Dipingi con i numeri


42

Ti viene data una vera immagine a colori. Il tuo compito è generare una versione di questa immagine, che sembra dipinta usando i numeri per pittura (l'attività dei bambini, non i nonogrammi). Insieme all'immagine, vengono forniti due parametri: P , la dimensione massima della tavolozza dei colori (ovvero il numero massimo di colori distinti da utilizzare) e N , il numero massimo di celle da utilizzare. L'algoritmo non deve utilizzare tutti i colori P e N celle, ma non deve utilizzare più di quello. L'immagine in uscita dovrebbe avere le stesse dimensioni dell'input.

Una cella è definita come un'area contigua di pixel che hanno tutti lo stesso colore. I pixel che si toccano solo in un angolo non sono considerati contigui. Le cellule possono avere buchi.

In breve, devi approssimare l'immagine in ingresso con solo N aree di colore piatto / ombreggiato e P colori diversi.

Solo per visualizzare i parametri, ecco un esempio molto semplice (per nessuna immagine di input particolare; mostra le mie pazze abilità di Paint). L'immagine seguente ha P = 6 e N = 11 :

inserisci qui la descrizione dell'immagine

Ecco alcune immagini su cui testare il tuo algoritmo (principalmente i nostri soliti sospetti). Fai clic sulle immagini per le versioni più grandi.

Grande onda Barriera corallina Arcobaleno Notte stellata fiume Orso bruno Cascata Mandrillo Nebulosa del granchio gotico americano Monna Lisa Urlare

Includi una manciata di risultati per parametri diversi. Se vuoi mostrare un gran numero di risultati, puoi creare una galleria su imgur.com , per mantenere ragionevole la dimensione delle risposte. In alternativa, metti le miniature nel tuo post e rendile collegamenti a immagini più grandi, come ho fatto sopra. Inoltre, sentiti libero di usare altre immagini di prova, se trovi qualcosa di carino.

Suppongo che i parametri intorno a N ≥ 500 , P ~ 30 sarebbero simili ai modelli di pittura per numero reali.

Questo è un concorso di popolarità, quindi vince la risposta con il maggior numero di voti netti. Gli elettori sono incoraggiati a giudicare le risposte

  • quanto bene sono approssimate le immagini originali.
  • quanto bene l'algoritmo funziona su diversi tipi di immagini (i dipinti sono probabilmente generalmente più facili delle fotografie).
  • quanto bene l'algoritmo funziona con parametri molto restrittivi.
  • come sono organiche / levigate le forme delle cellule.

Userò il seguente script Mathematica, per validare i risultati:

image = <pastedimagehere> // ImageData;
palette = Union[Join @@ image];
Print["P = ", Length@palette];
grid = GridGraph[Reverse@Most@Dimensions@image];
image = Flatten[image /. Thread[palette -> Range@Length@palette]];
Print["N = ", 
 Length@ConnectedComponents[
   Graph[Cases[EdgeList[grid], 
     m_ <-> n_ /; image[[m]] == image[[n]]]]]]

Sp3000 è stato così gentile da scrivere un verificatore in Python 2 usando PIL, che trovi in questo pastebin .


2
Non è la cosa più efficiente, ma ecco un verificatore PIL Python 2 .
Sp3000,

Che bella domanda, ma speravo di vedere anche la versione corretta "dipingi con i numeri". Cioè con i numeri in atto in modo da poter usare le risposte :)

@Lembik Inizialmente volevo includerlo, ma ho sentito che ciò distraeva dalla parte interessante della domanda. Tuttavia, non dovrebbe essere troppo difficile prendere l'output di uno degli invii e convertirlo in un modello.
Martin Ender,

Questo è un post affascinante. Qualcuno ha fatto il passo in più di aggiungere i numeri di colore come un vero Paint per numero?
B. Blair,

Risposte:


39

Python 2 con PIL ( Galleria )

from __future__ import division
from PIL import Image
import random, math, time
from collections import Counter, defaultdict, namedtuple

"""
Configure settings here
"""

INFILE = "spheres.png"
OUTFILE_STEM = "out"
P = 30
N = 300
OUTPUT_ALL = True # Whether to output the image at each step

FLOOD_FILL_TOLERANCE = 10
CLOSE_CELL_TOLERANCE = 5
SMALL_CELL_THRESHOLD = 10
FIRST_PASS_N_RATIO = 1.5
K_MEANS_TRIALS = 30
BLUR_RADIUS = 2
BLUR_RUNS = 3

"""
Color conversion functions
"""

X = xrange

# http://www.easyrgb.com/?X=MATH    
def rgb2xyz(rgb):
 r,g,b=rgb;r/=255;g/=255;b/=255;r=((r+0.055)/1.055)**2.4 if r>0.04045 else r/12.92
 g=((g+0.055)/1.055)**2.4 if g>0.04045 else g/12.92;b=((b+0.055)/1.055)**2.4 if b>0.04045 else b/12.92
 r*=100;g*=100;b*=100;x=r*0.4124+g*0.3576+b*0.1805;y=r*0.2126+g*0.7152+b*0.0722
 z=r*0.0193+g*0.1192+b*0.9505;return(x,y,z)
def xyz2lab(xyz):
 x,y,z=xyz;x/=95.047;y/=100;z/=108.883;x=x**(1/3)if x>0.008856 else 7.787*x+16/116
 y=y**(1/3)if y>0.008856 else 7.787*y+16/116;z=z**(1/3)if z>0.008856 else 7.787*z + 16/116
 L=116*y-16;a=500*(x-y);b=200*(y-z);return(L,a,b)
def rgb2lab(rgb):return xyz2lab(rgb2xyz(rgb))
def lab2xyz(lab):
 L,a,b=lab;y=(L+16)/116;x=a/500+y;z=y-b/200;y=y**3 if y**3>0.008856 else(y-16/116)/7.787
 x=x**3 if x**3>0.008856 else (x-16/116)/7.787;z=z**3 if z**3>0.008856 else(z-16/116)/7.787
 x*=95.047;y*=100;z*=108.883;return(x,y,z)
def xyz2rgb(xyz):
 x,y,z=xyz;x/=100;y/=100;z/=100;r=x*3.2406+y*-1.5372+z*-0.4986
 g=x*-0.9689+y*1.8758+z*0.0415;b=x*0.0557+y*-0.2040+z*1.0570
 r=1.055*(r**(1/2.4))-0.055 if r>0.0031308 else 12.92*r;g=1.055*(g**(1/2.4))-0.055 if g>0.0031308 else 12.92*g
 b=1.055*(b**(1/2.4))-0.055 if b>0.0031308 else 12.92*b;r*=255;g*=255;b*=255;return(r,g,b)
def lab2rgb(lab):rgb=xyz2rgb(lab2xyz(lab));return tuple([int(round(x))for x in rgb])

