Disegna Sri Yantra


11

Sfida:

Disegna Sri Yantra .

Come:

Esistono diversi modi per disegnarlo. Tutti includono molti passaggi. Se pensi di poterlo disegnare senza seguire i passaggi collegati, scorri sotto per gli elementi che devi avere nel tuo disegno .

I passaggi completi sono disponibili qui:

http://www.saralhindi.com/Shri_Yantra/makingsky14steps_eng.htm

( Non li ho copiati qui perché sarebbe diventata una domanda molto lunga , ecco il mirror di archieve.org nel caso in cui il primo link dovesse mai scendere )

L'immagine finale dovrebbe assomigliare all'immagine seguente:

inserisci qui la descrizione dell'immagine

Deve avere:

Fondamentalmente qualsiasi metodo di disegno di tua scelta sarebbe una risposta valida a condizione che tu mantenga gli elementi più importanti

  1. Il numero di triangoli dovrebbe avere lo stesso numero dell'immagine sopra (43 triangoli più piccoli sono risultati dall'interlacciamento dei 9 triangoli più grandi)

  2. Queste triple intersezioni sono rispettate:

inserisci qui la descrizione dell'immagine

  1. Le punte dei triangoli verso l'alto toccano le basi dei 4 triangoli verso il basso e le punte dei triangoli verso il basso dovrebbero toccare le basi dei 3 triangoli verso l'alto, come mostrato nella figura qui sotto.

    inserisci qui la descrizione dell'immagine

  2. Il cerchio interno (bindu) è concentrico con il cerchio esterno.

  3. Le punte (vertici) dei triangoli più grandi dovrebbero toccare il cerchio esterno: inserisci qui la descrizione dell'immagine

  4. L'immagine finale dovrebbe avere tutti gli elementi e dovrebbe generalmente apparire come: inserisci qui la descrizione dell'immagine

  5. Il colore dovrebbe essere all'incirca uguale all'immagine sopra per ogni elemento (compresi i petali).

  6. La forma dei petali dovrebbe preferibilmente apparire approssimativamente come nell'immagine qui sotto, ma può anche essere solo semicerchi o semplice sezione ad arco del cerchio:

  7. Non ci sono restrizioni proporzionali rigorose ai cerchi o alle dimensioni delle porte, ma il cerchio più esterno dovrebbe avere il diametro non inferiore al 90% del lato del quadrato esterno, gli altri elementi sarebbero rispettivamente disposti rispetto a queste proporzioni.

inserisci qui la descrizione dell'immagine

inserisci qui la descrizione dell'immagine

Linguaggi di programmazione e risultati

Non ci sono restrizioni al linguaggio di programmazione né al formato del risultato (può essere un'immagine vettoriale, un'immagine bitmap, tela ecc.) A condizione che il risultato sia relativamente chiaro e riconoscibile (almeno 800px X 800px)

Modifica degli ultimi: Non esiste un metodo perfetto di disegno poiché questo blog li esplora così bene: http://fotthewuk.livejournal.com/ Tenendo conto di ciò, saranno tollerati errori minori.

A questo punto è un esercizio interessante apprendere che è molto probabile che non esista una soluzione perfetta, proprio come la quadratura del cerchio.


3
Penso che dovrai definire la tavolozza dei colori, le relative scale di lunghezza dei cerchi esterni, lo sfondo e la forma dei petali.
Martin Ender,

@ MartinBüttner Ho reiterato la domanda, per favore dimmi se le informazioni ora sono migliori. Disegnare questo Yantra non è una sfida facile, e anche stabilire le specifiche è un po 'impegnativo
Eduard Florinescu,

Ciao, so che le specifiche sono molto difficili su questo. Ma è richiesto Anche la mia recente domanda simile è stata messa in difficoltà a causa delle specifiche, quindi è meglio che ne venga fuori uno perché senza quello, questo è troppo difficile da disegnare e praticamente non è una vera sfida.
Ottimizzatore

5
Questa sfida è pazza.
AL,

1
Grazie, l'ho già capito;) E dannazione .. questo è difficile, ho fatto solo i triangoli e il mio codice è già enorme. Ottimizzandolo ora xD
Teun Pronk il

Risposte:


8

Mathematica - 2836 2536 caratteri

È stato un po 'vertiginoso capire le combinazioni di regioni che rendono disponibili piccoli triangoli per la colorazione.

