C + PicoSAT , 2345 995 952 byte
#include<picosat.h>
#define f(i,a)for(i=a;i;i--)
#define g(a)picosat_add(E,a)
#define b calloc(z+1,sizeof z)
#define e(a,q)if(a)A[q]^A[p]?l[q]++||(j[++k]=q):s[q]||(i[q]=p,u(q));
z,F,v,k,n,h,p,q,r,C,*x,*A,*i,*l,*s,*j,*m;u(p){s[m[++n]=p]=1;e(p%F-1,p-1)e(p%F,p+1)e(p>F,p-F)e(p<=F*v-F,p+F)}t(){f(q,k)l[j[q]]=0;f(q,n)s[m[q]]=0;k=n=0;i[p]=-1;u(p);}main(){void*E=picosat_init();if(scanf("%d,%d",&F,&v)-2)abort();z=F*v;for(x=b;scanf("%d,%d,%d",&r,&p,&q)==3;g(p),g(0))x[p=F-p+q*F]=r;f(p,F*v-F)if(p%F)g(p),g(p+1),g(p+F),g(p+F+1),g(0);for(A=b,i=b,l=b,s=b,j=b,m=b;!C;){picosat_sat(E,C=h=-1);f(p,F*v)A[p]=picosat_deref(E,p)>0,i[p]=0;f(p,F*v)if(x[p])if(i[q=p]){for(g(-q);i[q]+1;)q=i[q],g(-q);g(C=0);}else if(t(),r=n-x[p]){f(q,r<0?k:n)g(r<0?j[q]:-m[q]);g(C=0);}f(p,F*v)if(!i[p])if(t(),A[p]){g(-++z);f(q,k)g(j[q]);g(C=0);f(q,n)g(-m[q]),g(z),g(0);}else{C&=h++;f(q,k)g(-j[q]);g(++z);g(++z);g(0);f(q,F*v)g(s[q]-z),g(q),g(0);}}f(p,F*v)putchar(A[p]?35:46),p%F-1||puts("");}
Provalo online!
(Attenzione: questo link TIO è un URL da 30 kilobyte che contiene una copia minimizzata di PicoSAT 965, quindi potresti non essere in grado di caricarlo in alcuni browser, ma si carica almeno in Firefox e Chrome.)
Come funziona
Inizializziamo il solutore SAT con una variabile per ogni cella (terra o acqua) e solo i seguenti vincoli:
- Ogni cella numerata è terra.
- Ogni rettangolo 2 × 2 ha almeno una terra.
Il resto dei vincoli è difficile da codificare direttamente in SAT, quindi invece eseguiamo il solutore per ottenere un modello, eseguiamo una sequenza di ricerche approfondite per trovare le regioni connesse di questo modello e aggiungere ulteriori vincoli come segue:
- Per ogni cella numerata in una regione di terra che è troppo grande, aggiungi un vincolo che dovrebbe esserci almeno una cella di acqua tra le attuali celle di terra in quella regione.
- Per ogni cella numerata in una regione di terra che è troppo piccola, aggiungi un vincolo che ci dovrebbe essere almeno una cellula di terra tra le attuali celle d'acqua che confinano con quella regione.
- Per ogni cella numerata nella stessa regione di terra di un'altra cella numerata, aggiungi un vincolo che dovrebbe esserci almeno una cella d'acqua lungo il percorso delle celle di terra correnti tra di loro (trovata camminando sui puntatori padre lasciati dalla prima ricerca di profondità ).
- Per ogni regione di terra senza celle numerate, aggiungi anche i vincoli
- tutte quelle attuali celle terrestri dovrebbero essere acqua, o
- almeno una delle attuali celle d'acqua che confina con quella regione dovrebbe essere terra.
- Per ogni regione acquatica, aggiungi anche dei vincoli
- tutte quelle attuali celle ad acqua dovrebbero essere terra, o
- ogni cellula diversa da quelle attuali dovrebbe essere terra o
- almeno una delle attuali celle terrestri al confine con quella regione dovrebbe essere acqua.
Sfruttando l'interfaccia incrementale della libreria PicoSAT, possiamo immediatamente rieseguire il risolutore inclusi i vincoli aggiunti, preservando tutte le precedenti inferenze fatte dal risolutore. PicoSAT ci offre un nuovo modello e continuiamo a ripetere i passaggi precedenti fino a quando la soluzione non è valida.
Questo è straordinariamente efficace; risolve istanze 15 × 15 e 20 × 20 in una piccola frazione di secondo.
(Grazie a Lopsy per aver suggerito questa idea di vincolare in modo interattivo le regioni connesse in un solutore SAT incrementale, qualche tempo fa.)