"""
Stage 1: Read in image and convert to CIELAB
"""

total_time = time.time()

im = Image.open(INFILE)
width, height = im.size

if OUTPUT_ALL:
  im.save(OUTFILE_STEM + "0.png")
  print "Saved image %s0.png" % OUTFILE_STEM

def make_pixlab_map(im):
  width, height = im.size
  pixlab_map = {}

  for i in X(width):
    for j in X(height):
      pixlab_map[(i, j)] = rgb2lab(im.getpixel((i, j)))

  return pixlab_map

pixlab_map = make_pixlab_map(im)

print "Stage 1: CIELAB conversion complete"

"""
Stage 2: Partitioning the image into like-colored cells using flood fill
"""

def d(color1, color2):
  return (abs(color1[0]-color2[0])**2 + abs(color1[1]-color2[1])**2 + abs(color1[2]-color2[2])**2)**.5

def neighbours(pixel):
  results = []

  for neighbour in [(pixel[0]+1, pixel[1]), (pixel[0]-1, pixel[1]),
            (pixel[0], pixel[1]+1), (pixel[0], pixel[1]-1)]:

    if 0 <= neighbour[0] < width and 0 <= neighbour[1] < height:
      results.append(neighbour)

  return results

def flood_fill(start_pixel):
  to_search = {start_pixel}
  cell = set()
  searched = set()
  start_color = pixlab_map[start_pixel]

  while to_search:
    pixel = to_search.pop()

    if d(start_color, pixlab_map[pixel]) < FLOOD_FILL_TOLERANCE:
      cell.add(pixel)
      unplaced_pixels.remove(pixel)

      for n in neighbours(pixel):
        if n in unplaced_pixels and n not in cell and n not in searched:
          to_search.add(n)

    else:
      searched.add(pixel)

  return cell

# These two maps are inverses, pixel/s <-> number of cell containing pixel
cell_sets = {}
pixcell_map = {}
unplaced_pixels = {(i, j) for i in X(width) for j in X(height)}

while unplaced_pixels:
  start_pixel = unplaced_pixels.pop()
  unplaced_pixels.add(start_pixel)
  cell = flood_fill(start_pixel)

  cellnum = len(cell_sets)
  cell_sets[cellnum] = cell

  for pixel in cell:
    pixcell_map[pixel] = cellnum

print "Stage 2: Flood fill partitioning complete, %d cells" % len(cell_sets)

"""
Stage 3: Merge cells with less than a specified threshold amount of pixels to reduce the number of cells
     Also good for getting rid of some noise
"""

def mean_color(cell, color_map):
  L_sum = 0
  a_sum = 0
  b_sum = 0

  for pixel in cell:
    L, a, b = color_map[pixel]
    L_sum += L
    a_sum += a
    b_sum += b

  return L_sum/len(cell), a_sum/len(cell), b_sum/len(cell)

def remove_small(cell_size):
  if len(cell_sets) <= N:
    return

  small_cells = []

  for cellnum in cell_sets:
    if len(cell_sets[cellnum]) <= cell_size:
      small_cells.append(cellnum)

  for cellnum in small_cells:
    neighbour_cells = []

    for cell in cell_sets[cellnum]:
      for n in neighbours(cell):
        neighbour_reg = pixcell_map[n]

        if neighbour_reg != cellnum:
          neighbour_cells.append(neighbour_reg)

    closest_cell = max(neighbour_cells, key=neighbour_cells.count)

    for cell in cell_sets[cellnum]:
      pixcell_map[cell] = closest_cell

    if len(cell_sets[closest_cell]) <= cell_size:
      small_cells.remove(closest_cell)

    cell_sets[closest_cell] |= cell_sets[cellnum]
    del cell_sets[cellnum]

    if len(cell_sets) <= N:
      return

for cell_size in X(1, SMALL_CELL_THRESHOLD):
  remove_small(cell_size)

if OUTPUT_ALL:
  frame_im = Image.new("RGB", im.size)

  for cellnum in cell_sets:
    cell_color = mean_color(cell_sets[cellnum], pixlab_map)

    for pixel in cell_sets[cellnum]:
      frame_im.putpixel(pixel, lab2rgb(cell_color))

  frame_im.save(OUTFILE_STEM + "1.png")
  print "Saved image %s1.png" % OUTFILE_STEM

print "Stage 3: Small cell merging complete, %d cells" % len(cell_sets)

"""
Stage 4: Close color merging
"""

cell_means = {}

for cellnum in cell_sets:
  cell_means[cellnum] = mean_color(cell_sets[cellnum], pixlab_map)

n_graph = defaultdict(set)

for i in X(width):
  for j in X(height):
    pixel = (i, j)
    cell = pixcell_map[pixel]

    for n in neighbours(pixel):
      neighbour_cell = pixcell_map[n]

      if neighbour_cell != cell:
        n_graph[cell].add(neighbour_cell)
        n_graph[neighbour_cell].add(cell)

def merge_cells(merge_from, merge_to):
  merge_from_cell = cell_sets[merge_from]

  for pixel in merge_from_cell:
    pixcell_map[pixel] = merge_to

  del cell_sets[merge_from]
  del cell_means[merge_from]

  n_graph[merge_to] |= n_graph[merge_from]
  n_graph[merge_to].remove(merge_to)

  for n in n_graph[merge_from]:
    n_graph[n].remove(merge_from)

    if n != merge_to:
      n_graph[n].add(merge_to)

  del n_graph[merge_from]

  cell_sets[merge_to] |= merge_from_cell
  cell_means[merge_to] = mean_color(cell_sets[merge_to], pixlab_map)

# Go through the cells from largest to smallest. Keep replenishing the list while we can still merge.
last_time = time.time()
to_search = sorted(cell_sets.keys(), key=lambda x:len(cell_sets[x]), reverse=True)
full_list = True

while len(cell_sets) > N and to_search:
  if time.time() - last_time > 15:
    last_time = time.time()
    print "Close color merging... (%d cells remaining)" % len(cell_sets)

  while to_search:
    cellnum = to_search.pop()
    close_cells = []

    for neighbour_cellnum in n_graph[cellnum]:
      if d(cell_means[cellnum], cell_means[neighbour_cellnum]) < CLOSE_CELL_TOLERANCE:
        close_cells.append(neighbour_cellnum)

    if close_cells:
      for neighbour_cellnum in close_cells:
        merge_cells(neighbour_cellnum, cellnum)

        if neighbour_cellnum in to_search:
          to_search.remove(neighbour_cellnum)

      break

  if full_list == True:
    if to_search:
      full_list = False

  else:
    if not to_search:
      to_search = sorted(cell_sets.keys(), key=lambda x:len(cell_sets[x]), reverse=True)
      full_list = True

if OUTPUT_ALL:
  frame_im = Image.new("RGB", im.size)

  for cellnum in cell_sets:
    cell_color = cell_means[cellnum]

    for pixel in cell_sets[cellnum]:
      frame_im.putpixel(pixel, lab2rgb(cell_color))

  frame_im.save(OUTFILE_STEM + "2.png")
  print "Saved image %s2.png" % OUTFILE_STEM

print "Stage 4: Close color merging complete, %d cells" % len(cell_sets)

