Proprietà matrice X rivisitata (o la gioia di X)


11

Questa sfida è in parte una sfida di algoritmi, in parte una sfida di ottimizzazione e in parte semplicemente una sfida di codice più veloce.

La matrice AT è completamente specificata dalla sua prima riga re prima colonna c. Ogni elemento rimanente della matrice è solo una copia dell'elemento che è in diagonale verso l'alto e a sinistra. Questo è M[i,j] = M[i-1,j-1]. Permetteremo matrici T che non sono quadrate. Tuttavia, assumiamo sempre che il numero di righe non sia superiore al numero di colonne. Ad esempio, si consideri la seguente matrice 3 per 5 T.

10111
11011
11101

Diciamo che una matrice ha la proprietà X se contiene due insiemi di colonne non vuoti con indici non identici che hanno la stessa somma (vettoriale). La somma vettoriale di una o più colonne è semplicemente una somma saggia delle loro colonne. Questa è la somma di due o più colonne contenenti xelementi, ognuna è un'altra colonna contenente xelementi. La somma di una colonna è banalmente la colonna stessa.

La matrice sopra ha banalmente la proprietà X poiché la prima e l'ultima colonna sono uguali. La matrice identità non ha mai la proprietà X.

Se rimuoviamo solo l'ultima colonna della matrice sopra, otteniamo un esempio che non ha la proprietà X e darebbe un punteggio di 4/3.

1011
1101
1110

L'obiettivo

Il compito è scrivere codice per trovare la matrice T con il punteggio più alto con voci binarie e che non ha la proprietà X. Per chiarezza, una matrice con voci binarie ha la proprietà che ciascuna delle sue voci è 0 o 1.

Punto

Il tuo punteggio sarà il numero di colonne diviso per il numero di righe nella tua matrice di punteggio migliore.

Tie Breaker

Se due risposte hanno lo stesso punteggio, vince la prima inviata.

Nel caso (molto) improbabile che qualcuno trovi un metodo per ottenere punteggi illimitati, verrà accettata la prima prova valida di tale soluzione. Nel caso ancor più improbabile che tu possa trovare una prova dell'ottimalità di una matrice finita, naturalmente assegnerò anche la vittoria.

Suggerimento

Tutte le risposte in Trova la matrice del punteggio più alto senza la proprietà X sono valide qui ma non sono ottimali. Esistono matrici T senza proprietà X che non sono cicliche.

Ad esempio, esiste una matrice 7 per 12 T senza proprietà X ma nessuna tale matrice ciclica.

Il 21/11 batterebbe tutte le risposte attuali di questa e della precedente sfida.

Lingue e biblioteche

Puoi usare qualsiasi lingua che abbia un compilatore / interprete / ecc. Liberamente disponibile. per Linux e tutte le librerie che sono anche disponibili gratuitamente per Linux.

Bonus La prima risposta con un punteggio maggiore di 2 ottiene un premio di ricompensa immediato di 200 punti . Ton Hospel ora ha raggiunto questo obiettivo!


Classifica attuale

  • C ++ . Punteggio 31/15 di Ton Hospel
  • Java . Punteggio 36/19 di Peter Taylor
  • Haskell . Punteggio 14/8 di alexander-brett

Per "due insiemi di colonne non vuoti con indici non identici" intendi due insiemi di colonne che sono disgiunte? Oppure, per riformulare questo, {1, 3}, {1, 5} sono due sottoinsiemi di colonne validi?
pawel.boczarski,

@ pawel.boczarski No not disjoint. Semplicemente non identico. Quindi {1, 3}, {1, 5} è valido.

Ok. Che dire di M [i, 1] - è un "prestito" dall'ultima colonna di M [i-1] (zero non è un indice di colonna matrice valido)? E in realtà questo è "su e sinistra" piuttosto che "su e destra".
pawel.boczarski,

@pawel.boczarski "giusto" era un errore di battitura. Grazie. La prima riga e colonna possono essere impostate su qualsiasi cosa ti piaccia. Definiscono l'intero resto della matrice. Questo risponde alla tua domanda?

