Di recente ho ottenuto una scacchiera irregolare davvero strana. Le sue piazze sono ovunque e nemmeno tutte collegate. Almeno sono ancora disposti su una griglia regolare. Voglio adattare le regole degli scacchi per poter giocare sul tabellone, ma per cominciare, ho bisogno di un pezzo che possa effettivamente andare ovunque sul tabellone, e sembra che un salto sia la mia scommessa migliore per quello.
I Leapers sono la generalizzazione degli scacchi fatati dei cavalieri. I Leaper sono parametrizzati da due numeri interi m e n e possono spostare m quadrati in una direzione e poi altri n quadrati in entrambe le direzioni perpendicolari. Per il cavaliere standard, abbiamo (m, n) = (2, 1) . L'intera mossa è considerata un singolo salto in modo tale che nessuno dei quadrati sulla strada verso il bersaglio deve essere vuoto o addirittura esistere.
La sfida
Ti viene data una "scacchiera" sotto forma di un elenco di coordinate intere 2D positive che rappresentano i quadrati che fanno parte della scacchiera. Il tuo compito è quello di trovare un saltatore che, con abbastanza mosse, possa raggiungere qualsiasi quadrato sul tabellone.
Diamo un'occhiata ad alcuni esempi. La scacchiera standard utilizza una griglia regolare di 8x8 quadrati (nota che per questa sfida non distinguiamo tra quadrati bianchi e neri):
########
########
########
########
########
########
########
########
Il cavaliere standard può raggiungere tutti questi, quindi (2, 1)
sarebbe un risultato valido. Tuttavia, (1, 1)
ad esempio, non sarebbe valido, dal momento che un pezzo del genere può raggiungere solo la metà dei quadrati indipendentemente da dove inizia. (1, 0)
d'altra parte sarebbe anche un output valido, poiché tutti i quadrati sono collegati ortogonalmente.
Ora se abbiamo una tavola irregolare come:
# #
# # #
# # #
# #
#
Quindi le possibili soluzioni sono (1, 1)
e (3, 1)
. Possiamo anche avere una scheda con regioni completamente disconnesse come:
#### ####
#### ####
#### ####
#### ####
Il cavaliere standard (2, 1)
può ancora raggiungere tutti i quadrati qui, che in realtà è l'unica soluzione.
E infine, la seguente semplice scheda non può essere completamente raggiunta da nessun leaper:
#
##
Si noti che il formato di input non sarà come una rappresentazione ASCII ma un elenco di coordinate. Ad esempio il secondo esempio sopra potrebbe essere dato come:
[[1, 1], [5, 1], [2, 2], [4, 2], [6, 2], [3, 3], [5, 3], [7, 3], [2, 4], [4, 4], [5, 5]]
Regole
È possibile scrivere un programma o una funzione, prendendo l'input tramite STDIN (o l'alternativa più vicina), l'argomento della riga di comando o l'argomento della funzione e producendo il risultato tramite STDOUT (o l'alternativa più vicina), il valore di ritorno della funzione o il parametro della funzione (out).
Le coordinate di input possono essere prese in qualsiasi formato di elenco conveniente (elenco piatto, elenco di coppie, elenco di numeri interi complessi, stringa con separatori coerenti, ecc.).
L'output dovrebbe essere i due numeri interi m e n che identificano il leaper se esiste una soluzione (come due numeri interi separati, un elenco, una stringa con delimitatore non numerico, ecc.). Se non esiste una soluzione, è possibile generare un valore coerente che non può essere un leaper valido. Ciò include la coppia di numeri interi (0, 0)
nel tuo formato normale, nonché qualsiasi cosa che non sia una coppia di numeri interi non negativi.
Il tuo programma deve gestire uno qualsiasi dei casi di test entro un minuto . Questa è una restrizione un po 'confusa, ma usa il buon senso: se ci vogliono 2 minuti sul tuo computer, penso che possiamo supporre che potrebbe funzionare entro 1 su quello di qualcun altro, ma se ci vogliono 20 è meno probabile. Non dovrebbe essere difficile risolvere ogni caso di test in pochi secondi, quindi questa regola agisce solo per escludere l'ingenua forza bruta.
Si applicano le regole standard del code-golf .
Casi test
Ogni caso di test ha la forma board => all valid leapers
. Ricorda che devi solo produrre uno di questi. Se l'elenco dei jumpers è vuoto, assicurarsi di restituire qualcosa che non sia un leaper valido.
