return f_type;
        }

        friend class map;
        friend class move;

        bool operator==(const pos& other) const {
            return x == other.x && y == other.y && f_type == other.f_type;
        }
};

class move {
    private:
        pos position;
        dir direction;

    public:
        move(pos& position, dir&& direction) : position(position), direction(direction) {}

        bool operator==(const move& other) const {
            return position == other.position && direction == other.direction;
        }

        int int_value() const {
            return static_cast<char>(direction) + position.x + position.y + static_cast<char>(position.f_type);
        }

        std::string str() const;

        friend class map;
};

std::string move::str() const {
    std::string direction_str;
    switch(direction) {
        case dir::up: direction_str = "up"; break;
        case dir::down: direction_str = "down"; break;
        case dir::left: direction_str = "left"; break;
        case dir::right: direction_str = "right"; break;
    }
    std::ostringstream oss{};
    oss << "move x" << position.x << " y" << position.y << " " << direction_str;
    return oss.str();
}

std::ostream& operator<<(std::ostream& os, const move& move_object) {
    return os << move_object.str();
}


namespace std {
    template<> struct hash< ::move> {
        size_t operator()(const ::move& o) const {
            return hash<int>()(o.int_value());
        }
    };
}


class constellation {
    private:
        const std::unordered_set<move> moves;

    public:
        constellation(const std::unordered_set<move>& moves) : moves(moves) {}

        bool operator==(const constellation& other) const {
            if (moves.size() != other.moves.size()) return false;
            for (auto i = moves.begin(); i != moves.end(); ++i) {
                if (!other.moves.count(*i)) return false;
            }
            return true;
        }

        int int_value() const {
            int v = 0;
            for (auto i = moves.begin(); i != moves.end(); ++i) {
                v += i->int_value();
            }
            return v;
        }
};

namespace std {
    template<> struct hash< ::constellation> {
        size_t operator()(const ::constellation& o) const {
            return hash<int>()(o.int_value());
        }
    };
}


class map {

    private:
        pos* previous;
        pos start, border;
        std::vector< std::vector<pos> > rep;
        void init(const std::string&);

    public:
        map(std::istream& input) : previous{} {
            init(static_cast<std::stringstream const&>(std::stringstream() << input.rdbuf()).str());
        }

        map& move(const move& m) {
            pos source = m.position;
            pos& target = get(source, m.direction);
            target.f_type = source.f_type;
            source.f_type = field::indiana;
            rep[start.y][start.x].f_type = field::floor;
            start = source;
            rep[start.y][start.x].f_type = field::indiana;
            return *this;
        }

        std::string str() const;

        pos& get() { return start; }

        pos& get(pos& position, const dir& direction) {
            int tx = position.x, ty = position.y;
            switch(direction) {
                case dir::up: --ty; break;
                case dir::down: ++ty; break;
                case dir::left: --tx; break;
                case dir::right: ++tx; break;
            }
            previous = &position;
            if (tx >= 0 && ty >= 0 && static_cast<int>(rep.size()) > ty && static_cast<int>(rep[ty].size()) > tx) {
                pos& tmp = rep[ty][tx];
                return tmp;
            }
            border.x = tx;
            border.y = ty;
            return border;
        }

        pos& prev() {
            return *previous;
        }

        void find_moves(std::unordered_set< ::move>& moves, bool& finished) {
            map copy = *this;
            auto& rep = copy.rep;
            bool changed = true;

