Proteggi la tua lattina con la tua vita!


10

Consente di giocare a Kick The Can!

Sebbene Moogie sia l'attuale vincitore, se qualcuno può prendere la sua corona, è incoraggiato a farlo

Kick the can è un gioco per bambini. Coinvolgere un difensore e più attaccanti. Oggi non è più un gioco del genere! Il tuo compito è quello di scrivere un robot che lo suona, per vincere, in stile !

https://en.wikipedia.org/wiki/Kick_the_can

Ci sono alcune differenze chiave in questo gioco. La prima differenza chiave è che il gioco è multiplayer (5v5). La seconda differenza fondamentale è che entrambi i set di robot possono uccidere ed eliminare i giocatori nemici con entrambe le mine e le bombe lanciate! I robot non possono vedere mine (indipendentemente dalla distanza) o giocatori a più di cinque isolati di distanza!

La mappa è un labirinto come segue.

Labirinto

Questo labirinto è generato proceduralmente creando prima un labirinto usando un algoritmo di backtracking ricorsivo di profondità. E quindi posizionando i fori mostrati in (oltre a rendere il labirinto più "imperfetto". Il labirinto è largo 65x65 blocchi e indicizzato zero. Quindi la bandiera blu (lattina) è a 1,1 e la bandiera rossa (lattina) è a 63,63. La squadra blu viene generata a 2,2 e 3,3 4,4 ecc. La squadra rossa viene generata a 62,62 e 61,61, 60,60 ecc. I blocchi in ciano sono robot della squadra blu e i blocchi in magenta sono bot rossi. Il gioco è sempre cinque contro 5. Ogni bot del team utilizzerà il codice (ma potrebbe memorizzare altre variabili di istanza (o creare file locali) per tenere traccia dello stato e differenziare i ruoli.


gameplay

Le miniere possono essere posizionate come puoi vedere in grigio. E le bombe possono essere lanciate fino a una distanza massima di quattro blocchi. Questi viaggiano per un massimo di quattro blocchi attraverso i muri e altri giocatori uccidono solo i nemici che si frappongono sulla tua strada. Dopo ogni passaggio hanno una probabilità del 40% di cadere. Quindi hanno il 100% di possibilità di 1 raggio 60% a 2 raggio 36% a 3 raggio e il 21,6% a 3 raggio Posizionare una miniera o lanciare una bomba richiede munizioni a una squadra. Questo inizia da 0 e può essere aumentato raccogliendo le caselle arancioni. Nota che quattro (4) di queste cache delle munizioni saranno comodamente centrate. I robot sono allineati in una schiera di due rossi e due blu. IE RRRRRBBBBB. Consentire di sventolare la bandiera è permesso, ma attenzione che stare vicino alla bandiera (cioè meno di cinque blocchi) provoca lentezza e consente solo il movimento. ogni tre turni. L'Arena sceglie un antipasto casuale per ogni turno. IO.

Obbiettivo

Programma i tuoi cinque robot (ognuno ha lo stesso file di classe) per navigare con successo nel labirinto e toccare la lattina avversaria facendo attenzione a non rovesciare accidentalmente la propria lattina o calpestare una miniera.

Programmazione

Le voci dell'arena e dei bot sono attualmente in Java, tuttavia esiste un wrapper stdin / out per altre lingue.

Il codice arena verrà reso disponibile ma qui sono i dettagli rilevanti.

Classe Bot

public class YourUniqueBotName extends Bot{
public YourUniqueBotName(int x , int y, int team){
super(x,y,team);
//optional code
}
public Move move(){//todo implement this method 
//it should output  a Move();
//A move has two paramaters
//direction is from 0 - 3 as such
//         3
//       2-I-0
//         1
// a direction of 4 or higher means a no-op (i.e stay still)
//And a MoveType. This movetype can be    
//MoveType.Throw
//MoveType.Mine
//MoveType.Defuse defuse any mine present in the direction given
//MoveType.Move
}
}

Metodi chiave disponibili

Si noti che l'utilizzo di qualsiasi tecnica per modificare o accedere ai dati a cui generalmente non si dovrebbe avere accesso non è consentito e comporterà la squalifica.

