C, 813 byte
#include<map>
#include<set>
#include<cstdlib>
typedef int I;typedef char*C;I a,t,s,h;struct p{I x,y;}j,k;std::map<I,std::set<I>>l;std::map<I,p>g;C m,M=" |-";I L(I n,C q,C Q){j=g[n],h=1;for(I o:l[n])if(g.find(o)!=g.end())if(!(a=(k=g[o]).y==j.y)&&k.x^j.x)h=0;else for(I x=j.x,y=j.y,e=k.y*s+k.x,b,d=(k.x<j.x||k.y<j.y)?-1:1;a?x+=d:y+=d,(b=y*s+x)^e;m[b]=q[a])if(m[b]^Q[a]){h=0;break;}}I N(){for(auto i:g)for(I n:l[i.first])if(g.find(n)==g.end())return n;for(auto i:l)if(g.find(a=i.first)==g.end())return a;exit(puts(m));}I f(){for(I n=N(),x,y=0,b;y<s;y+=2)for(x=0;x<s;x+=2)m[b=y*s+x]==*M?g[n]={x,y},m[b]=n,L(n,M+2,M),h&&f(),L(n,M,M+2),m[b]=*M,g.erase(n):0;}I main(I c,C*v){for(;--c;l[a].insert(s),l[s].insert(a))a=v[c][0],s=v[c][1];t=l.size(),s=t|1;memset(m=(C)calloc(s,s),*M,s*s-1);for(a=1;a<s;++a)m[a*s-1]=10;f();}
Accetta input come argomenti della riga di comando, ad esempio:
./network AB BF BL FK LK KR KS RP SJ SP JA TV VN
In nessun luogo vicino alla concorrenza con la risposta di aditsu per dimensione, ma molto più efficiente!
Ciò forzerà tutte le possibili soluzioni, ma riconoscerà rapidamente il fallimento man mano che procede. Per i due casi di test, termina quasi immediatamente e sembra richiedere solo pochi secondi per input più scomodi. Inoltre non ha limiti ai nomi dei nodi accettati (anche se non puoi nominare uno spazio, |
o-
) e non ha limiti al numero di nodi (purché tutti i nomi si adattino a un byte, quindi il limite pratico è 252 nodi, e rallenterà molto prima di raggiungere così tanti).
C'è un sacco di spazio per accelerare questo; molte uscite di cortocircuito sono andate perse a causa del golf, e ci sono parti che potrebbero essere spostate da circuiti a caldo. Anche alcune osservazioni di simmetria possono ridurre drasticamente il posizionamento dei primi 2 nodi, tra le altre cose.
Abbattersi:
#include<map>
#include<set>
#include<cstdlib>
typedef int I;
typedef char*C;
I a,t,s,h; // Variables shared between functions
struct p{I x,y;} // Coord datatype
j,k; // Temporary coord references
std::map<I,std::set<I>>l; // Bidirectional multimap of node links
std::map<I,p>g; // Map of nodes to positions
C m, // Rendered grid
M=" |-"; // Lookup table for output characters
// Line rendering function
// Sets h to 1 if all lines are drawn successfully, or 0 if there is a blocker
I L(I n,C q,C Q){
j=g[n],h=1;
for(I o:l[n]) // For each connection to the current node
if(g.find(o)!=g.end()) // If the target node has been positioned
if(!(a=(k=g[o]).y==j.y)&&k.x^j.x)h=0; // Fail if the nodes are not aligned
else
for(I x=j.x,y=j.y, // Loop from node to target
e=k.y*s+k.x,
b,d=(k.x<j.x||k.y<j.y)?-1:1;
a?x+=d:y+=d,(b=y*s+x)^e;
m[b]=q[a]) // Render character (| or -)
if(m[b]^Q[a]){h=0;break;} // Abort if cell is not blank
}
// Next node selection: finds the next connected node to try,
// or the next unconnected node if the current connected set is complete.
// Displays the result and exits if the entire graph has been rendered.
I N(){
for(auto i:g)for(I n:l[i.first]) // Search for a connected node...
if(g.find(n)==g.end())return n; // ...and return the first available
for(auto i:l) // Else search for an unconnected node...
if(g.find(a=i.first)==g.end())
return a; // ...and return the first available
exit(puts(m)); // Else draw the grid to screen and stop
}
// Recursive brute-force implementation
I f(){
for(I n=N(),x,y=0,b;y<s;y+=2) // Loop through all grid positions
for(x=0;x<s;x+=2)
m[b=y*s+x]==*M // If the current position is available
?g[n]={x,y}, // Record the location for this node
m[b]=n, // Render the node
L(n,M+2,M), // Render lines to connected nodes
h&&f(), // If line rendering succeeded, recurse
L(n,M,M+2), // Un-render lines
m[b]=*M,g.erase(n) // Un-render node
:0;
}
// Input parsing and grid setup
I main(I c,C*v){
// Parse all inputs into a bidirectional multi-map
for(;--c;l[a].insert(s),l[s].insert(a))a=v[c][0],s=v[c][1];
t=l.size(),s=t|1; // Calculate a grid size
// Allocate memory for the grid and render newlines
memset(m=(C)calloc(s,s),*M,s*s-1);
for(a=1;a<s;++a)m[a*s-1]=10;
f(); // Begin recursive solving
}
H A
e quel bordo non è nell'output dato. Modifica: problema identificato e risolto.