"""
Stage 5: N-merging - merge until <= N cells
     Want to merge either 1) small cells or 2) cells close in color
"""

# Weight score between neighbouring cells by 1) size of cell and 2) color difference
def score(cell1, cell2):
  return d(cell_means[cell1], cell_means[cell2]) * len(cell_sets[cell1])**.5

n_scores = {}

for cellnum in cell_sets:
  for n in n_graph[cellnum]:
    n_scores[(n, cellnum)] = score(n, cellnum)

last_time = time.time()

while len(cell_sets) > N * FIRST_PASS_N_RATIO:
  if time.time() - last_time > 15:
    last_time = time.time()
    print "N-merging... (%d cells remaining)" % len(cell_sets)

  merge_from, merge_to = min(n_scores, key=lambda x: n_scores[x])

  for n in n_graph[merge_from]:
    del n_scores[(merge_from, n)]
    del n_scores[(n, merge_from)]

  merge_cells(merge_from, merge_to)

  for n in n_graph[merge_to]:
    n_scores[(n, merge_to)] = score(n, merge_to)
    n_scores[(merge_to, n)] = score(merge_to, n)

if OUTPUT_ALL:
  frame_im = Image.new("RGB", im.size)

  for cellnum in cell_sets:
    cell_color = cell_means[cellnum]

    for pixel in cell_sets[cellnum]:
      frame_im.putpixel(pixel, lab2rgb(cell_color))

  frame_im.save(OUTFILE_STEM + "3.png")
  print "Saved image %s3.png" % OUTFILE_STEM

del n_graph, n_scores

print "Stage 5: N-merging complete, %d cells" % len(cell_sets)

"""
Stage 6: P merging - use k-means
"""

def form_clusters(centroids):
  clusters = defaultdict(set)

  for cellnum in cell_sets:
    # Add cell to closest centroid.
    scores = []

    for centroid in centroids:
      scores.append((d(centroid, cell_means[cellnum]), centroid))

    scores.sort()
    clusters[scores[0][1]].add(cellnum)

  return clusters

def calculate_centroid(cluster):
  L_sum = 0
  a_sum = 0
  b_sum = 0

  weighting = 0

  for cellnum in cluster:
    # Weight based on cell size
    color = cell_means[cellnum]
    cell_weight = len(cell_sets[cellnum])**.5

    L_sum += color[0]*cell_weight
    a_sum += color[1]*cell_weight
    b_sum += color[2]*cell_weight

    weighting += cell_weight

  return (L_sum/weighting, a_sum/weighting, b_sum/weighting)

def db_index(clusters):
  # Davies-Bouldin index
  scatter = {}

  for centroid, cluster in clusters.items():
    scatter_score = 0

    for cellnum in cluster:
      scatter_score += d(cell_means[cellnum], centroid) * len(cell_sets[cellnum])**.5

    scatter_score /= len(cluster)
    scatter[centroid] = scatter_score**2 # Mean squared distance

  index = 0

  for ci, cluster in clusters.items():
    dist_scores = []

    for cj in clusters:
      if ci != cj:
        dist_scores.append((scatter[ci] + scatter[cj])/d(ci, cj))

    index += max(dist_scores)

  return index

best_clusters = None
best_index = None

for i in X(K_MEANS_TRIALS):  
  centroids = {cell_means[cellnum] for cellnum in random.sample(cell_sets, P)}
  converged = False

  while not converged:
    clusters = form_clusters(centroids)
    new_centroids = {calculate_centroid(cluster) for cluster in clusters.values()}

    if centroids == new_centroids:
      converged = True

    centroids = new_centroids

  index = db_index(clusters)

  if best_index is None or index < best_index:
    best_index = index
    best_clusters = clusters

del cell_means
newpix_map = {}

for centroid, cluster in best_clusters.items():
  for cellnum in cluster:
    for pixel in cell_sets[cellnum]:
      newpix_map[pixel] = centroid

if OUTPUT_ALL:
  frame_im = Image.new("RGB", im.size)

  for pixel in newpix_map:
    frame_im.putpixel(pixel, lab2rgb(newpix_map[pixel]))

  frame_im.save(OUTFILE_STEM + "4.png")
  print "Saved image %s4.png" % OUTFILE_STEM

print "Stage 6: P-merging complete"

"""
Stage 7: Approximate Gaussian smoothing
     See http://blog.ivank.net/fastest-gaussian-blur.html
"""

# Hindsight tells me I should have used a class. I hate hindsight.
def vec_sum(vectors):
  assert(vectors and all(len(v) == len(vectors[0]) for v in vectors))
  return tuple(sum(x[i] for x in vectors) for i in X(len(vectors[0])))

def linear_blur(color_list):
  # Can be made faster with an accumulator
  output = []

  for i in X(len(color_list)):
    relevant_pixels = color_list[max(i-BLUR_RADIUS+1, 0):i+BLUR_RADIUS]
    pixsum = vec_sum(relevant_pixels)
    output.append(tuple(pixsum[i]/len(relevant_pixels) for i in X(3)))

  return output

def horizontal_blur():
  for row in X(height):
    colors = [blurpix_map[(i, row)] for i in X(width)]
    colors = linear_blur(colors)

    for i in X(width):
      blurpix_map[(i, row)] = colors[i]

def vertical_blur():
  for column in X(width):
    colors = [blurpix_map[(column, j)] for j in X(height)]
    colors = linear_blur(colors)

    for j in X(height):
      blurpix_map[(column, j)] = colors[j]

blurpix_map = {}

for i in X(width):
  for j in X(height):
    blurpix_map[(i, j)] = newpix_map[(i, j)]

for i in X(BLUR_RUNS):
  vertical_blur()
  horizontal_blur()