La cornice

Gli oggetti frame sono disuguaglianze che descrivono come regioni. Ad esempio la smerlatura rossa e gialla sono due regioni di cerchi.

n1=8;n2=16;
w8=Round[.78 Table[{Cos[2\[Pi] k/n1],Sin[2\[Pi] k/n1]},{k,0,n1-1}],.01];
w16=Round[1 Table[{Cos[2\[Pi] k/n2],Sin[2\[Pi] k/n2]},{k,0,n2-1}],.01];
n=12;y1=.267;
x2=1/Sqrt[2];w=1.8;v=1.85;
pts={{-w,w},{-w/4,w},{-w/4,w+w/8},{-5w/8,w+w/8},{-5w/8,w+5w/24},{5w/8,w+5w/24},{5w/8,w+w/8},{w/4,w+w/8},{w/4,w},
{w,w},{w,w/4},{w+w/8,w/4},{w+w/8,5w/8},{w+5w/24,5w/8},{w+5w/24,-5w/8},{w+w/8,-5w/8},{w+w/8,-w/4},{w,-w/4},
{w,-w},
{w/4,-w},{w/4,-w-w/8},{(5 w)/8,-w-w/8},{(5 w)/8,-w-(5 w)/24},{-((5 w)/8),-w-(5 w)/24},{-((5 w)/8),-w-w/8},{-(w/4),-w-w/8},{-(w/4),-w},{-w,-w},

{-w,-w/4},{-w-w/8,-w/4},{-w-w/8,-5w/8},{-w-5w/24,-5w/8},{-w-5w/24,5w/8},{-w-w/8,5w/8},{-w-w/8,w/4},{-w,w/4}
};

frame=RegionPlot[{
(*MeshRegion[pts2,Polygon[Range[20]]],*) (*orange trim *)
MeshRegion[pts,Polygon[Range[Length[pts]]]], (*green box *)
ImplicitRegion[x^2+y^2<2.8,{x,y}], (*white, largest circle *)
ImplicitRegion[Or@@(((x-#)^2+(y-#2)^2<.1)&@@@w16),{x,y}], (*yellow scallops*)
ImplicitRegion[x^2+y^2<1,{x,y}],(*white circle *)
ImplicitRegion[x^2+y^2<1.4,{x,y}],(*white disk*)
ImplicitRegion[Or@@(((x-#)^2+(y-#2)^2<.15)&@@@w8),{x,y}],(*red scallops*)
ImplicitRegion[x^2+y^2<1,{x,y}] , (*white disk *)
ImplicitRegion[1.8 < x^2+y^2< 2.2,{x,y}] ,(*brown outer rim*)
ImplicitRegion[2.4 < x^2+y^2< 2.8,{x,y}](*yellow outer rim*)},
BoundaryStyle->Directive[Thickness[.005],Black],
AspectRatio->1,
Frame-> False,
PlotStyle->{(*Lighter@Orange,*)
Darker@Green,White,Yellow,White,White,
Red,White,Lighter@Brown,Yellow,Red,
White,White,White,White,White,
White,White,Red,Red,Darker@Blue,
Darker@Blue,Darker@Blue,Darker@Blue,Darker@Blue,Darker@Blue,
Red,Red,Darker@Blue,Red,Yellow,Red}];

Quindi c'è un disco per nascondere alcuni cerchi che sono stati usati per fare le capesante.