Examples above:
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [3, 8], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [4, 8], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [5, 8], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [6, 8], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7], [7, 8], [8, 1], [8, 2], [8, 3], [8, 4], [8, 5], [8, 6], [8, 7], [8, 8]] => [[0, 1], [1, 2], [1, 4], [2, 3], [3, 4]]
[[1, 1], [5, 1], [2, 2], [4, 2], [6, 2], [3, 3], [5, 3], [7, 3], [2, 4], [4, 4], [5, 5]] => [[1, 1], [1, 3]]
[[1, 1], [2, 2], [3, 2]] => []
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4], [4, 1], [4, 2], [4, 3], [4, 4], [6, 1], [6, 2], [6, 3], [6, 4], [7, 1], [7, 2], [7, 3], [7, 4], [8, 1], [8, 2], [8, 3], [8, 4], [9, 1], [9, 2], [9, 3], [9, 4]] => [[1, 2]]
Square boards:
[[1, 1], [1, 2], [2, 1], [2, 2]] => [[0, 1]]
[[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3, 3]] => [[0, 1]]
[[1, 1], [1, 2], [1, 3], [1, 4], [2, 1], [2, 2], [2, 3], [2, 4], [3, 1], [3, 2], [3, 3], [3, 4], [4, 1], [4, 2], [4, 3], [4, 4]] => [[0, 1], [1, 2]]
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5]] => [[0, 1], [1, 2]]
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] => [[0, 1], [1, 2], [2, 3]]
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6], [6, 7], [7, 1], [7, 2], [7, 3], [7, 4], [7, 5], [7, 6], [7, 7]] => [[0, 1], [1, 2], [2, 3]]
Miscellaneous:
[[1, 1], [2, 1]] => [[0, 1]]
[[1, 1], [1, 2]] => [[0, 1]]
[[1, 1], [12, 35]] => [[11, 34]]
[[1, 1], [1, 2], [2, 1], [2, 2], [6, 1], [6, 2], [6, 3], [6, 4], [7, 1], [7, 2], [7, 3], [7, 4], [8, 1], [8, 2], [8, 3], [8, 4], [9, 1], [9, 2], [9, 3], [9, 4]] => []
[[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [3, 1], [3, 2], [3, 5], [3, 6], [4, 1], [4, 2], [4, 5], [4, 6], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5], [5, 6], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5], [6, 6]] => [[0, 1], [1, 2], [1, 4]]
[[2, 2], [2, 4], [2, 6], [2, 8], [4, 2], [4, 4], [4, 6], [4, 8], [6, 2], [6, 4], [6, 6], [6, 8], [8, 2], [8, 4], [8, 6], [8, 8]] => [[0, 2], [2, 4]]
Random boards:
[[1, 5], [1, 9], [2, 6], [2, 8], [2, 10], [2, 12], [3, 5], [3, 7], [3, 9], [3, 11], [3, 13], [4, 2], [4, 4], [4, 6], [4, 8], [4, 14], [5, 1], [5, 3], [5, 5], [5, 7], [6, 2], [6, 4], [7, 1], [8, 2]] => [[1, 1], [1, 3]]
[[1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 1], [2, 2], [2, 3], [2, 4], [2, 7], [3, 1], [3, 2], [3, 3], [3, 4], [3, 6], [3, 7], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [5, 3], [5, 4], [5, 6]] => [[0, 1], [1, 2]]
[[1, 8], [2, 6], [2, 10], [3, 3], [3, 4], [3, 8], [4, 1], [4, 11], [5, 3], [5, 9], [6, 12], [8, 11], [10, 10], [11, 12], [12, 6], [12, 8], [13, 6], [13, 8], [13, 10], [13, 11], [14, 5], [14, 7], [14, 8], [14, 13], [14, 14], [15, 7], [15, 9], [15, 11], [15, 12], [16, 6], [16, 7], [16, 9], [16, 13], [16, 14], [17, 10], [17, 12], [18, 8], [18, 12], [20, 9], [21, 11], [22, 13], [23, 10], [23, 11], [23, 15], [24, 12]] => [[1, 2]]
[[1, 17], [1, 21], [3, 11], [3, 15], [3, 19], [3, 23], [5, 13], [5, 21], [7, 11], [7, 15], [7, 19], [9, 1], [9, 13], [9, 17], [11, 3], [11, 7], [11, 15], [11, 19], [13, 5], [13, 9], [13, 13], [13, 17], [13, 21], [15, 11], [15, 15], [15, 19], [17, 13], [17, 17]] => [[2, 2], [2, 6], [2, 10]]
[[1, 3], [2, 4], [2, 5], [3, 6], [4, 1], [5, 3], [5, 6], [5, 7], [6, 12], [6, 14], [6, 21], [7, 9], [7, 19], [8, 9], [8, 15], [8, 17], [8, 18], [8, 24], [9, 12], [9, 19], [10, 12], [10, 14], [10, 17], [10, 21], [11, 22], [12, 15], [12, 17], [12, 24], [13, 16], [14, 20], [14, 21], [14, 26], [15, 13], [15, 19], [16, 18], [16, 23], [17, 16], [17, 24]] => [[2, 3]]
[[1, 11], [3, 13], [4, 10], [6, 14], [8, 12], [9, 9], [9, 15], [12, 8], [13, 5], [13, 19], [13, 21], [14, 8], [15, 1], [15, 17], [16, 4], [16, 14], [16, 18], [16, 20], [17, 21], [18, 2], [18, 16], [18, 18], [19, 9], [19, 13], [19, 15], [20, 12], [21, 1], [21, 17], [22, 4], [22, 10], [23, 7]] => [[1, 3]]
[[1, 39], [6, 37], [8, 32], [10, 27], [11, 31], [11, 35], [12, 22], [16, 21], [16, 29], [16, 33], [18, 34], [21, 3], [21, 9], [21, 19], [23, 8], [23, 14], [23, 22], [23, 24], [23, 36], [24, 6], [25, 13], [25, 17], [26, 1], [26, 11], [28, 6], [28, 20], [28, 26], [28, 30], [28, 34], [30, 11], [30, 15], [30, 21], [32, 6], [33, 28], [33, 32], [35, 13], [35, 23]] => [[2, 5]]
Come caso speciale, si noti che per una scheda costituita da una sola cella, qualsiasi leaper funziona, ma l'output deve corrispondere a un leaper reale, quindi [0, 0]
non è un output valido.
[[1, 0], [0, 1]]
?
(2,1)
? Correggimi se sbaglio, ma sono abbastanza sicuro che i cavalieri possano spostare 3 quadrati in una direzione e quindi 1 quadrato in qualsiasi direzione perpendicolare alla precedente, quindi dovrebbe essere invece(3,1)
.