# Pixel : color of smoothed image
smoothpix_map = {}

for i in X(width):
  for j in X(height):
    pixel = (i, j)
    blur_color = blurpix_map[pixel]
    nearby_colors = {newpix_map[pixel]}

    for n in neighbours(pixel):
      nearby_colors.add(newpix_map[n])

    smoothpix_map[pixel] = min(nearby_colors, key=lambda x: d(x, blur_color))

del newpix_map, blurpix_map

if OUTPUT_ALL:
  frame_im = Image.new("RGB", im.size)

  for pixel in smoothpix_map:
    frame_im.putpixel(pixel, lab2rgb(smoothpix_map[pixel]))

  frame_im.save(OUTFILE_STEM + "5.png")
  print "Saved image %s5.png" % OUTFILE_STEM

print "Stage 7: Smoothing complete"

"""
Stage 8: Flood fill pass 2
     Code copy-and-paste because I'm lazy
"""

def flood_fill(start_pixel):
  to_search = {start_pixel}
  cell = set()
  searched = set()
  start_color = smoothpix_map[start_pixel]

  while to_search:
    pixel = to_search.pop()

    if start_color == smoothpix_map[pixel]:
      cell.add(pixel)
      unplaced_pixels.remove(pixel)

      for n in neighbours(pixel):
        if n in unplaced_pixels and n not in cell and n not in searched:
          to_search.add(n)

    else:
      searched.add(pixel)

  return cell

cell_sets = {}
pixcell_map = {}
unplaced_pixels = {(i, j) for i in X(width) for j in X(height)}

while unplaced_pixels:
  start_pixel = unplaced_pixels.pop()
  unplaced_pixels.add(start_pixel)
  cell = flood_fill(start_pixel)

  cellnum = len(cell_sets)
  cell_sets[cellnum] = cell

  for pixel in cell:
    pixcell_map[pixel] = cellnum

cell_colors = {}

for cellnum in cell_sets:
  cell_colors[cellnum] = smoothpix_map[next(iter(cell_sets[cellnum]))]

print "Stage 8: Flood fill pass 2 complete, %d cells" % len(cell_sets)

"""
Stage 9: Small cell removal pass 2
"""

def score(cell1, cell2):
  return d(cell_colors[cell1], cell_colors[cell2]) * len(cell_sets[cell1])**.5

def remove_small(cell_size):  
  small_cells = []

  for cellnum in cell_sets:
    if len(cell_sets[cellnum]) <= cell_size:
      small_cells.append(cellnum)

  for cellnum in small_cells:
    neighbour_cells = []

    for cell in cell_sets[cellnum]:
      for n in neighbours(cell):
        neighbour_reg = pixcell_map[n]

        if neighbour_reg != cellnum:
          neighbour_cells.append(neighbour_reg)

    closest_cell = max(neighbour_cells, key=neighbour_cells.count)

    for cell in cell_sets[cellnum]:
      pixcell_map[cell] = closest_cell

    if len(cell_sets[closest_cell]) <= cell_size:
      small_cells.remove(closest_cell)

    cell_color = cell_colors[closest_cell]

    for pixel in cell_sets[cellnum]:
      smoothpix_map[pixel] = cell_color

    cell_sets[closest_cell] |= cell_sets[cellnum]
    del cell_sets[cellnum]
    del cell_colors[cellnum]

for cell_size in X(1, SMALL_CELL_THRESHOLD):
  remove_small(cell_size)

if OUTPUT_ALL:
  frame_im = Image.new("RGB", im.size)

  for pixel in smoothpix_map:
    frame_im.putpixel(pixel, lab2rgb(smoothpix_map[pixel]))

  frame_im.save(OUTFILE_STEM + "6.png")
  print "Saved image %s6.png" % OUTFILE_STEM

print "Stage 9: Small cell removal pass 2 complete, %d cells" % len(cell_sets)

"""
Stage 10: N-merging pass 2
     Necessary as stage 7 might generate *more* cells
"""

def merge_cells(merge_from, merge_to):
  merge_from_cell = cell_sets[merge_from]

  for pixel in merge_from_cell:
    pixcell_map[pixel] = merge_to

  del cell_sets[merge_from]
  del cell_colors[merge_from]

  n_graph[merge_to] |= n_graph[merge_from]
  n_graph[merge_to].remove(merge_to)

  for n in n_graph[merge_from]:
    n_graph[n].remove(merge_from)

    if n != merge_to:
      n_graph[n].add(merge_to)

  del n_graph[merge_from]

  cell_color = cell_colors[merge_to]

  for pixel in merge_from_cell:
    smoothpix_map[pixel] = cell_color

  cell_sets[merge_to] |= merge_from_cell

n_graph = defaultdict(set)

for i in X(width):
  for j in X(height):
    pixel = (i, j)
    cell = pixcell_map[pixel]

    for n in neighbours(pixel):
      neighbour_cell = pixcell_map[n]

      if neighbour_cell != cell:
        n_graph[cell].add(neighbour_cell)
        n_graph[neighbour_cell].add(cell)

n_scores = {}

for cellnum in cell_sets:
  for n in n_graph[cellnum]:
    n_scores[(n, cellnum)] = score(n, cellnum)

last_time = time.time()

while len(cell_sets) > N:
  if time.time() - last_time > 15:
    last_time = time.time()
    print "N-merging (pass 2)... (%d cells remaining)" % len(cell_sets)

  merge_from, merge_to = min(n_scores, key=lambda x: n_scores[x])

  for n in n_graph[merge_from]:
    del n_scores[(merge_from, n)]
    del n_scores[(n, merge_from)]

  merge_cells(merge_from, merge_to)

  for n in n_graph[merge_to]:
    n_scores[(n, merge_to)] = score(n, merge_to)
    n_scores[(merge_to, n)] = score(merge_to, n)

print "Stage 10: N-merging pass 2 complete, %d cells" % len(cell_sets)

"""
Stage last: Output the image!
"""

test_im = Image.new("RGB", im.size)

for i in X(width):
  for j in X(height):
    test_im.putpixel((i, j), lab2rgb(smoothpix_map[(i, j)]))

if OUTPUT_ALL:
  test_im.save(OUTFILE_STEM + "7.png")
else:
  test_im.save(OUTFILE_STEM + ".png")

print "Done! (Time taken: {})".format(time.time() - total_time)

Tempo di aggiornamento! Questo aggiornamento presenta un semplice algoritmo di smoothing per rendere le immagini meno sfocate. Se aggiorno di nuovo, dovrò rinnovare una buona parte del mio codice, perché sta diventando disordinato e I hd 2 glf a fw thngs 2 mke t char lim.

Ho anche creato colori di peso k in base alle dimensioni delle celle, che perde alcuni dettagli per parametri più restrittivi (ad esempio il centro della nebulosa e il forcone di American Gothic) ma rende la scelta complessiva del colore più nitida e più piacevole. È interessante notare che perde l'intero sfondo per le sfere raytracing per P = 5.