Graphics[{White,Disk[{0,0},.99]}]

The Innards

Alcune definizioni di vertici e triangoli. Ogni triangolo, t1, t2, ... è una regione distinta. Le operazioni logiche ( RegionUnion. RegionIntersection, E RegionDifference) su triangoli grandi vengono utilizzate per definire celle triangolari più piccole come regioni derivate che possono essere colorate individualmente.

p1={-Cos[ArcTan[.267]],y1};
p2={Cos[ArcTan[.267]],y1};
p3={-Cos[ArcTan[.267]],-y1};
p4={Cos[ArcTan[.267]],-y1};
p5={-x2,(x2+y1)/2};
p6={x2,(x2+y1)/2};
p7={-x2,-(x2+y1)/2};
p8={x2,-(x2+y1)/2};
p9={0.5,-x2};
p10={-0.5,-x2};
p11={0.5,-x2};
p12={-0.5,-x2};
p13={a=-.34,b=-.12};
p14={-a,b};
p15={0.5,x2};
p16={-0.5,x2};  
t1=MeshRegion[{{0,-1},p1,p2},Triangle[{1,2,3}]];
t2=MeshRegion[{{0,1},p3,p4},Triangle[{1,3,2}]];
t3=MeshRegion[{{0,-x2},p5,p6},Triangle[{1,3,2}]];
t4=MeshRegion[{{0,x2},p7,p8},Triangle[{1,3,2}]];
t5=MeshRegion[{{0,+y1},p9,p10},Triangle[{1,3,2}]];
t6=MeshRegion[{{0,p5[[2]]},p13,p14},Triangle[{1,3,2}]];
t7=MeshRegion[{{0,p13[[2]]},p15,p16},Triangle[{1,3,2}]];
t8=MeshRegion[{{0,p7[[2]]},{-.33,p1[[2]]-.12},{.33,p1[[2]]-.12}},Triangle[{1,3,2}]];
t9=MeshRegion[{{0,p3[[2]]},{z=-.23,0.063},{-z,.063}},Triangle[{1,3,2}]];

disk=Graphics[{White,Disk[{0,0},.99]}];


innards=RegionPlot[{
t1,t2,t3,t4,t5,t6,t7,t8,t9,(*White*)
RegionDifference[t1,RegionUnion[t5,t4,t2]],(*Blue*)
RegionDifference[t4,RegionUnion[t1,t3,t5]],(*red*)
RegionDifference[t3,RegionUnion[t7,t4,t2]], (*blue*)
RegionDifference[t2,RegionUnion[t1,t7,t3]], (*blue*)
RegionDifference[t5,t1],   (*blue*)
RegionDifference[t4,RegionUnion[t1,t7]], (*Blue *)
RegionDifference[t7,t2],(*Blue*)
RegionDifference[t3,RegionUnion[t1,t2]],(*Blue *)
RegionDifference[t8,t2],  (* blue *)
RegionDifference[t9,t5],  (* red *)
RegionDifference[t9,t6],  (* red *)
RegionIntersection[t4,RegionDifference[t6,t1]], (*blue*)
RegionIntersection[t6,RegionDifference[t5,t8]],  (* red *)
RegionIntersection[t7,t9], (*yellow*)
RegionDifference[RegionIntersection[t7,t8],t5], (*red *)
RegionDifference[RegionIntersection[t5,t6],RegionUnion[t7,t9]],(*red *)
ImplicitRegion[x^2+y^2<= .001,{x,y}],  (* smallest circle *) (* red *)
RegionDifference[RegionIntersection[t7,t1 ],t6], (*Red*)
RegionDifference[t8,RegionUnion[t5,t6]],
RegionDifference[t6,RegionUnion[t7,t8]],
RegionDifference[RegionIntersection[t2,t5],RegionUnion[t7,t8]],
RegionDifference[RegionIntersection[t7,t3],t4],
RegionDifference[RegionIntersection[t1,t3],RegionUnion[t5,t4]],
RegionDifference[RegionIntersection[t2,t4],RegionUnion[t7,t3]],
RegionDifference[RegionIntersection[t5,t4],t3]},
BoundaryStyle->Directive[Thickness[.005],Black],
AspectRatio->1,
PlotStyle->{
White,White,White,White,White,White,White,White,White,
Blue,Red,Red,Blue,Blue,Blue,Blue,Blue,Blue,
Red,Red,Blue,Red,Yellow,Red,Red,Red,Blue,Blue,Blue,Blue,Red,Red,Red,Red}]

