Ceylon / Ceylon, 49,86 40,95 punti
La terza versione utilizza Ceylon 1.2 per il generatore e 509 byte di codice:
import ceylon.language{S=String,I=Integer,e=expand}S q(I n)=>n==0then"0"else(n<0then"-"+p(-n,"-")else p(n,"+"));variable Map<[I,S],S>c=map{};S p(I n,S s){S v=c[[n,s]]else(n<8then s.join([1].repeat(n)))else(let(a="+-".replace(s,""))e(e{for(x in 2..8)let(l=(n^(1.0/x)).integer){for(r in l:2)if(r>1)let(w=r^x){if(w-n<n)"("+p(r,"+")+")^("+p(x,"+")+")"+(w<n then s+p(n-w,s)else(n<w then a+p(w-n,a)else""))}}}).reduce<S>((x,y)=>x.size<y.size then x else y))else"";c=[n,s]in c then c else map{[n,s]->v,*c};return v;}
Si scende a 35.22 punti, ma non lo inserirò nella linea del titolo perché Celyon 1.2 è stato pubblicato solo il 29 ottobre. Non credo che sarei in grado di implementare questo algoritmo in Ceylon 1.1 in queste dimensioni.). Maggiori dettagli laggiù, qui descriverò la seconda versione. (La prima versione può essere vista nella cronologia: supportava solo numeri positivi, ma si adattava a 256 byte.)
Seconda versione
Ora la seconda versione, che supporta numeri interi negativi (e 0), e in genere crea un output un po 'più breve utilizzando in aggiunta -
. (Questa versione utilizza effettivamente la lunghezza consentita, la prima ha tentato di rimanere sotto i 256 byte anziché 512).
String proof(Integer n) {
if (n == 0) { return "0"; }
if (n < 0) { return "-" + p(-n, "-"); }
return p(n, "+");
}
String p(Integer n, String sign) {
if (n < 9) {
return sign.join([1].repeat(n));
}
value anti = (sign == "+") then "-" else "+";
value root = ((n^0.5) + 0.5).integer;
return "(" + p(root, "+") + ")^(1+1)" +
( (root^2 < n) then sign + p(n - root^2, sign) else
((n < root^2) then anti + p(root^2 - n, anti) else ""));
}
Il codice ha una lunghezza di 487, quindi c'è ancora spazio per ulteriori ottimizzazioni in seguito. (Ci sono anche molte riserve in forma di spazi bianchi e nomi di variabili lunghe.)
Il punteggio:
Total positive: 42652
Average positive:42.652
Total negative: 43653
Average negative: 43.60939060939061
With bonus:39.24845154845155
Overall score: 40.95022577422577
Alcuni output di esempio:
27: 21: (1+1+1+1+1)^(1+1)+1+1
28: 23: (1+1+1+1+1)^(1+1)+1+1+1
29: 25: (1+1+1+1+1)^(1+1)+1+1+1+1
30: 27: (1+1+1+1+1)^(1+1)+1+1+1+1+1
31: 29: (1+1+1+1+1+1)^(1+1)-1-1-1-1-1
32: 27: (1+1+1+1+1+1)^(1+1)-1-1-1-1
33: 25: (1+1+1+1+1+1)^(1+1)-1-1-1
34: 23: (1+1+1+1+1+1)^(1+1)-1-1
-27: 22: -(1+1+1+1+1)^(1+1)-1-1
-28: 24: -(1+1+1+1+1)^(1+1)-1-1-1
-29: 26: -(1+1+1+1+1)^(1+1)-1-1-1-1
-30: 28: -(1+1+1+1+1)^(1+1)-1-1-1-1-1
-31: 30: -(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
-32: 28: -(1+1+1+1+1+1)^(1+1)+1+1+1+1
-33: 26: -(1+1+1+1+1+1)^(1+1)+1+1+1
-34: 24: -(1+1+1+1+1+1)^(1+1)+1+1
993: 65: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1+1)^(1+1)+1+1+1+1+1
994: 63: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1-1
995: 61: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1-1
996: 59: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1-1
997: 57: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1-1
998: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)-1
999: 53: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)
1000: 55: ((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)-(1+1+1+1+1)^(1+1)+1
-993: 66: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1+1)^(1+1)-1-1-1-1-1
-994: 64: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1+1
-995: 62: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1+1
-996: 60: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1+1
-997: 58: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1+1
-998: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)+1
-999: 54: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)
-1000: 56: -((1+1+1+1+1+1)^(1+1)-1-1-1-1)^(1+1)+(1+1+1+1+1)^(1+1)-1
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 15: 1+1+1+1+1+1+1+1
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 16: -1-1-1-1-1-1-1-1
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
Come puoi vedere, quelli negativi sono sempre un byte (il primo -
) più lunghi di quelli positivi corrispondenti.