Riepilogo algoritmo:

  1. Converti i pixel nello spazio colore CIELAB: CIELAB approssima la visione umana meglio di RGB. Inizialmente ho usato HSL (tonalità, saturazione, luminosità) ma questo ha avuto due problemi: la tonalità di bianco / grigio / nero non è definita e la tonalità è misurata in gradi che si avvolgono, rendendo difficile l'uso di k-medie.
  2. Dividi l'immagine in celle dello stesso colore usando il riempimento di riempimento: seleziona un pixel non presente in una cella ed esegui un riempimento di riempimento utilizzando una tolleranza specificata. Per misurare la distanza tra due colori uso la norma euclidea standard. Formule più complicate sono disponibili su questo articolo wiki .
  3. Unisci piccole celle con i loro vicini : il riempimento di inondazione genera molte celle da 1 o 2 pixel: unisci le celle inferiori a una dimensione specificata con la cella vicina con i pixel più adiacenti. Ciò riduce considerevolmente il numero di celle, migliorando il tempo di esecuzione per i passaggi successivi.
  4. Unisci regioni di colori simili : passa attraverso le celle in ordine decrescente di dimensione. Se una cella vicina ha un colore medio a meno di una certa distanza, unisci le celle. Continua ad attraversare le celle fino a quando non puoi più unire.
  5. Unisci fino a quando non abbiamo meno di 1,5 N celle (N-fusione) : unisci le celle insieme, usando un punteggio basato sulla dimensione delle celle e sulla differenza di colore, fino a quando non abbiamo al massimo 1,5 N celle. Concediamo un po 'di margine di manovra poiché ci uniremo di nuovo più tardi.
  6. Unisci fino a quando abbiamo meno di P colori, usando k-mean (fusione-P) : usa l' algoritmo di clustering k-means un numero specificato di volte per generare cluster di colori di celle, ponderazione in base alla dimensione della cella. Segna ogni cluster in base a una variazione dell'indice Davies-Bouldin e scegli il cluster migliore da utilizzare.
  7. Livellamento gaussiano approssimativo : utilizzare diverse sfocature lineari per approssimare la sfocatura gaussiana ( dettagli qui ). Quindi, per ogni pixel, scegli il colore da se stesso e dai suoi vicini nell'immagine pre-sfocata più vicina al suo colore nell'immagine sfocata. Questa parte può essere ottimizzata in termini di tempo, se necessario, poiché non ho ancora implementato l'algoritmo ottimale.
  8. Esegui un altro passaggio di riempimento per elaborare le nuove regioni : questo è necessario poiché il passaggio precedente potrebbe effettivamente generare più celle.
  9. Esegui un altro passaggio di fusione tra celle piccole
  10. Fai un altro passaggio di fusione N : questa volta passiamo alle N celle anziché a 1,5 N.

Il tempo di elaborazione per ciascuna immagine dipende fortemente dalle sue dimensioni e complessità, con tempi che vanno dai 20 secondi ai 7 minuti per le immagini di prova.

Poiché l'algoritmo utilizza la randomizzazione (ad esempio fusione, k-medie), è possibile ottenere risultati diversi su diverse esecuzioni. Ecco un confronto di due esecuzioni per l'immagine dell'orso, con N = 50 e P = 10:

F M


Nota: tutte le immagini sottostanti sono collegamenti. La maggior parte di queste immagini sono direttamente dalla prima esecuzione, ma se non mi piaceva l'output mi sarei concesso fino a tre tentativi per essere onesti.

N = 50, P = 10

L M un' r K d o w n g o l

N = 500, P = 30

f . . . : ( un' un' un' un' un' un'

Ma sono abbastanza pigro quando si tratta di dipingere con i colori, quindi solo per divertimento ...

N = 20, P = 5

un' un' un' un' un' un' un' un' un' un' un' un'

Inoltre, è divertente vedere cosa succede quando si tenta di spremere 1 milione di colori in N = 500, P = 30:

un'

Ecco una procedura dettagliata dell'algoritmo per l'immagine subacquea con N = 500 e P = 30, in formato GIF animato:

un'


Ho anche creato una galleria per le versioni precedenti dell'algoritmo qui . Ecco alcuni dei miei preferiti dell'ultima versione (da quando la nebulosa aveva più stelle e l'orso sembrava più furioso):

un' un'


Se qualcuno riceve un'eccezione quando il programma sta cercando di decomprimere i pixel, sembra che im = im.convert("RGB")sia necessario per alcune foto. Lo inserirò dopo aver ristretto un po 'il codice.
Sp3000,

15

Python 2 con PIL

Anche una soluzione Python e probabilmente un work in progress:

from PIL import Image, ImageFilter
import random

def draw(file_name, P, N, M=3):
    img = Image.open(file_name, 'r')
    pixels = img.load()
    size_x, size_y = img.size

    def dist(c1, c2):
        return (c1[0]-c2[0])**2+(c1[1]-c2[1])**2+(c1[2]-c2[2])**2

    def mean(colours):
        n = len(colours)
        r = sum(c[0] for c in colours)//n
        g = sum(c[1] for c in colours)//n
        b = sum(c[2] for c in colours)//n
        return (r,g,b)

    def colourize(colour, palette):
        return min(palette, key=lambda c: dist(c, colour))

    def cluster(colours, k, max_n=10000, max_i=10):
        colours = random.sample(colours, max_n)
        centroids = random.sample(colours, k)
        i = 0
        old_centroids = None
        while not(i>max_i or centroids==old_centroids):
            old_centroids = centroids
            i += 1
            labels = [colourize(c, centroids) for c in colours]
            centroids = [mean([c for c,l in zip(colours, labels)
                               if l is cen]) for cen in centroids]
        return centroids

    all_coords = [(x,y) for x in xrange(size_x) for y in xrange(size_y)]
    all_colours = [pixels[x,y] for x,y in all_coords]
    palette = cluster(all_colours, P)
    print 'clustered'

    for x,y in all_coords:
        pixels[x,y] = colourize(pixels[x,y], palette)
    print 'colourized'

    median_filter = ImageFilter.MedianFilter(size=M)
    img = img.filter(median_filter)
    pixels = img.load()
    for x,y in all_coords:
        pixels[x,y] = colourize(pixels[x,y], palette)
    print 'median filtered'

    def neighbours(edge, outer, colour=None):
        return set((x+a,y+b) for x,y in edge
                   for a,b in ((1,0), (-1,0), (0,1), (0,-1))
                   if (x+a,y+b) in outer
                   and (colour==None or pixels[(x+a,y+b)]==colour))