Mettere insieme le parti

Show[frame,disk,innards,Graphics[{Brown,Thickness[.02],Line[Append[pts,{-w,w}]]}];
Graphics[{RGBColor[0.92,0.8,0.],Thickness[.015],Line[Append[pts,{-w,w}]]}]]

sri4


golfed

r=ImplicitRegion;m=MeshRegion;t=Triangle;d=RegionDifference;u=RegionUnion;i=RegionIntersection;(*s=ImplicitRegion*)

n1=8;n2=16;w8=.78 Table[{Cos[2\[Pi] k/n1],Sin[2\[Pi] k/n1]},{k,0,n1-1}];
w16=Table[{Cos[2\[Pi] k/n2],Sin[2\[Pi] k/n2]},{k,0,n2-1}];n=12;y1=.267;x2=1/Sqrt[2];w=1.8;v=1.85;
pts={{-w,w},{-w/4,w},{-w/4,w+w/8},{-5w/8,w+w/8},{-5w/8,w+5w/24},{5w/8,w+5w/24},{5w/8,w+w/8},{w/4,w+w/8},{w/4,w},
{w,w},{w,w/4},{w+w/8,w/4},{w+w/8,5w/8},{w+5w/24,5w/8},{w+5w/24,-5w/8},{w+w/8,-5w/8},{w+w/8,-w/4},{w,-w/4},
{w,-w},{w/4,-w},{w/4,-w-w/8},{(5 w)/8,-w-w/8},{(5 w)/8,-w-(5 w)/24},{-((5 w)/8),-w-(5 w)/24},{-((5 w)/8),-w-w/8},{-(w/4),-w-w/8},{-(w/4),-w},{-w,-w},
{-w,-w/4},{-w-w/8,-w/4},{-w-w/8,-5w/8},{-w-5w/24,-5w/8},{-w-5w/24,5w/8},{-w-w/8,5w/8},{-w-w/8,w/4},{-w,w/4}};

frame=RegionPlot[{
m[pts,Polygon[Range[Length[pts]]]], 
r[x^2+y^2<2.8,{x,y}], 
r[Or@@(((x-#)^2+(y-#2)^2<.1)&@@@w16),{x,y}], 
r[x^2+y^2<1,{x,y}],
r[x^2+y^2<1.4,{x,y}],
r[Or@@(((x-#)^2+(y-#2)^2<.15)&@@@w8),{x,y}],
r[x^2+y^2<1,{x,y}] , 
r[1.8 < x^2+y^2< 2.2,{x,y}] ,
r[2.4 < x^2+y^2< 2.8,{x,y}]},
BoundaryStyle->Directive[Thickness[.003],Black],
AspectRatio->1,
Frame-> False,
PlotStyle->{Darker@Green,White,Yellow,White,White,Red,White,Lighter@Brown,Yellow,Red}];

c=Cos[ArcTan[y1]];
p1={-c,y1};
p2={c,y1};
p3={-c,-y1};
p4={c,-y1};
p5={-x2,(x2+y1)/2};
p6={x2,(x2+y1)/2};
p7={-x2,-(x2+y1)/2};
p8={x2,-(x2+y1)/2};
p9={0.5,-x2};
p10={-0.5,-x2};
p11={0.5,-x2};
p12={-0.5,-x2};
p13={a=-.34,b=-.12};
p14={-a,b};
p15={0.5,x2};
p16={-0.5,x2};
t1=m[{{0,-1},p1,p2},t[{1,2,3}]];
t2=m[{{0,1},p3,p4},t[{1,3,2}]];
t3=m[{{0,-x2},p5,p6},t[{1,3,2}]];
t4=m[{{0,x2},p7,p8},t[{1,3,2}]];
t5=m[{{0,+y1},p9,p10},t[{1,3,2}]];
t6=m[{{0,p5[[2]]},p13,p14},t[{1,3,2}]];
t7=m[{{0,p13[[2]]},p15,p16},t[{1,3,2}]];
t8=m[{{0,p7[[2]]},{-.33,p1[[2]]-.12},{.33,p1[[2]]-.12}},t[{1,3,2}]];
t9=m[{{0,p3[[2]]},{z=-.23,0.063},{-z,.063}},t[{1,3,2}]];