Arena.getAmmo()[team];//returns the shared ammo cache of your team

Arena.getMap();//returns an integer[] representing the map. Be careful since all enemies more than 5 blocks away (straight line distance) and all mines are replaced with constant for spaces
//constants for each block type are provided such as Bot.space Bot.wall Bot.mine Bot.redTeam Bot.blueTeam Bot.redFlag Bot.blueFlag

Arena.getAliveBots();//returns the number of bots left

getX();//returns a zero indexed x coordinate you may directly look at (but not change X)

getY();//returns a zero indexed y coordinate (y would work to, but do not change y's value)

//Although some state variables are public please do not cheat by accessing modifying these

Specifiche dell'interfaccia del wrapper StdIn / Out

L'interfaccia è composta da due modalità: inizializzazione e funzionamento.

Durante la modalità di inizializzazione, un singolo frame INIT viene inviato tramite stdout. Le specifiche di questo frame sono le seguenti:

INIT
{Team Membership Id}
{Game Map}
TINI

Dove: {ID iscrizione squadra} è un singolo personaggio: R o B. B che significa squadra blu, R che significa squadra rossa.

{Mappa del gioco} è una serie di righe di caratteri ASCII che rappresentano una riga della mappa. Sono validi i seguenti caratteri ASCII: F = bandiera blu G = bandiera rossa O = spazio aperto W = muro

Il gioco procederà quindi a inviare frame di gioco su stdout a ciascun bot in questo modo:

FRAME
{Ammo}
{Alive Bot Count}
{Bot X},{Bot Y}
{Local Map}
EMARF

Dove:

{Ammo} è una stringa di cifre, il valore sarà 0 o maggiore {Alive Bot Count} è una stringa di cifre, il valore sarà 0 o maggiore {Box X} è una stringa di cifre che rappresenta la coordinata X del bot sulla mappa del gioco. Il valore sarà 0 <= X <Larghezza mappa. {Riquadro Y} è una stringa di cifre che rappresenta la coordinata Y del bot sulla mappa di gioco. Il valore sarà 0 <= Y <Altezza mappa. {Local Map} è una serie di righe di caratteri ASCII che rappresentano l'intera mappa che circonda il bot. Sono validi i seguenti caratteri ASCII: F = bandiera blu G = bandiera rossa O = spazio aperto W = muro R = bot squadra rossa B = bot squadra blu M = miniera A = munizioni

Il controller si aspetta che il bot emetta (su stdout) una risposta a riga singola nel formato:

{Action},{Direction}

Dove:

{Azione} è uno dei seguenti: Sposta Disattiva lancio miniera

{Direzione} è una singola cifra compresa tra 0 e 4 inclusi. (vedi le informazioni sulla direzione in precedenza)

NOTA: tutte le stringhe saranno delimitate dal carattere \ n Fine linea.

Questo sarà un torneo di eliminazione. I miei robot campione parteciperanno come riempitori, ma non mi concederò la vittoria. In caso di vittoria di uno dei miei robot, il titolo passa al secondo posto e continuerà fino a quando non ci sarà un bot che non è uno dei miei. Ogni partita è composta da 11 colpi di calcio della lattina. Se nessuna delle due squadre ha vinto una sola partita, entrambe vengono eliminate. Se c'è un pareggio con punteggio diverso da zero, verrà giocata una partita di pareggio. Se rimane un pareggio, entrambi vengono eliminati. I round successivi possono consistere in più partite. Il seeding del torneo si baserà sul numero di voti a partire dal 31/07/16 (la data è soggetta a modifiche).

Ogni partita dura 4096 turni. Una vittoria garantisce un punto. Un pareggio o una perdita concede zero punti. In bocca al lupo!

Sentiti libero di consultare il codice o di criticarlo in questo GitHub Repo.

https://github.com/rjhunjhunwala/BotCTF/blob/master/src/botctf/Arena.java


Nota che non ho interpreti per troppe lingue sul mio computer e potrei aver bisogno di volontari per eseguire la simulazione sul loro computer. Oppure posso scaricare l'interprete linguistico. Assicurati che i tuoi robot.