Ok ho capito. È stata colpa mia se non ho letto attentamente che è stata definita anche la prima colonna.
pawel.boczarski,

Risposte:


6

C ++, punteggio 23/12 25/13 27/14 28/14 31/15

Finalmente un risultato con rapporto> 2:

rows=15,cols=31
1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 
1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 
1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 
1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 
1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 
0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 
0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1 
1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 
0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 
0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 
0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 
1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 
0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 
0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 0 
1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 

Ho esplorato completamente da 1 a 14 file. 15 richiederebbe troppo tempo per essere esplorato completamente. I risultati sono:

1/1   = 1
2/2   = 1
4/3   = 1.333
5/4   = 1.25
7/5   = 1.4
9/6   = 1.5
12/7  = 1.714
14/8  = 1.75
16/9  = 1.778
18/10 = 1.8
20/11 = 1.818
23/12 = 1.917
25/13 = 1.923
28/14 = 2

Il codice indicato di seguito è una versione precedente del programma. La versione più recente è disponibile su https://github.com/thospel/personal-propertyX .

/*
  Compile using something like:
    g++ -Wall -O3 -march=native -fstrict-aliasing -std=c++11 -g propertyX.cpp -lpthread -o propertyX
*/
#include <cstdint>
#include <climits>
#include <ctgmath>
#include <iostream>
#include <vector>
#include <array>
#include <chrono>
#include <mutex>
#include <atomic>
#include <thread>

using namespace std;

const int ELEMENTS = 2;

using uint    = unsigned int;
using Element = uint64_t;
using Column  = array<Element, ELEMENTS>;
using Set     = vector<Column>;
using Sum     = uint8_t;
using Index   = uint32_t;
using sec = chrono::seconds;

int const PERIOD = 5*60;
int const MAX_ROWS = 54;
int const COL_FACTOR = (MAX_ROWS+1) | 1;                // 55
int const ROW_ZERO   = COL_FACTOR/2;                    // 27
int const ROWS_PER_ELEMENT = CHAR_BIT * sizeof(Element) / log2(COL_FACTOR); //11
Element constexpr ELEMENT_FILL(Element v = ROW_ZERO, int n = ROWS_PER_ELEMENT) {
    return n ? ELEMENT_FILL(v, n-1) * COL_FACTOR + v : 0;
}
Element constexpr POWN(Element v, int n) {
    return n ? POWN(v, n-1)*v : 1;
}
Element const ELEMENT_TOP = POWN(COL_FACTOR, ROWS_PER_ELEMENT -1);
int const MAX_COLS = ROWS_PER_ELEMENT * ELEMENTS;       // 22

atomic<Index> col_next;
atomic<uint>  period;
chrono::steady_clock::time_point start;
mutex period_mutex;

uint ratio_row;
uint ratio_col;
mutex ratio_mutex;

auto const nr_threads = thread::hardware_concurrency();
// auto const nr_threads = 1;

struct State {
    State(uint cols);
    void process(Index i);
    void extend(uint row);
    void print(uint rows);
    Index nr_columns() const { return static_cast<Index>(1) << cols_; }

    Column last_;
    Element top_;
    int top_offset_;
    uint ratio_row_ = 0;
    uint ratio_col_ = 1;
    uint cols_;
    array<Sum, MAX_ROWS + MAX_COLS -1> side;
    vector<Set> sets;
};

ostream& operator<<(ostream& os, Column const& column) {
    for (int i=0; i<ELEMENTS; ++i) {
        auto v = column[i];
        for (int j=0; j<ROWS_PER_ELEMENT; ++j) {
            auto bit = v / ELEMENT_TOP;
            cout << " " << bit;
            v -= bit * ELEMENT_TOP;
            v *= COL_FACTOR;
        }
    }
    return os;
}

State::State(uint cols) : cols_{cols} {
    sets.resize(MAX_ROWS+2);
    for (int i=0; i<2; ++i) {
        sets[i].resize(2);
        for (int j=0; j < ELEMENTS; ++j) {
            sets[i][0][j] =  ELEMENT_FILL();
            sets[i][1][j] =  static_cast<Element>(-1) - ELEMENT_FILL(1);
        }
    }
    top_ = POWN(COL_FACTOR, (cols_-1) % ROWS_PER_ELEMENT);
    top_offset_ = ELEMENTS - 1 - (cols_-1) / ROWS_PER_ELEMENT;
}

void State::print(uint rows) {
    for (auto c=0U; c<cols_;c++) {
        for (auto r=0U; r<rows;r++) {
            cout << static_cast<int>(side[cols_-c+r-1]) << " ";
        }
        cout << "\n";
    }
    cout << "----------" << endl;
}

void check(uint cols, uint t) {
    State state(cols);