            while (changed) {
                changed = false;
                for (auto row = rep.begin(); row != rep.end(); ++row) {
                    for (auto col = row->begin(); col != row->end(); ++col) {
                        // check if the field is of interest
                        if (col->f_type == field::floor || col->f_type == field::treasure || col->f_type == field::rock) {
                            // get neighbours
                            pos& up = copy.get(*col, dir::up);
                            pos& down = copy.get(*col, dir::down);
                            pos& left = copy.get(*col, dir::left);
                            pos& right = copy.get(*col, dir::right);
                            // ignore uninteresting rocks
                            if (col->f_type == field::rock && (up.f_type == field::floor || up.f_type == field::indiana || up.f_type == field::visited) && (down.f_type == field::floor || down.f_type == field::indiana || down.f_type == field::visited) && (left.f_type == field::floor || left.f_type == field::indiana || left.f_type == field::visited) && (right.f_type == field::floor || right.f_type == field::indiana || right.f_type == field::visited)) {
                                pos& upper_left = copy.get(up, dir::left);
                                pos& lower_left = copy.get(down, dir::left);
                                pos& upper_right = copy.get(up, dir::right);
                                pos& lower_right = copy.get(down, dir::right);
                                if ((upper_left.f_type == field::floor || upper_left.f_type == field::indiana || upper_left.f_type == field::visited) && (lower_left.f_type == field::floor || lower_left.f_type == field::indiana || lower_left.f_type == field::visited) && (upper_right.f_type == field::floor || upper_right.f_type == field::indiana || upper_right.f_type == field::visited) && (lower_right.f_type == field::floor || lower_right.f_type == field::indiana || lower_right.f_type == field::visited)) {
                                    continue;
                                }
                            }
                            // check if the field can be reached
                            if (up.f_type == field::visited || up.f_type == field::indiana) {
                                if (col->f_type == field::rock && (down.f_type == field::visited || down.f_type == field::floor || down.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::down));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                            if (down.f_type == field::visited || down.f_type == field::indiana) {
                                if (col->f_type == field::rock && (up.f_type == field::visited || up.f_type == field::floor || up.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::up));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                            if (left.f_type == field::visited || left.f_type == field::indiana) {
                                if (col->f_type == field::rock && (right.f_type == field::visited || right.f_type == field::floor || right.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::right));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                            if (right.f_type == field::visited || right.f_type == field::indiana) {
                                if (col->f_type == field::rock && (left.f_type == field::visited || left.f_type == field::floor || left.f_type == field::indiana)) {
                                    auto insertion = moves.insert( ::move(*col, dir::left));
                                    if (insertion.second) {
                                        changed = true;
                                    }
                                }
                                else if (col->f_type == field::floor) {
                                    changed = true;
                                    col->f_type = field::visited;
                                }
                                else if (col->f_type == field::treasure) {
                                    finished = true;
                                    return;
                                }
                            }
                        }
                    }
                }
            }
        }

};

void map::init(const std::string& in) {
    bool first = true;

    for(auto i = in.begin(); i != in.end(); ++i) {
        if (*i == '\n') {
           first = false;
            rep.push_back({});
            continue;
        }
        else if (first) continue;

        field tmp(static_cast<field>(*i - '0'));
        pos current(rep.back().size(), rep.size() - 1, tmp);
        switch(tmp) {
            case field::indiana:
                start = current;
            case field::floor:
            case field::wall:
            case field::treasure:
            case field::rock:
                rep.back().push_back(current);
                break;
            default: std::cerr << "Invalid field value '" << (char) (static_cast<char>(tmp) + 48) << '\'' << std::endl;
        }
    }
}

std::string map::str() const {
    std::string t{};
    for (auto row = rep.begin(); row != rep.end(); ++row) {
        for (auto col = row->begin(); col != row->end(); ++col) {
            t += static_cast<char>(col->f_type) + '0';
        }
        t += '\n';
    }
    return t;
}

std::ostream& operator<<(std::ostream& os, const map& map_object) {
    return os << map_object.str();
}

int solve(map&& data) {
    int moves_taken = -1;
    bool finished = false;
    std::vector<map> current_maps{data}, next_maps;
    std::unordered_set<constellation> known_constellations;

    while (!finished && !current_maps.empty()) {
        for (auto i = current_maps.begin(); i != current_maps.end(); ++i) {
            std::unordered_set<move> moves;
            i->find_moves(moves, finished);
            auto result = known_constellations.insert(constellation(moves));
            if (!result.second) {
                continue; // this map constellation was already seen. prevent loops...
            }

            if (finished) break;
            for (auto m = moves.begin(); m != moves.end(); ++m) {
                map map_copy = *i;
                map_copy.move(*m);
                next_maps.push_back(map_copy);
            }


        }
        ++moves_taken;
        current_maps = std::move(next_maps);
    }
    if (!finished && current_maps.empty()) return -1;
    return moves_taken;
}

int main(int argc, char* argv[]) {
    map data{std::cin};

    int moves_taken = solve(std::move(data));
    if (moves_taken == -1) std::cout << "X" << std::endl;
    else std::cout << moves_taken << std::endl;

    return 0;
}

Modifica: il programma prende il suo input da stdin e ignora la prima riga contenente la dimensione della mappa. Verifica se vengono utilizzati solo i personaggi consentiti nella mappa, ma non verifica che ci siano solo un Indiana Jones e un forziere. Quindi è possibile posizionare più di uno e il minimo delle mosse richieste per raggiungere uno dei forzieri viene stampato su stdout. Qualsiasi carattere non valido nella mappa viene ignorato e il programma proverà a calcolare il minor numero di mosse per la mappa risultante. Il calcolo inizierà quando stdin è chiuso (sul mio sistema ctrl + d).


1
Bella risurrezione :). È sempre divertente vedere un'euristica intelligente.
Programmatore

Sono un po 'triste per il mio voto. Ha spinto la tua reputazione di 10 in più rispetto a un perfetto 1000
csga5000
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.