innards=RegionPlot[{
d[t1,u[t5,t4,t2]],
d[t4,u[t1,t3,t5]],
d[t3,u[t7,t4,t2]], 
d[t2,u[t1,t7,t3]], 
d[t5,t1],   
d[t4,u[t1,t7]], 
d[t7,t2],
d[t3,u[t1,t2]],
d[t8,t2],  
d[t9,t5],  
d[t9,t6],  
i[t4,d[t6,t1]], 
i[t6,d[t5,t8]],  
i[t7,t9], 
d[i[t7,t8],t5], 
d[i[t5,t6],u[t7,t9]],
r[x^2+y^2<= .001,{x,y}],   
d[i[t7,t1 ],t6], 
d[t8,u[t5,t6]],
d[t6,u[t7,t8]],
d[i[t2,t5],u[t7,t8]],
d[i[t7,t3],t4],
d[i[t1,t3],u[t5,t4]],
d[i[t2,t4],u[t7,t3]],
d[i[t5,t4],t3]},
BoundaryStyle->Directive[Thickness[.003],Black],
Frame->False,
PlotStyle->{Blue,Red,Red,Blue,Blue,Blue,Blue,Blue,Blue,
Red,Red,Blue,Red,Yellow,Red,Red,Red,Blue,Blue,Blue,Blue,Red,Red,Red,Red}];

trim=Graphics[{RGBColor[0.92,0.8,0.],Thickness[.01],Line[Append[pts,{-w,w}]]}];
trim2=Graphics[{Brown,Thickness[.02],Line[Append[pts,{-w,w}]]}];
Show[frame,Graphics[{White,Disk[{0,0},.99]}],trim2,trim,innards]

2
* interiora, e questo è completamente sorprendente; avere un +1
Soham Chowdhury il

Lottando anche con i colori qui, anche se il cerchio interno con triangoli è tutto ciò che ho finora. Ho un po 'di recupero da fare;)
Teun Pronk,

Teun Pronk, aiuta a usare i livelli per la cornice (tutto al di fuori dei triangoli blu). I petali simili a quelli di una luna possono essere raggiunti facendo dei cerchi pieni e sovrapponendoli con un grande disco bianco su cui è rappresentata la figura centrale. Per me la parte più difficile è colorare le cellule triangolari interne.
DavidC

Lo stesso, davvero difficile. Cercare di elaborare qualcosa con la ricorsione, ma non riesco ancora a farlo funzionare.
Teun Pronk,

@DavidCarraher ho corretto la parte da colorare. Vuoi un consiglio?
Teun Pronk,

2

Delphi [Lavori in corso]

Questo è davvero difficile ..
Finora tutto quello che ho è il cerchio interno con i triangoli e il mio codice è enorme.
Non ho ancora contato i personaggi, so che posso risparmiare molto su spazi bianchi ecc.

Iniziare con

Ho creato una classe TD T è un prefisso di classe predefinito non obbligatorio, ma rende facile vedere che è una classe, D sta per Draw.

  TP = TPoint;
  TD = class
  private
    FCv: TCanvas;
    FC: TP;
    a:array[1..9,0..2]of TP;
    FB:TBitmap32;
    FWi: integer;
  public
    constructor Create(AC: TCanvas;CP:TP;W:integer);
    property cv: TCanvas read FCv;
    property c:TP read FC;
    property Wi:integer read FWi;
    procedure tr;
    procedure StartDrawing;
    procedure ft;          
  end;
const t=1>0;f=0>1;off=50;ic=500;

Ho anche fatto un TPtipo, no, non dal momento che sono le mie iniziali ma è più breve di TPointe ho pensato che avrei usato molti punti.
la proprietà Cè il punto centrale della tela.
procedure:
StartDrawing(ancora da rinominare) attiva tutte le funzioni di disegno per me.
trrende tutti i triangoli nel cerchio (incluso il cerchio stesso)
ftcolora tutti i triangoli.
Ho anche creato alcune costanti per vero e falso, offset e dimensione del cerchio.