Una pagina casuale di 15 × 15 puzzle ( 5057541 , 5122197 , 5383030 , 6275294 , 6646970 , 6944232 ):
15,15 1,5,1 3,9,1 5,4,2 1,6,2 2,11,2 2,2,3 3,9,3 2,4,4 1,10,4 5,12,4 3,1,5 1,3,5 3,8,5 1,13,5 5,5,6 1,12,6 1,2,8 2,9,8 1,1,9 2,6,9 6,11,9 3,13,9 5,2,10 2,4,10 4,10,10 1,5,11 2,12,11 2,3,12 2,8,12 5,10,12 1,5,13 1,9,13 1,6,14 1,8,14
15,15 4,2,0 2,5,0 1,3,1 2,14,2 1,3,3 2,11,3 1,13,3 1,5,4 11,7,4 1,9,4 1,4,5 1,8,5 2,10,5 12,14,5 3,5,6 1,4,7 2,10,7 3,9,8 4,0,9 1,4,9 1,6,9 3,10,9 1,5,10 1,7,10 8,9,10 1,1,11 10,3,11 2,11,11 6,0,12 1,11,13 2,9,14 1,12,14
15,15 2,2,0 8,10,0 2,3,1 2,14,2 2,3,3 3,5,3 3,9,3 2,11,3 5,13,3 6,0,4 3,7,4 3,3,5 2,11,5 2,6,6 1,8,6 1,4,7 2,10,7 1,6,8 2,8,8 5,3,9 2,11,9 2,7,10 7,14,10 2,1,11 4,3,11 2,5,11 1,9,11 2,11,11 2,0,12 4,6,13 1,11,13 3,4,14 1,12,14
15,15 2,0,0 2,4,0 3,6,1 2,10,1 1,13,1 2,5,2 2,12,2 3,0,3 2,2,3 4,7,3 2,9,3 1,14,3 1,4,4 1,8,4 2,12,5 4,2,6 3,4,6 1,14,6 7,7,7 1,10,8 2,12,8 3,2,9 2,14,9 2,0,10 2,6,10 1,10,10 2,5,11 4,7,11 2,12,11 1,14,11 3,2,12 3,9,12 1,1,13 2,4,13 3,8,13 2,10,14 5,14,14
15,15 1,3,0 1,14,0 3,7,1 3,10,1 2,13,1 3,1,2 4,5,2 2,12,3 3,3,4 1,8,4 1,1,5 3,5,5 1,9,5 5,13,5 3,3,6 1,8,6 2,2,7 2,12,7 1,6,8 1,8,8 2,11,8 2,1,9 4,5,9 2,9,9 2,13,9 2,6,10 4,11,10 1,2,11 3,9,12 2,13,12 3,1,13 2,4,13 3,7,13 1,0,14
15,15 2,8,0 2,4,1 2,7,1 1,10,1 6,4,3 1,1,4 12,5,4 3,11,4 5,13,4 3,10,5 3,0,6 1,6,6 2,8,6 4,13,7 2,3,8 1,6,8 3,8,8 2,14,8 2,4,9 5,1,10 4,3,10 1,9,10 6,13,10 3,8,11 1,10,11 3,4,13 2,7,13 3,10,13 1,6,14 1,14,14
Una pagina casuale di 20 × 20 puzzle normali ( 536628 , 3757659 ):
20,20 1,0,0 3,2,0 2,6,0 1,13,0 3,9,1 3,15,1 2,7,2 3,13,2 3,0,3 2,3,3 3,18,3 3,5,4 2,9,4 2,11,4 2,16,4 1,0,5 2,7,5 1,10,5 1,19,5 3,2,6 1,11,6 2,17,6 2,0,7 3,4,7 5,6,7 2,9,7 4,13,7 3,15,7 1,3,8 1,10,8 1,14,9 2,18,9 3,1,10 2,4,10 1,8,10 1,10,10 3,12,10 3,16,10 1,9,11 1,17,11 2,19,11 2,0,12 2,2,12 1,4,12 4,6,12 2,13,12 2,15,12 1,14,13 2,17,13 1,3,14 2,5,14 4,7,14 2,15,14 3,0,15 1,2,15 2,13,15 3,18,15 3,7,16 7,10,16 1,17,16 2,0,17 2,3,17 2,5,17 3,11,17 3,15,17 1,0,19 1,2,19 1,4,19 2,6,19 5,8,19 1,11,19 1,13,19 3,15,19 2,18,19
20,20 1,0,0 1,4,0 5,8,0 1,17,0 1,19,0 2,17,2 3,6,3 2,10,3 2,12,3 4,14,3 6,0,4 3,4,4 4,7,4 1,11,4 1,18,4 1,6,5 3,12,5 4,15,5 4,4,6 2,16,6 2,19,6 6,0,7 3,10,7 2,12,8 2,17,8 3,3,9 2,5,9 4,8,9 2,10,9 3,0,10 1,2,10 5,14,10 2,16,10 2,19,10 7,7,11 3,12,12 2,17,12 2,2,13 4,4,13 3,6,13 4,14,13 3,0,14 1,3,14 1,5,14 3,16,14 1,2,15 1,9,15 2,11,15 5,13,15 3,19,15 1,4,16 3,6,16 1,3,17 1,12,17 1,14,17 1,16,17 6,0,19 2,2,19 3,5,19 2,7,19 5,9,19 1,11,19 2,13,19 1,15,19 4,17,19