    def cell(centre, rest):
        colour = pixels[centre]
        edge = set([centre])
        region = set()
        while edge:
            region |= edge
            rest = rest-edge
            edge = set(n for n in neighbours(edge, rest, colour))
        return region, rest

    print 'start segmentation:'
    rest = set(all_coords)
    cells = []
    while rest:
        centre = random.sample(rest, 1)[0]
        region, rest = cell(centre, rest-set(centre))
        cells += [region]
        print '%d pixels remaining'%len(rest)
    cells = sorted(cells, key=len, reverse=True)
    print 'segmented (%d segments)'%len(cells)

    print 'start merging:'
    while len(cells)>N:
        small_cell = cells.pop()
        n = neighbours(small_cell, set(all_coords)-small_cell)
        for big_cell in cells:
            if big_cell & n:
                big_cell |= small_cell
                break
        print '%d segments remaining'%len(cells)
    print 'merged'

    for cell in cells:
        colour = colourize(mean([pixels[x,y] for x,y in cell]), palette)
        for x,y in cell:
            pixels[x,y] = colour
    print 'colorized again'

    img.save('P%d N%d '%(P,N)+file_name)
    print 'saved'

draw('a.png', 11, 500, 1)

L'algoritmo segue un approccio diverso rispetto a quello di SP3000, iniziando prima con i colori:

  • Trova una tavolozza di colori di colori P con k-significa raggruppare e dipingere l'immagine in questa tavolozza ridotta.

  • Applica un leggero filtro mediano per eliminare il rumore.

  • Fai un elenco di tutte le celle monocromatiche e ordinale per dimensione.

  • Unisci le celle più piccole con il rispettivo vicino più grande fino a quando rimangono solo N celle.

C'è un certo margine di miglioramento, sia in termini di velocità che di qualità dei risultati. Soprattutto la fase di fusione delle cellule può richiedere fino a molti minuti e fornisce risultati tutt'altro che ottimali.


P = 5, N = 45

P = 5, N = 45P = 5, N = 45

P = 10, N = 50

P = 10, N = 50P = 10, N = 50P = 10, N = 50P = 10, N = 50

P = 4, N = 250

P = 4, N = 250P = 4, N = 250

P = 11, N = 500

P = 11, N = 500P = 11, N = 500


Prima ho provato a usare lo stesso approccio (ho cercato di farlo in Javascript su un canvs) ma ho rinunciato eventaully perché stava impiegando troppo tempo, quindi è davvero bello vedere come sarebbe potuto apparire, bel lavoro!
Flawr,

Ottimo lavoro Ho adorato l'orso con 20 celle.
DavidC,

15

matematica

Al momento, questo richiede il numero di colori e il raggio gaussiano da utilizzare nel filtro gaussiano. Maggiore è il raggio, maggiore è la sfocatura e l'unione dei colori.

Poiché non consente l'immissione del numero di celle, non soddisfa uno dei requisiti di base della sfida.

L'output include il numero di celle per ciascun colore e anche il numero totale di celle.

quantImg[img_,nColours_,gaussR_]:=ColorQuantize[GaussianFilter[img,gaussR],nColours,
Dithering-> False]

colours[qImg_]:=Union[Flatten[ImageData[qImg],1]]

showColors[image_,nColors_,gaussR_]:=
   Module[{qImg,colors,ca,nCells},
   qImg=quantImg[image,nColors,gaussR];
   colors=colours[qImg];
   ca=ConstantArray[0,Reverse@ImageDimensions[image]];
   nCells[qImgg_,color_]:=
   Module[{r},
   r=ReplacePart[ca,Position[ImageData@qImg,color]/.{a_,b_}:> ({a,b}->1)];
   (*ArrayPlot[r,ColorRules->{1\[Rule]RGBColor[color],0\[Rule]White}];*)
   m=MorphologicalComponents[r];
   {RGBColor@color,Max[Union@Flatten[m,1]]}];
   s=nCells[qImg,#]&/@colors;
   Grid[{
    {Row[{s}]}, {Row[{"cells:\t\t",Tr[s[[All,2]]]}]},{Row[{"colors:\t\t",nColors}]},
    {Row[{"Gauss. Radius: ", gaussR}]}},Alignment->Left]]

Aggiornare

quantImage2consente di specificare il numero desiderato di celle come input. Determina il miglior raggio gaussiano ripetendo ciclicamente gli scenari con raggi maggiori fino a quando non viene trovata una corrispondenza ravvicinata.

quantImage2 output (immagine, celle richieste, celle utilizzate, errore, raggio gaussiano utilizzato).

È, tuttavia, molto lento. Per risparmiare tempo, puoi iniziare con un raggio iniziale, il cui valore predefinito è 0.

gaussianRadius[img_,nCol_,nCells_,initialRadius_:0]:=
Module[{radius=initialRadius,nc=10^6,results={},r},
While[nc>nCells,(nc=numberOfCells[ape,nColors,radius]);
results=AppendTo[results,{nColors,radius,nc}];radius++];
r=results[[{-2,-1}]];
Nearest[r[[All,3]],200][[1]];
Cases[r,{_,_,Nearest[r[[All,3]],nCells][[1]]}][[1,2]]
]

quantImg2[img_,nColours_,nCells1_,initialRadius_:0]:={ColorQuantize[GaussianFilter[img,
g=gaussianRadius[img,nColours,nCells1,initialRadius]],nColours,Dithering->False],
nCells1,nn=numberOfCells[img,nColours,g],N[(nn-nCells1)/nCells1],g}

Esempio per il quale specifichiamo il numero di celle desiderate nell'output.

Esempio che richiede 90 celle con 25 colori. La soluzione restituisce 88 celle, errore 2%. La funzione ha scelto il raggio gaussiano di 55. (Molta distorsione).

Apice


Esempi per i quali l'input include il raggio gaussiano, ma non il numero di celle.