L'idea di base è la stessa del programma precedente: trovare un quadrato vicino al nostro numero target e rappresentare ricorsivamente la sua radice e il resto. Ma ora permettiamo che il nostro quadrato sia anche un po 'più grande del numero target, il che rende il resto negativo. (È +0.5
possibile modificare una costante diversa per modificare l'algoritmo, ma sembra che qui abbia già raggiunto l'ottimale - sia 0.4 che 0.6 danno risultati peggiori.)
Per rendere negativi i valori negativi (e altrimenti avere la stessa struttura di quelli positivi, passiamo l'operatore sign
alla nostra funzione ricorsiva p
- ovvero o "+"
oppure "-"
. Possiamo usarlo anche per il joiner in casi banali (cioè n <9) come per il resto se è positivo e usa il segno opposto per il resto se è negativo.
La proof
funzione gestisce il segno iniziale (con un caso speciale per 0), la p
funzione esegue il lavoro effettivo, con ricorsione.
Terza versione, per Ceylon 1.2
import ceylon.language { S=String, I=Integer,e=expand }
// output a base-proof Ceylon expression for an integer
// (i.e. using only 0 and 1 as digits).
//
// Question: http://codegolf.stackexchange.com/q/58084/2338
// My Answer: http://codegolf.stackexchange.com/a/58122/2338
//
// The goal is to produce an expression as short as possible, with
// the code staying under 512 bytes in length.
//
// This approach is to represent a positive integer as a square
// of a positive integer plus some remainder (where the remainder
// can be negative), and for negative integers replace the + on the
// outer level by -.
S q(I n) =>
n == 0 then "0"
else (n < 0 then "-" + p(-n, "-")
else p(n, "+"));
// cache for values of p
variable Map<[I, S],S> c = map { };
// Transforms a positive number into a base-proof term, using
// the given sign for the summation on the outer level.
S p(I n, S s) {
S v =
// look into the cache
c[[n, s]] else (
// hard-code small numbers
n < 8 then s.join([1].repeat(n)))
else
// do the complicated stuff
(let (a = "+-".replace(s,""))
e(e {
for (x in 2..8) // try these exponents
let (l = (n ^ (1.0 / x)).integer) // \[ sqrt[exp]{n} \] in LaTeX
{ for (r in l:2) // lowerRoot, lowerRoot + 1
if (r > 1)
let (w = r ^ x)
{ if (w-n < n) // avoid recursion to larger or same number
// format the string as r^x + (n-w)
"(" + p(r, "+") + ")^(" + p(x, "+") + ")" +
(w < n then s + p(n - w, s)
else (n < w then a + p(w - n, a)
else ""))
} } })
// and now find the shortest formatted string
.reduce<S>((x, y) => x.size < y.size then x else y))
// this should never happen, but we can't tell the compiler
// that at least some of the iterables are non-empty due to the if clause.
else "";
// this builds a new cache in each step – quite wasteful,
// as this also happens when the value was found in the cache,
// but we don't have more characters remaining.
//// c = map { [n, s] -> v, *c };
///better way:
c = [n,s] in c then c else map{[n,s]->v, *c};
return v;
}
La versione golfata (ovvero commenti e spazi bianchi rimossi) è pubblicata in alto, esattamente a 509 byte di codice.
Questo utilizza lo stesso principio di base della seconda versione, ma invece di solo quadrati, cerca anche di usare potenze numeriche più elevate (tentando esponenti da 2 a 8) e usa il risultato più breve. Inoltre memorizza nella cache i risultati, altrimenti questo sarebbe inaccettabilmente lento per numeri più grandi con molte chiamate ricorsive.
punteggio:
Total positive: 36622
Average positive: 36.622
Total negative: 37623
Average negative: 37.58541458541458
With bonus:33.826873126873124
Overall score: 35.22443656343656
Il grande costrutto rientrato nel mezzo sono tre comprimibili comprensioni comprensibili, i due interni all'interno di un'espressione let. Questi non vengono quindi rilevati utilizzando la funzione di espansione due volte e la reduce
funzione trova la più breve di quelle stringhe.