    Index nr_columns = state.nr_columns();
    while (1) {
        Index col = col_next++;
        if (col >= nr_columns) break;
        state.process(col);

        auto now = chrono::steady_clock::now();
        auto elapsed = chrono::duration_cast<sec>(now-start).count();
        if (elapsed >= period) {
            lock_guard<mutex> lock{period_mutex};
            if (elapsed >= period) {
                cout << "col=" << col << "/" << nr_columns << " (" << 100.*col/nr_columns << "% " << elapsed << " s)" << endl;
                period = (elapsed/PERIOD+1)*PERIOD;
            }
        }
    }
}

void State::process(Index col) {
    last_.fill(0);
    for (uint i=0; i<cols_; ++i) {
        Element bit = col >> i & 1;
        side[i] = bit;
        Element carry = 0;
        for (int j=0; j<ELEMENTS; ++j) {
            auto c = last_[j] % COL_FACTOR;
            last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
            if (j == top_offset_ && bit) last_[j] += top_;
            carry = c;
        }
    }
    // cout << "col=" << col << ", value=" << last_ << "\n";
    extend(0);
}

void State::extend(uint row) {
    // cout << "Extend row " << row << " " << static_cast<int>(side[cols_+row-1]) << "\n";
    if (row >= MAX_ROWS) throw(range_error("row out of range"));

    // Execute subset sum. The new column is added to set {from} giving {to}
    // {sum} is the other set.
    auto const& set_from = sets[row];
    auto const& set_sum  = sets[row + 1];
    auto      & set_to   = sets[row + 2];
    if (set_to.size() == 0) {
        auto size = 3 * set_from.size() - 2;
        set_to.resize(size);
        for (int j=0; j<ELEMENTS; ++j)
            set_to[size-1][j] = static_cast<Element>(-1) - ELEMENT_FILL(1);
    }

    // Merge sort {set_from - last_} , {set_from} and {set_from + last_}
    auto ptr_sum    = &set_sum[1][0];
    auto ptr_low    = &set_from[0][0];
    auto ptr_middle = &set_from[0][0];
    auto ptr_high   = &set_from[0][0];
    Column col_low, col_high;
    for (int j=0; j<ELEMENTS; ++j) {
        col_low   [j] = *ptr_low++  - last_[j];
        col_high  [j] = *ptr_high++ + last_[j];
    }

    auto ptr_end = &set_to[set_to.size()-1][0];
    auto ptr_to  = &set_to[0][0];
    while (ptr_to < ptr_end) {
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < ptr_middle[j]) goto LOW;
            if (col_low[j] > ptr_middle[j]) goto MIDDLE;
        }
        // low == middle
        // cout << "low == middle\n";
        return;

      LOW:
        // cout << "LOW\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (col_low[j] < col_high[j]) goto LOW0;
            if (col_low[j] > col_high[j]) goto HIGH0;
        }
        // low == high
        // cout << "low == high\n";
        return;

      MIDDLE:
        // cout << "MIDDLE\n";
        for (int j=0; j<ELEMENTS; ++j) {
            if (ptr_middle[j] < col_high[j]) goto MIDDLE0;
            if (ptr_middle[j] > col_high[j]) goto HIGH0;
        }
        // middle == high
        // cout << "middle == high\n";
        return;

      LOW0:
        // cout << "LOW0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++  = col_low[j];
            col_low[j] = *ptr_low++ - last_[j];
        }
        goto SUM;

      MIDDLE0:
        // cout << "MIDDLE0\n";
        for (int j=0; j<ELEMENTS; ++j)
            *ptr_to++ = *ptr_middle++;
        goto SUM;