  • Rispondi in un ragionevole lasso di tempo (ad esempio 250 ms)
  • Non danneggerà la mia macchina host

@Moogie Ho deciso di rilasciare questo
Rohan Jhunjhunwala,

Nella mappa locale, cosa mostra per le tessere oltre la visione dei robot?
solo il

Mostra la mappa. L'unica cosa è che non puoi vedere i robot a una distanza maggiore. I tuoi robot sono dotati di una vera mappa dell'arena, ma potrebbero non essere lì dove si nascondono avversari furtivi. @justhalf
Rohan Jhunjhunwala

@Moogie, mi chiedevo se potessi scrivere un bot Python per me, così posso testare il wrapper stdin / stdout
Rohan Jhunjhunwala

Quindi la mappa oltre la visione dei robot mostrerà solo come spazio vuoto, giusto?
solo il

Risposte:


4

NavPointBot, Java 8

inserisci qui la descrizione dell'immagine Il bot è bianco / blu

Questo bot nomina un leader da robot amici per ogni fotogramma che assegnerà quindi punti di navigazione a ciascun bot verso cui navigare.

Inizialmente, tutti i robot sono in servizio di deposito di munizioni, quindi vengono assegnati due robot come guardie con il resto in cerca di munizioni e quindi attaccando la bandiera nemica.

Ho scoperto che il gioco dipende molto dalla posizione iniziale dei depositi. In quanto tale, non posso davvero dire che questo bot sia migliore di tutti gli altri.

Corri con java NavPointBot

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.UUID;

public final class NavPointBot implements Serializable 
{
    private static final int[][] offsets = new int[][]{{-1,0},{0,-1},{1,0},{0,1}};
    private static final List<int[]> navPointsBlue = Arrays.asList(new int[][]{{1,2},{2,1}});
    private static final List<int[]> navPointsRed = Arrays.asList(new int[][]{{63,62},{62,63}});
    transient private static int mapWidth=0;
    transient private static int mapHeight=0;
    transient private char[][] map;
    transient private char team;
    transient private int ammo;
    transient private int botsAlive;
    transient private int enemyFlagX;
    transient private int enemyFlagY;
    private int frameCount;
    private int botX;
    private int botY;
    private String id;
    private int navPointX;
    private int navPointY;

    transient static Object synchObject = new Object(); // used for file read/write synchronisation if multiple instances are run in the same VM

    final static class Data implements Serializable
    {
        int frameCount;
        boolean[][] diffusedMap = new boolean[mapWidth][mapHeight];
        Map<String,NavPointBot> teamMembers = new HashMap<>();
    }

    interface DistanceWeigher
    {
        double applyWeight(NavPointBot p1Bot, PathSegment p1);
    }

    static class PathSegment
    {
        public PathSegment(int tileX, int tileY, int fscore, int gscore, PathSegment parent, int direction, int targetX, int targetY)
        {
            super();
            this.tileX = tileX;
            this.tileY = tileY;
            this.fscore = fscore;
            this.gscore = gscore;
            this.parent = parent;
            this.direction = direction;
            this.targetX = targetX;
            this.targetY = targetY;
        }
        public PathSegment(PathSegment parent)
        {
            this.parent = parent;
            this.targetX = parent.targetX;
            this.targetY = parent.targetY;
        }
        int tileX;
        int tileY;
        int fscore;
        int gscore;
        int direction;
        PathSegment parent; 
        int targetX;
        int targetY;
    }

    public static void main(String[] args) throws Exception
    {
        new NavPointBot(UUID.randomUUID().toString());
    }

    private NavPointBot(String id) throws Exception
    {
        this.id = id;
        System.err.println("NavPointBot ("+id+") STARTED");

        Data data;
        while(true)
        {
            String line=readLine(System.in);

            // decode initial frame
            if ("INIT".equals(line))
            {
                // read team membership
                team = readLine(System.in).charAt(0);

                // get the map
                line = readLine(System.in);