Ho presentato una richiesta di funzionalità per poterlo fare in una sola comprensione.
All'interno della comprensione, stiamo costruendo una stringa dalla radice r
, dall'esponente x
e dal resto ( n-w
o w-n
).
L' let
espressione e la map
funzione sono nuove in Ceylon 1.2. map
avrebbe potuto essere sostituito da HashMap
(che avrebbe richiesto più caratteri per l'importazione, anche se probabilmente sarebbe ancora più veloce, dato che non avrei creato la mappa nuova per ogni nuova voce). Le let
espressioni come let (w = r ^ x)
avrebbero potuto essere sostituite usando una if
clausola like if(exists w = true then r ^ x)
(e quindi non avrei nemmeno avuto bisogno delle due expand
chiamate), ma questo sarebbe comunque un po 'più lungo, non rientrando nei 511 byte consentiti.
Qui gli output di esempio corrispondenti a quelli selezionati sopra, tutti tranne i numeri veramente piccoli sono più brevi:
27: 15: (1+1+1)^(1+1+1)
28: 17: (1+1+1)^(1+1+1)+1
29: 19: (1+1+1)^(1+1+1)+1+1
30: 21: (1+1)^(1+1+1+1+1)-1-1
31: 19: (1+1)^(1+1+1+1+1)-1
32: 17: (1+1)^(1+1+1+1+1)
33: 19: (1+1)^(1+1+1+1+1)+1
34: 21: (1+1)^(1+1+1+1+1)+1+1
-27: 16: -(1+1+1)^(1+1+1)
-28: 18: -(1+1+1)^(1+1+1)-1
-29: 20: -(1+1+1)^(1+1+1)-1-1
-30: 22: -(1+1)^(1+1+1+1+1)+1+1
-31: 20: -(1+1)^(1+1+1+1+1)+1
-32: 18: -(1+1)^(1+1+1+1+1)
-33: 20: -(1+1)^(1+1+1+1+1)-1
-34: 22: -(1+1)^(1+1+1+1+1)-1-1
993: 39: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1-1
994: 37: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1-1
995: 35: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1-1
996: 33: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1-1
997: 31: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1-1
998: 29: ((1+1+1)^(1+1)+1)^(1+1+1)-1-1
999: 27: ((1+1+1)^(1+1)+1)^(1+1+1)-1
1000: 25: ((1+1+1)^(1+1)+1)^(1+1+1)
-993: 40: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1+1
-994: 38: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1+1
-995: 36: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1+1
-996: 34: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1+1
-997: 32: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1+1
-998: 30: -((1+1+1)^(1+1)+1)^(1+1+1)+1+1
-999: 28: -((1+1+1)^(1+1)+1)^(1+1+1)+1
-1000: 26: -((1+1+1)^(1+1)+1)^(1+1+1)
1: 1: 1
2: 3: 1+1
3: 5: 1+1+1
4: 7: 1+1+1+1
5: 9: 1+1+1+1+1
6: 11: 1+1+1+1+1+1
7: 13: 1+1+1+1+1+1+1
8: 13: (1+1)^(1+1+1)
9: 13: (1+1+1)^(1+1)
10: 15: (1+1+1)^(1+1)+1
0: 1: 0
-1: 2: -1
-2: 4: -1-1
-3: 6: -1-1-1
-4: 8: -1-1-1-1
-5: 10: -1-1-1-1-1
-6: 12: -1-1-1-1-1-1
-7: 14: -1-1-1-1-1-1-1
-8: 14: -(1+1)^(1+1+1)
-9: 14: -(1+1+1)^(1+1)
-10: 16: -(1+1+1)^(1+1)-1
Ad esempio, ora abbiamo 1000 = (3 ^ 2 + 1) ^ 3, anziché 1000 = (6 ^ 2-4) ^ 2-5 ^ 2 + 1.
0
o1
per impostazione predefinita?