      HIGH0:
        // cout << "HIGH0\n";
        for (int j=0; j<ELEMENTS; ++j) {
            *ptr_to++ = col_high[j];
            col_high[j] = *ptr_high++ + last_[j];
        }
        goto SUM;
      SUM:
        for (int j=-ELEMENTS; j<0; ++j) {
            if (ptr_to[j] > ptr_sum[j]) {
                ptr_sum += ELEMENTS;
                goto SUM;
            }
            if (ptr_to[j] < ptr_sum[j]) goto DONE;
        }
        // sum == to
        for (int j=-ELEMENTS; j<0; ++j)
            if (ptr_to[j] != ELEMENT_FILL()) {
                // sum == to and to != 0
                // cout << "sum == to\n";
                // cout << set_sum[(ptr_sum - &set_sum[0][0])/ELEMENTS-1] << "\n";
                return;
            }
      DONE:;
    }
    // cout << "Wee\n";
    auto row1 = row+1;
    if (0)
        for (uint i=0; i<row1+2; ++i) {
            cout << "Set " << i << "\n";
            auto& set = sets[i];
            for (auto& column: set)
                cout << column << "\n";
        }

    if (row1 * ratio_col_ > ratio_row_ * cols_) {
        ratio_row_ = row1;
        ratio_col_ = cols_;
        lock_guard<mutex> lock{ratio_mutex};

        if (ratio_row_ * ratio_col > ratio_row * ratio_col_) {

            auto now = chrono::steady_clock::now();
            auto elapsed = chrono::duration_cast<sec>(now-start).count();
            cout << "cols=" << cols_ << ",rows=" << row1 << " (" << elapsed << " s)\n";
            print(row1);
            ratio_row = ratio_row_;
            ratio_col = ratio_col_;
        }
    }

    auto last = last_;

    Element carry = 0;
    for (int j=0; j<ELEMENTS; ++j) {
        auto c = last_[j] % COL_FACTOR;
        last_[j] = last_[j] / COL_FACTOR + carry * ELEMENT_TOP;
        carry = c;
    }

    side[cols_+row] = 0;
    extend(row1);

    last_[top_offset_] += top_;
    side[cols_+row] = 1;
    extend(row1);

    last_ = last;
}

void my_main(int argc, char** argv) {
    if (!col_next.is_lock_free()) cout << "col_next is not lock free\n";
    if (!period.  is_lock_free()) cout << "period is not lock free\n";

    int min_col = 2;
    int max_col = MAX_COLS;
    if (argc > 1) {
        min_col = atoi(argv[1]);
        if (min_col < 2)
            throw(range_error("Column must be >= 2"));
        if (min_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }
    if (argc > 2) {
        max_col = atoi(argv[2]);
        if (max_col < min_col)
            throw(range_error("Column must be >= " + to_string(min_col)));
        if (max_col > MAX_COLS)
            throw(range_error("Column must be <= " + to_string(MAX_COLS)));
    }

    for (int cols = min_col; cols <= max_col; ++cols) {
        cout << "Trying " << cols << " columns" << endl;
        ratio_row = 0;
        ratio_col = 1;
        col_next = 0;
        period = PERIOD;
        start = chrono::steady_clock::now();
        vector<thread> threads;
        for (auto t = 1U; t < nr_threads; t++)
            threads.emplace_back(check, cols, t);
        check(cols, 0);
        for (auto& thread: threads)
            thread.join();
    }
}

int main(int argc, char** argv) {
    try {
        my_main(argc, argv);
    } catch(exception& e) {
        cerr << "Error: " << e.what() << endl;
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}

Questo è fantastico Il grande mistero è se

Per estrapolazione, dovrebbe esistere il 28/14, penso che sarebbe davvero eccitante. Ma è appena fuori portata?

n = 14 richiederebbe circa 200 giorni con il mio codice corrente sulla mia CPU a 8 core. Probabilmente il codice può essere accelerato del 30% circa. Dopo quello, finisco le idee. E la tua estrapolazione sembra comunque piuttosto ottimista ...
Ton Hospel il

Penso che la matrice circolante 50 per 25 con la prima riga 01011011100010111101000001100111110011010100011010 potrebbe funzionare. Ciò è stato riscontrato da un'euristica di ottimizzazione che potrebbe essere utile.

140 ore per una copertura esaustiva di n = 14 è incredibilmente veloce, devo dire.