Funzioni e procedure

Qrestituirà il punto in cui 2 linee si incrociano / si intersecano.
Esistono molte funzioni / procedure nidificate. Non ho voglia di spiegarli tutti, ma se ti chiedi che cosa può sempre chiedere.

Classe completa

unit Unit3;
interface
Uses
  Windows,Sysutils, Classes, DateUtils, Math, Graphics, types,idglobal, gr32, gr32_polygons, GR32_Backends;
type
  TP = TPoint;
  TD = class
  private
    FCv: TCanvas;
    FC: TP;
    a:array[1..9,0..2]of TP;
    FB:TBitmap32;
    FWi: integer;
  public
    constructor Create(AC: TCanvas;CP:TP;W:integer);
    property cv: TCanvas read FCv;
    property c:TP read FC;
    property Wi:integer read FWi;
    procedure tr;
    procedure StartDrawing;
    procedure ft;
    const
      ic=500;
  end;
  const t=1>0;f=0>1;off=50;
implementation

function q(A1,A2,B1,B2:TP;out o:int16):TP;
Var
 a,b,c:Real;
 d,e:TP;
begin
 a:=A1.X*A2.Y-A1.Y*A2.X;
 b:=B1.X*B2.Y-B1.Y*B2.X;
 d:=A1.Subtract(A2);
 e:=B1.Subtract(B2);
 c:=1/((d.X*e.Y)-(d.Y*e.X));
 Result:=TP.Create(Round(((a*e.X)-(d.X*b))*c),Round(((a*e.Y)-(d.Y*b))*c));
 o:=Result.Y;
end;
constructor TD.Create(AC: TCanvas; CP:TP;W:integer);
begin
  FCv:=AC;
  FC:=CP;
  FWi:=W;
  FB := TBitmap32.Create;
  FB.SetSize(W,W);
end;