25 colori, raggio gaussiano di 5 pixel

nColors = 25;
gR = 5;
quantImg[balls, nColors, gR]

palle


Tre colori, raggio di 17 pixel

nColors=3;gaussianRadius=17;
showColors[wave,nColors,gaussianRadius]
quantImg[wave,nColors,gaussianRadius]

onda 3 17


Venti colori, raggio di 17 pixel

Abbiamo aumentato il numero di colori ma non lo stato attivo. Si noti l'aumento del numero di celle.

onda 2


Sei colori, raggio di 4 pixel

nColors=6;gaussianRadius=4;
showColors[wave,nColors,gaussianRadius]
quantImg[wave,nColors,gaussianRadius]

Wave3


nColors = 6; gaussianRadius = 17;
showColors[ape, nColors, gaussianRadius]
quantImg[ape, nColors, gaussianRadius]

scimmia 1


nColors = 6; gaussianRadius = 3;
showColors[ape, nColors, gaussianRadius]
quantImg[ape, nColors, gaussianRadius]

scimmia 2


Notte stellata

Con solo 6 colori e 60 celle. Vi è una mancata corrispondenza dei colori nei colori showColorsche utilizza. (Il giallo non appare tra i 5 colori ma è usato nel disegno.) Vedrò se riesco a capirlo.

notte stellata 1


Questo è assolutamente stupendo e funziona davvero bene con parametri restrittivi. Qualche possibilità di trasformare il numero di celle in un parametro? (Suppongo che potresti sempre trovare una stima per il raggio dal numero di celle, applicarlo e quindi unire piccole celle fino a quando non sei sotto il limite.)
Martin Ender

È possibile creare una tabella di showColors, passando in rassegna un intervallo di numeri di colori e raggi e scegliendo la combinazione che si avvicina al numero desiderato di celle. Non sono sicuro se ho il gas per farlo al momento. Forse più tardi.
DavidC,

Fammi sapere se lo fai. (Mi piacerebbe anche vedere altri risultati per le altre immagini. :))
Martin Ender

2
Va bene. Grazie per aver giocato secondo le regole. ;)
Martin Ender il

1
Mi piacciono le sfere! Sono simpatici e rotondi
Sp3000 l'

9

Python 2 con PIL

Questo è ancora in qualche modo un lavoro in corso. Inoltre, il codice qui sotto è un orribile pasticcio di spaghetti e non dovrebbe essere usato come ispirazione. :)

from PIL import Image, ImageFilter
from math import sqrt
from copy import copy
from random import shuffle, choice, seed

IN_FILE = "input.png"
OUT_FILE = "output.png"

LOGGING = True
GRAPHICAL_LOGGING = False
LOG_FILE_PREFIX = "out"
LOG_FILE_SUFFIX = ".png"
LOG_ROUND_INTERVAL = 150
LOG_FLIP_INTERVAL = 40000

N = 500
P = 30
BLUR_RADIUS = 3
FILAMENT_ROUND_INTERVAL = 5
seed(0) # Random seed

print("Opening input file...")

image = Image.open(IN_FILE).filter(ImageFilter.GaussianBlur(BLUR_RADIUS))
pixels = {}
width, height = image.size

for i in range(width):
    for j in range(height):
        pixels[(i, j)] = image.getpixel((i, j))

def dist_rgb((a,b,c), (d,e,f)):
    return (a-d)**2 + (b-e)**2 + (c-f)**2

def nbors((x,y)):
    if 0 < x:
        if 0 < y:
            yield (x-1,y-1)
        if y < height-1:
            yield (x-1,y+1)
    if x < width - 1:
        if 0 < y:
            yield (x+1,y-1)
        if y < height-1:
            yield (x+1,y+1)

def full_circ((x,y)):
    return ((x+1,y), (x+1,y+1), (x,y+1), (x-1,y+1), (x-1,y), (x-1,y-1), (x,y-1), (x+1,y-1))

class Region:

    def __init__(self):
        self.points = set()
        self.size = 0
        self.sum = (0,0,0)

    def flip_point(self, point):
        sum_r, sum_g, sum_b = self.sum
        r, g, b = pixels[point]
        if point in self.points:
            self.sum = (sum_r - r, sum_g - g, sum_b - b)
            self.size -= 1
            self.points.remove(point)
        else:
            self.sum = (sum_r + r, sum_g + g, sum_b + b)
            self.size += 1
            self.points.add(point)

    def mean_with(self, color):
        if color is None:
            s = float(self.size)
            r, g, b = self.sum
        else:
            s = float(self.size + 1)
            r, g, b = map(lambda a,b: a+b, self.sum, color)
        return (r/s, g/s, b/s)

print("Initializing regions...")

aspect_ratio = width / float(height)
a = int(sqrt(N)*aspect_ratio)
b = int(sqrt(N)/aspect_ratio)

num_components = a*b
owners = {}
regions = [Region() for i in range(P)]
borders = set()

nodes = [(i,j) for i in range(a) for j in range(b)]
shuffle(nodes)
node_values = {(i,j):None for i in range(a) for j in range(b)}

for i in range(P):
    node_values[nodes[i]] = regions[i]

for (i,j) in nodes[P:]:
    forbiddens = set()
    for node in (i,j-1), (i,j+1), (i-1,j), (i+1,j):
        if node in node_values and node_values[node] is not None:
            forbiddens.add(node_values[node])
    node_values[(i,j)] = choice(list(set(regions) - forbiddens))

for (i,j) in nodes:
    for x in range((width*i)/a, (width*(i+1))/a):
        for y in range((height*j)/b, (height*(j+1))/b):
            owner = node_values[(i,j)]
            owner.flip_point((x,y))
            owners[(x,y)] = owner

def recalc_borders(point = None):
    global borders
    if point is None:
        borders = set()
        for i in range(width):
            for j in range(height):
                if (i,j) not in borders:
                    owner = owner_of((i,j))
                    for pt in nbors((i,j)):
                        if owner_of(pt) != owner:
                            borders.add((i,j))
                            borders.add(pt)
                            break
    else:
        for pt in nbors(point):
            owner = owner_of(pt)
            for pt2 in nbors(pt):
                if owner_of(pt2) != owner:
                    borders.add(pt)
                    break
            else:
                borders.discard(pt)

def owner_of(point):
    if 0 <= point[0] < width and 0 <= point[1] < height:
        return owners[point]
    else:
        return None

# Status codes for analysis
SINGLETON = 0
FILAMENT = 1
SWAPPABLE = 2
NOT_SWAPPABLE = 3

def analyze_nbors(point):
    owner = owner_of(point)
    circ = a,b,c,d,e,f,g,h = full_circ(point)
    oa,ob,oc,od,oe,of,og,oh = map(owner_of, circ)
    nbor_owners = set([oa,oc,oe,og])
    if owner not in nbor_owners:
        return SINGLETON, owner, nbor_owners - set([None])
    if oc != oe == owner == oa != og != oc:
        return FILAMENT, owner, set([og, oc]) - set([None])
    if oe != oc == owner == og != oa != oe:
        return FILAMENT, owner, set([oe, oa]) - set([None])
    last_owner = oa
    flips = {last_owner:0}
    for (corner, side, corner_owner, side_owner) in (b,c,ob,oc), (d,e,od,oe), (f,g,of,og), (h,a,oh,oa):
        if side_owner not in flips:
            flips[side_owner] = 0
        if side_owner != corner_owner or side_owner != last_owner:
            flips[side_owner] += 1
            flips[last_owner] += 1
        last_owner = side_owner
    candidates = set(own for own in flips if flips[own] == 2 and own is not None)
    if owner in candidates:
        return SWAPPABLE, owner, candidates - set([owner])
    return NOT_SWAPPABLE, None, None

print("Calculating borders...")