2

Haskell 14/8 = 1.75

1 1 0 0 0 1 0 1 1 0 1 1 0 0
1 1 1 0 0 0 1 0 1 1 0 1 1 0
0 1 1 1 0 0 0 1 0 1 1 0 1 1
1 0 1 1 1 0 0 0 1 0 1 1 0 1
0 1 0 1 1 1 0 0 0 1 0 1 1 0
0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 1 0 1 1 1 0 0 0 1 0

Precedentemente 9/6 = 1,5

1 0 1 0 1 1 0 0 1
1 1 0 1 0 1 1 0 0
1 1 1 0 1 0 1 1 0
1 1 1 1 0 1 0 1 1
1 1 1 1 1 0 1 0 1
1 1 1 1 1 1 0 1 0

Ho scritto questo, poi ho guardato le risposte all'altra domanda e sono stato ... scoraggiato.

import Data.List
import Data.Hashable
import Control.Monad
import Control.Parallel.Strategies
import Control.Parallel
import qualified Data.HashSet as S

matrix§indices = [ matrix!!i | i<-indices ]

powerset :: [a] -> [[a]]
powerset = filterM (const [True, False])

hashNub :: (Hashable a, Eq a) => [a] -> [a]
hashNub l = go S.empty l
    where
      go _ []     = []
      go s (x:xs) = if x `S.member` s
        then go s xs
        else x : go (S.insert x s) xs

getMatrix :: Int -> Int -> [Int] -> [[Int]]
getMatrix width height vector = [ vector § [x..x+width-1] | x<-[0..height-1] ]

hasDuplicate :: (Hashable a, Eq a) => [a] -> Bool
hasDuplicate m = go S.empty m
    where
        go _ [] = False
        go s (x:xs) = if x `S.member` s
            then True
            else go (S.insert x s) xs

hasProperty :: [[Int]] -> Bool
hasProperty matrix =
    let
        base = replicate (length (matrix !! 0)) 0::[Int]
    in
        if elem base matrix then
            False
        else
            if hasDuplicate matrix then
                False
            else
                if hasDuplicate (map (foldl (zipWith (+)) base) (powerset matrix)) then
                    False
                else
                    True


pmap = parMap rseq

matricesWithProperty :: Int -> Int -> [[[Int]]]
matricesWithProperty n m =
    let
        base = replicate n 0::[Int]
    in
    filter (hasProperty) $
    map (getMatrix n m) $
    sequence [ [0,1] | x<-[0..n+m-1] ]

firstMatrixWithProperty :: Int -> Int -> [[Int]]
firstMatrixWithProperty n m = head $ matricesWithProperty n m

main = mapM (putStrLn. show) $ map (firstMatrixWithProperty 8) [1..]

Grazie! Una risposta di Haskell è sempre molto gradita. Penso che il primo caso interessante sia il 12/7. Puoi prenderlo?

Lo stavo eseguendo su un laptop dual-core 2009, quindi no :) Ci riproverò su una macchina più veloce
alexander-brett

Molto bella. Ho appena aggiunto un commento secondo cui il 21/11 avrebbe battuto tutte le risposte precedenti.

Potresti spiegare cosa genera esattamente il tuo codice per favore?

In main, il numero (in questo caso 8) è l'altezza della matrice e il programma scorre attraverso larghezze [1..]. Per ogni combinazione altezza / larghezza, stampa una matrice di colonne di una matrice valida.
alexander-brett,

1

C

Ecco una risposta che funziona ed è significativamente più efficiente in termini di memoria rispetto a Haskell. Sfortunatamente, il mio computer è ancora troppo lento per ottenere risultati migliori del 14/8 in un ragionevole lasso di tempo.

Prova a compilare gcc -std=c99 -O2 -fopenmp -o matrices.exe matrices.ced eseguire con matrices.exe width heighto simili. L'output è un numero intero, i cui bit formano la base per la matrice in questione, ad esempio:

$ matrices.exe 8 14
...
valid i: 1650223

Quindi, poiché 1650223 = 0b110010010111000101111la matrice in questione è:

0 0 1 1 1 0 1 0 0 1 0 0 1 1
0 ...
1 ...
0
1
1
1
1

Se qualcuno con 8 core e tempo a disposizione vuole farlo funzionare per un po ', penso che potrebbero derivarne alcune cose positive :)