procedure TD.ft;
var
  X,Y:int32;
  procedure cl(f,g:int32;e:TColor);
  begin
    fb.Canvas.Brush.Color:=e;
    fb.Canvas.FloodFill(f,g,clBlack32, fsBorder);
  end;
  function it(p1,p2: int32):int32;
  var i,r:int32;
  rgn:HRGN;
  begin
    r:=0;
    if fb.Pixel[x,y]<>clPurple32 then
      exit(50);
    for I := 1 to 9 do
    begin
      rgn:=CreatePolygonRgn(a[i],3,WINDING);
      if PtInRegion(rgn,p1,p2) then
        r:=r+1;
    end;
    it:=r;
  end;
begin
  Y:=c.Y;
  fb.Canvas.Brush.Color := clHighlight;
  fb.Canvas.FloodFill(1,1,clBlack32, fsBorder);
  X := c.X;
  cl(c.x-1,51,clWhite);
  for Y := 0 to fwi-1 do
    for X := 0 to fwi-1 do
      case it(x,y) of
        0,2,4,6,8:cl(x,y,clwhite);
        1,5:cl(x,y,clNavy);
        3,7:cl(x,y,clred);
      end;
end;
procedure TD.StartDrawing;
begin
  with fcv do
  begin
    Brush.Style := bsSolid;
    Brush.Color := clBtnFace;
    Ellipse(off,off,ic+off,ic+off);
    Brush.Style:=bsClear;
    tr;
    ft;
    CopyRect(ClipRect, FB.Canvas, FB.ClipRect);
    Brush.Color := clRed;
    Ellipse(c.X-10,c.Y-5,c.X+10,c.Y+15);
  end;
end;
procedure TD.tr;
const
  L=250;
var
  p1,w,v:tp;
  i:int16;
  r:TRect;
  function e(n:int16;b:boolean=f):TP;
  var r:single;
  begin
    r:=DegToRad(iif(b,n,(n*30)-90));
    Result := tp.Create(C.X +Round(L*Cos(r)),C.Y+Round(L*Sin(r)));
  end;
  function CS(Y:integer; L:boolean=t): tp;
  var
    I: integer;
  begin
    with FCv do
      if L then
      begin
        for I := 0+off to 499+off do
          if Pixels[I,Y]=0 then
            exit(TP.Create(I+1,Y));
      end
      else
        for i := 499+off downto 0+off do
          if Pixels[I,Y]=0 then
            exit(TP.Create(I-1,Y));
  end;
  procedure d(n,x,y:int16;b,c:TP);
  begin
    a[n][0]:=TP.Create(x,y);
    a[n][1]:=b;
    a[n][2]:=c;
  end;
  function Int(a,b,c,d,s1,s2:tp;h:int32):tp;
  var
    f,ww:tp;
    e:extended;
  begin
    f:=q(a,b,c,d,i);
    e:=ArcTan2(f.Y-h,f.X-c.X);
    ww:=tp.Create(C.X +ceil(500*Cos(e)),r.Bottom+ceil(500*Sin(e)));
    s2.Y:=ww.Y;
    Result:=q(f,ww,s1,s2,i);
  end;
begin
  r:=trect.Create(e(225,t),e(45,t));
  q(e(12),e(9),e(10),e(6),i);
  d(1,C.X,off+ic-1,CS(i),CS(i,f));
  q(e(12),e(8),e(9),e(6),i);
  d(2,C.X,off+1,CS(i),CS(i,f));
  w:=int(a[1][1],a[1][2],a[2][0],a[2][1],r.TopLeft,tp.Create(r.Left,0), r.Bottom);
  d(3,c.X,r.Bottom,w,tp.Create(r.Right,w.Y));
  w.Y:=r.Bottom-(w.Y-r.Top);
  d(4,c.X,r.Top,w,tp.Create(r.Right,w.Y));
  w:=int(a[1][0],a[1][1],a[4][1],a[4][2],tp.Create(r.Left,0),tp.Create(r.Bottom,0),r.Top);
  w.Y:=r.BottomRight.Y;
  v:=tp.Create(w);
  v.X := c.X+(c.X-w.X);
  d(5,c.X,a[1][1].Y,w,v);
  p1:=q(a[3][0],a[3][1],q(a[2][0],a[2][2],a[3][0],a[3][2],i),q(a[1][0],a[1][1],a[4][0],a[4][1],i),i);
  d(6,c.X,a[3][1].Y,p1,tp.Create(c.X+(c.X-p1.X),p1.Y));
  d(7,c.X,p1.Y, tp.Create(a[5][1]),tp.Create(a[5][2]));
  a[7][1].Y:=r.Top;
  a[7][2].Y:=r.Top;
  w:=q(a[6][0],a[6][1],a[7][0],a[7][1],i);
  w:=q(w,tp.Create(w.X-20,w.Y),a[4][0],a[4][1],i);
  d(8,c.X,a[4][1].Y,w,tp.Create(c.X+(c.X-w.X),w.Y));
  w:=q(a[5][0],a[5][1],a[7][0],a[7][1],i);
  w:=q(w,tp.Create(w.X-20,w.Y),a[6][0],a[6][1],i);
  d(9,c.X,a[2][1].Y,w,tp.Create(c.X+(c.X-w.X),w.Y));
  FB.Clear(clPurple32);
  FB.PenColor := clBlack32;
  fb.Canvas.Brush.Style:=bsClear;
  FB.Canvas.Ellipse(off,off,500+off,500+off);
  for I := 1 to 9 do
  begin
    p1:=a[i][0];
    w:=a[i][1];
    v:=a[i][2];
    FB.Line(p1.X,p1.Y,w.X,w.Y, fb.PenColor);
    FB.Line(p1.X,p1.Y,v.X,v.Y,fb.PenColor);
    FB.Line(v.X,v.Y,w.X,w.Y,fb.PenColor);
  end;
  FB.Canvas.Brush.Color := clYellow;
  FB.Canvas.FloodFill(c.X,c.Y,clBlack32, fsBorder);
end;
end.

Risultato finora: (Sì, so che le linee non sono perfette ovunque. Non riesco a trovare il problema :() inserisci qui la descrizione dell'immagine
Non so perché, ma i triangoli non mostrano i loro contorni. Lo fanno sul mio bmp salvato.


Qualche aggiornamento su questo?
Taylor Scott,
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.