Mathematica, 2535 byte
Tratto da qui (quindi perché è wiki della comunità). Non proprio quello da golf. Visualizza il link fornito per la spiegazione dell'autore del suo codice.
Inoltre, non sono un esperto di Mathematica, ma scommetto che Martin potrebbe fare miracoli sulla lunghezza del codice. Non capisco nemmeno la matematica dietro di esso.
L'ho lasciato leggibile, ma se la domanda non viene chiusa, passerò oltre la leggibilità e sposterò gli altri 2 parametri all'interno della funzione chiamante.
Attualmente non valido , sentiti libero di aiutarti a migliorarlo:
HyperbolicLine[{{Px_, Py_}, {Qx_, Qy_}}] :=
If[N[Chop[Px Qy - Py Qx]] =!= 0.,
Circle[OrthoCentre[{{Px, Py}, {Qx, Qy}}],
OrthoRadius[{{Px, Py}, {Qx, Qy}}],
OrthoAngles[{{Px, Py}, {Qx, Qy}}]], Line[{{Px, Py}, {Qx, Qy}}]]
OrthoCentre[{{Px_, Py_}, {Qx_, Qy_}}] :=
With[{d = 2 Px Qy - 2 Py Qx, p = 1 + Px^2, q = 1 + Qx^2 + Qy^2},
If[N[d] =!= 0., {p Qy + Py^2 Qy - Py q, -p Qx - Py^2 Qx + Px q}/d,
ComplexInfinity]]
OrthoRadius[{{Px_, Py_}, {Qx_, Qy_}}] :=
If[N[Chop[Px Qy - Py Qx]] =!= 0.,
Sqrt[Total[OrthoCentre[{{Px, Py}, {Qx, Qy}}]^2] - 1], Infinity]
OrthoAngles[{{Px_, Py_}, {Qx_, Qy_}}] :=
Block[{a, b, c = OrthoCentre[{{Px, Py}, {Qx, Qy}}]},
If[(a = N[Apply[ArcTan, {Px, Py} - c]]) < 0., a = a + 2 \[Pi]];
If[(b = N[Apply[ArcTan, {Qx, Qy} - c]]) < 0.,
b = b + 2 \[Pi]]; {a, b} = Sort[{a, b}];
If[b - a > \[Pi], {b, a + 2 \[Pi]}, {a, b}]]
Inversion[Circle[{Cx_, Cy_}, r_], {Px_, Py_}] := {Cx, Cy} +
r^2 {Px - Cx, Py - Cy}/((Cx - Px)^2 + (Cy - Py)^2)
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], {Px_, Py_}] := {Cx, Cy} +
r^2 {Px - Cx, Py - Cy}/((Cx - Px)^2 + (Cy - Py)^2)
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], p_Line] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, p, {2}]
Inversion[Circle[{Cx_, Cy_}, r_, {a_, b_}], p_Polygon] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, p, {2}]
Inversion[Line[{{Px_, Py_}, {Qx_, Qy_}}], {Ux_, Uy_}] :=
With[{u = Px - Qx,
v = Qy - Py}, {-Ux (v^2 - u^2) - 2 u v Uy,
Uy (v^2 - u^2) - 2 u v Ux}/(u^2 + v^2)]
Inversion[Line[{{Px_, Py_}, {Qx_, Qy_}}], p_Polygon] :=
Map[Inversion[Line[{{Px, Py}, {Qx, Qy}}], #] &, p, {2}]
Inversion[Circle[{Cx_, Cy_}, r_], c_List] :=
Map[Inversion[Circle[{Cx, Cy}, r], #] &, c]
PolygonInvert[p_Polygon] :=
Map[Inversion[HyperbolicLine[#], p] &,
Partition[Join[p[[1]], {p[[1, 1]]}], 2, 1]]
PolygonInvert[p_List] := Flatten[Map[PolygonInvert[#] &, p]]
LineRule = Polygon[x_] :> Line[Join[x, {x[[1]]}]];
HyperbolicLineRule =
Polygon[x_] :>
Map[HyperbolicLine, Partition[Join[x, {x[[1]]}], 2, 1]];
CentralPolygon[p_Integer, q_Integer, \[Phi]_: 0] :=
With[{r = (Cot[\[Pi]/p] Cot[\[Pi]/q] - 1)/
Sqrt[Cot[\[Pi]/p]^2 Cot[\[Pi]/q]^2 - 1], \[Theta] = \[Pi] Range[
1, 2 p - 1, 2]/p},
r Map[{{Cos[\[Phi]], -Sin[\[Phi]]}, {Sin[\[Phi]], Cos[\[Phi]]}}.# &,
Transpose[{Cos[\[Theta]], Sin[\[Theta]]}]]]
PolygonUnion[p_Polygon, tol_: 10.^-10] := p
PolygonUnion[p_List, tol_: 10.^-10] :=
With[{q = p /. Polygon[x_] :> N[Polygon[Round[x, 10.^-10]]]},
DeleteDuplicates[q]]
HyperbolicTessellation[p_Integer, q_Integer, \[Phi]_, k_Integer,
t_: 10.^-10] :=
Map[PolygonUnion[#, t] &,
NestList[PolygonInvert, Polygon[CentralPolygon[p, q, \[Phi]]],
k][[{-2, -1}]]] /; k > 0
HyperbolicTessellation[p_Integer, q_Integer, \[Phi]_, k_Integer,
t_: 10.^-10] := Polygon[CentralPolygon[p, q, \[Phi]]] /; k == 0
HyperbolicTessellationGraphics[p_Integer, q_Integer, \[Phi]_,
k_Integer, rule_RuleDelayed, opts___] :=
Graphics[{Circle[{0, 0}, 1],
HyperbolicTessellation[p, q, \[Phi], k, 10.^-10] /. rule}, opts]
Chiamato come:
HyperbolicTessellationGraphics[3, 7, 0., 7, HyperbolicLineRule, ImageSize -> 300, PlotLabel -> "{7,7}"]