#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

/*
 * BEGIN WIKIPEDIA CODE
 */
const long long m1  = 0x5555555555555555; //binary: 0101...
const long long m2  = 0x3333333333333333; //binary: 00110011..
const long long m4  = 0x0f0f0f0f0f0f0f0f; //binary:  4 zeros,  4 ones ...
const long long m8  = 0x00ff00ff00ff00ff; //binary:  8 zeros,  8 ones ...
const long long m16 = 0x0000ffff0000ffff; //binary: 16 zeros, 16 ones ...
const long long m32 = 0x00000000ffffffff; //binary: 32 zeros, 32 ones
const long long hff = 0xffffffffffffffff; //binary: all ones
const long long h01 = 0x0101010101010101; //the sum of 256 to the power of 0,1,2,3...
//This uses fewer arithmetic operations than any other known
//implementation on machines with fast multiplication.
//It uses 12 arithmetic operations, one of which is a multiply.
long long hamming(long long x) {
    x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
    x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
    x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits
    return (x * h01)>>56;  //returns left 8 bits of x + (x<<8) + (x<<16) + (x<<24) + ...
}
/*
 * END WIKIPEDIA CODE
 */

int main ( int argc, char *argv[] ) {
    int height;
    int width;

    sscanf(argv[1], "%d", &height);
    sscanf(argv[2], "%d", &width);

    #pragma omp parallel for
    for (
        /*
         * We know that there are 2^(h+w-1) T-matrices, defined by the entries
         * in the first row and first column. We'll let the long long i
         * represent these entries, with 1s represented by set bits.
         *
         * The first (0) and last (1) matrix we will ignore.
         */
        long long i = 1;
        i < (1 << (height+width-1))-1;
        i++
    ) {
        // Flag for keeping track as we go along.
        int isvalid = 1;

        /*
         * Start by representing the matrix as an array of columns, with each
         * non-zero matrix entry as a bit. This allows us to construct them and
         * check equality very quickly.
         */
        long *cols = malloc(sizeof(long)*width);
        long colmask = (1 << height)-1;
        for (int j = 0; j < width; j++) {
            cols[j] = (i >> j) & colmask;
            if (cols[j] == 0) {
                //check no zero rows
                isvalid = 0;
            } else {
                //check no duplicate rows
                for (int k = 0; k < j; k++) {
                    if (cols[j] == cols[k]) {
                        isvalid = 0;
                    }
                }
            }
        }

        if (isvalid == 1) {
            /*
             * We'll also represent the matrix as an array of rows, in a
             * similar manner.
             */
            long *rows = malloc(sizeof(long)*height);
            long rowmask = (1 << width)-1;
            for (int j = 0; j < height; j++) {
                rows[j] = (i >> j) & rowmask;
            }

            int *sums[(1 << width)];
            for (long j = 0; j < 1<<width; j++) {
                sums[j] = (int*)malloc(sizeof(int)*height);
            }

            for (
                /*
                 * The powerset of columns has size 2^width. Again with the
                 * long; this time each bit represents whether the
                 * corresponding row is a member of the subset. The nice thing
                 * about this is we can xor the permutation with each row,
                 * then take the hamming number of the resulting number to get
                 * the sum.
                 */
                long permutation = 1;
                (isvalid == 1) && (permutation < (1 << width)-1);
                permutation ++
            ) {
                for (int j = 0; j < height; j++) {
                    sums[permutation][j] = hamming( rows[j] & permutation);
                }
                for (int j = permutation-1; (isvalid == 1) && (j > -1); j--) {
                    if (memcmp(sums[j], sums[permutation], sizeof(int)*height) == 0) {
                        isvalid = 0;
                    }
                }
            }

            for (long j = 0; j < 1<<width; j++) {
                free(sums[j]);
            }

            free(rows);

        }

        if (isvalid == 1) {
            printf ("valid i: %ld\n", i);
        }

        free(cols);
    }

    return 0;
}

Ottengo alexander-brett.c: nella funzione 'main': alexander-brett.c: 107: 21: avvertenza: dichiarazione implicita della funzione 'memcmp' [-Wimplicit-function-dichiarazione] if (memcmp (sums [j], somme [permutazione], sizeof (int) * height) == 0) {^ alexander-brett.c: 122: 13: avvertenza: il formato '% ld' prevede l'argomento di tipo 'long int', ma l'argomento 2 ha tipo ' long long int '[-Wformat =] printf ("valido i:% ld \ n", i);

Quanto tempo impiega ./alexander-brett 8 14 per te?

Ciao Lembik, 8 14 ho ricevuto 5 risposte in un'ora per me su una macchina quad core. Sono riuscito a compilare con quelle intestazioni su Windows, sarebbe strano se memcmp mancasse ...
alexander-brett


Ho provato il tuo codice con 7 12 e una delle risposte che genera è valid i: 7481. Nel python bin (7481) è 0b1110100111001 che non è abbastanza lungo. Qualche idea di cosa stia succedendo?
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.