recalc_borders()

print("Deforming regions...")

def assign_colors():
    used_colors = {}
    for region in regions:
        r, g, b = region.mean_with(None)
        r, g, b = int(round(r)), int(round(g)), int(round(b))
        if (r,g,b) in used_colors:
            for color in sorted([(r2, g2, b2) for r2 in range(256) for g2 in range(256) for b2 in range(256)], key=lambda color: dist_rgb(color, (r,g,b))):
                if color not in used_colors:
                    used_colors[color] = region.points
                    break
        else:
            used_colors[(r,g,b)] = region.points
    return used_colors

def make_image(colors):
    img = Image.new("RGB", image.size)
    for color in colors:
        for point in colors[color]:
            img.putpixel(point, color)
    return img

# Round status labels
FULL_ROUND = 0
NEIGHBOR_ROUND = 1
FILAMENT_ROUND = 2

max_filament = None
next_search = set()
rounds = 0
points_flipped = 0
singletons = 0
filaments = 0
flip_milestone = 0
logs = 0

while True:
    if LOGGING and (rounds % LOG_ROUND_INTERVAL == 0 or points_flipped >= flip_milestone):
        print("Round %d of deformation:\n %d edit(s) so far, of which %d singleton removal(s) and %d filament cut(s)."%(rounds, points_flipped, singletons, filaments))
        while points_flipped >= flip_milestone: flip_milestone += LOG_FLIP_INTERVAL
        if GRAPHICAL_LOGGING:
            make_image(assign_colors()).save(LOG_FILE_PREFIX + str(logs) + LOG_FILE_SUFFIX)
            logs += 1
    if max_filament is None or (round_status == NEIGHBOR_ROUND and rounds%FILAMENT_ROUND_INTERVAL != 0):
        search_space, round_status = (next_search & borders, NEIGHBOR_ROUND) if next_search else (copy(borders), FULL_ROUND)
        next_search = set()
        max_filament = None
    else:
        round_status = FILAMENT_ROUND
        search_space = set([max_filament[0]]) & borders
    search_space = list(search_space)
    shuffle(search_space)
    for point in search_space:
        status, owner, takers = analyze_nbors(point)
        if (status == FILAMENT and num_components < N) or status in (SINGLETON, SWAPPABLE):
            color = pixels[point]
            takers_list = list(takers)
            shuffle(takers_list)
            for taker in takers_list:
                dist = dist_rgb(color, owner.mean_with(None)) - dist_rgb(color, taker.mean_with(color))
                if dist > 0:
                    if status != FILAMENT or round_status == FILAMENT_ROUND:
                        found = True
                        owner.flip_point(point)
                        taker.flip_point(point)
                        owners[point] = taker
                        recalc_borders(point)
                        next_search.add(point)
                        for nbor in full_circ(point):
                            next_search.add(nbor)
                        points_flipped += 1
                    if status == FILAMENT:
                        if round_status == FILAMENT_ROUND:
                            num_components += 1
                            filaments += 1
                        elif max_filament is None or max_filament[1] < dist:
                            max_filament = (point, dist)
                    if status == SINGLETON:
                        num_components -= 1
                        singletons += 1
                    break
    rounds += 1
    if round_status == FILAMENT_ROUND:
        max_filament = None
    if round_status == FULL_ROUND and max_filament is None and not next_search:
        break

print("Deformation completed after %d rounds:\n %d edit(s), of which %d singleton removal(s) and %d filament cut(s)."%(rounds, points_flipped, singletons, filaments))

print("Assigning colors...")

used_colors = assign_colors()

print("Producing output...")

make_image(used_colors).save(OUT_FILE)

print("Done!")

Come funziona

Il programma divide la tela in Pregioni, ognuna delle quali consiste in un numero di celle senza buchi. Inizialmente, la tela è divisa in quadrati approssimativi, che vengono assegnati in modo casuale alle regioni. Quindi, queste regioni vengono "deformate" in un processo iterativo, in cui un determinato pixel può cambiare la sua regione se

  1. la modifica ridurrebbe la distanza RGB del pixel dal colore medio della regione che lo contiene e
  2. non si rompe o fonde le celle o introduce buchi in esse.

Quest'ultima condizione può essere applicata localmente, quindi il processo è un po 'come un automa cellulare. In questo modo, non è necessario eseguire alcuna ricerca di percorsi o simili, il che accelera notevolmente il processo. Tuttavia, poiché le cellule non possono essere scomposte, alcune di esse finiscono come lunghi "filamenti" che delimitano le altre cellule e ne inibiscono la crescita. Per risolvere questo problema, esiste un processo chiamato "taglio del filamento", che occasionalmente rompe una cellula a forma di filamento in due, se Nin quel momento ci sono meno di celle. Le cellule possono anche scomparire se la loro dimensione è 1 e questo fa spazio ai tagli dei filamenti.

Il processo termina quando nessun pixel ha l'incentivo a cambiare regione e, successivamente, ogni regione viene semplicemente colorata dal suo colore medio. Di solito ci saranno alcuni filamenti rimanenti nell'output, come si può vedere negli esempi seguenti, specialmente nella nebulosa.

P = 30, N = 500

Monna Lisa Babbuino Palline colorate Nebulosa

Altre foto dopo.

Alcune proprietà interessanti del mio programma sono che è probabilistico, quindi i risultati possono variare tra diverse esecuzioni, a meno che tu non usi ovviamente lo stesso seme pseudocasuale. La casualità non è essenziale, tuttavia, volevo solo evitare artefatti accidentali che potrebbero derivare dal modo particolare in cui Python attraversa un insieme di coordinate o qualcosa di simile. Il programma tende a utilizzare tutti i Pcolori e quasi tutte le Ncelle e le celle non contengono mai buchi in base alla progettazione. Inoltre, il processo di deformazione è piuttosto lento. Le palline colorate hanno impiegato quasi 15 minuti per essere prodotte sulla mia macchina. Sul lato positivo, si accende ilGRAPHICAL_LOGGINGopzione, otterrai una bella serie di immagini del processo di deformazione. Ho trasformato quelli di Mona Lisa in un'animazione GIF (ridotta del 50% per ridurre le dimensioni del file). Se osservi attentamente il suo viso e i suoi capelli, puoi vedere il processo di taglio del filamento in azione.

inserisci qui la descrizione dell'immagine


Caspita, questi risultati sembrano davvero belli (anche se non proprio come se fossero dipinti da numeri, ma comunque molto belli :)).
Martin Ender,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.