                List<char[]> mapLines = new ArrayList<>();
                while(!"TINI".equals(line))
                {
                    mapLines.add(line.toCharArray());
                    line = readLine(System.in);
                }
                map = mapLines.toArray(new char[][]{});
                mapHeight = map.length;
                mapWidth = map[0].length;

                out:
                for (int y = 0; y<mapHeight;y++)
                {
                    for (int x=0; x<mapWidth;x++)
                    {
                        if (map[y][x]==(team=='B'?'G':'F'))
                        {
                            enemyFlagX = x;
                            enemyFlagY = y;
                            break out;
                        }
                    }
                }
                data = readSharedData();
                data.diffusedMap=new boolean[mapWidth][mapHeight];
                writeSharedData(data);

            }
            else
            {
                System.err.println("Unknown command received: "+line);
                return;
            }

            line = readLine(System.in);
            while (true)
            {
                // decode frame
                if ("FRAME".equals(line))
                {
                    frameCount = Integer.parseInt(readLine(System.in));
                    ammo = Integer.parseInt(readLine(System.in));
                    botsAlive = Integer.parseInt(readLine(System.in));
                    line = readLine(System.in);
                    String[] splits = line.split(",");
                    botX = Integer.parseInt(splits[0]);
                    botY = Integer.parseInt(splits[1]);

                    // get the map
                    line = readLine(System.in);

                    int row=0;
                    while(!"EMARF".equals(line))
                    {
                        map[row++] = line.toCharArray();
                        line = readLine(System.in);
                    }
                }
                else
                {
                    System.err.println("Unknown command received: "+line);
                    return;
                }


                data = readSharedData();

                // this bot is nomitated to be the leader for this frame
                if (data.frameCount<frameCount || (frameCount==0 && data.frameCount > 3))
                {
                    data.frameCount=frameCount;

                    List<NavPointBot> unassignedBots = new ArrayList<>(data.teamMembers.values());

                    // default nav points to be enemy flag location.
                    unassignedBots.forEach(t->{t.navPointY=enemyFlagY;t.navPointX=enemyFlagX;});

                    // after 700 frames assume dead lock so just storm the flag, otherwise...
                    if (frameCount<700)
                    {
                        // if the after the initial rush then we will assign guard(s) while we have enemies
                        if (frameCount>70 && botsAlive > data.teamMembers.size())
                        {
                            Map<NavPointBot, PathSegment> navPointDistances = assignBotShortestPaths(unassignedBots,team=='B'?navPointsBlue:navPointsRed,true, new DistanceWeigher() {

                                @Override
                                public double applyWeight( NavPointBot owner ,PathSegment target) {
                                    return target.gscore;
                                }
                            });
                            navPointDistances.keySet().forEach(s->{s.navPointX=navPointDistances.get(s).targetX;s.navPointY=navPointDistances.get(s).targetY;});
                        }


                        // the remaining bots will go to ammo depots with a preference to the middle ammo depots
                        List<int[]> ammoDepots = new ArrayList<>();
                        for (int y = 0; y<mapHeight;y++)
                        {
                            for (int x=0; x<mapWidth;x++)
                            {
                                if (map[y][x]=='A')
                                {
                                    ammoDepots.add(new int[]{x,y});
                                }
                            }
                        }

                        System.err.println("ammoDepots: "+ammoDepots.size());
                        if (ammoDepots.size()>0)
                        {
                            Map<NavPointBot, PathSegment> ammoDistances = assignBotShortestPaths(unassignedBots,ammoDepots,true, new DistanceWeigher() {

                                @Override
                                public double applyWeight( NavPointBot owner ,PathSegment target) {
                                    return target.gscore + (Math.abs(target.targetX-mapWidth/2)+Math.abs(target.targetY-mapHeight/2)*10);
                                }
                            });


                            // assign ammo depot nav points to closest bots
                            ammoDistances.keySet().forEach(s->{s.navPointX=ammoDistances.get(s).targetX;s.navPointY=ammoDistances.get(s).targetY;});
                        }
                    }

                    System.err.println("FRAME: "+frameCount+" SET");
                    data.teamMembers.values().forEach(bot->System.err.println(bot.id+" nav point ("+bot.navPointX+","+bot.navPointY+")"));
                    System.err.println();
                }


                // check to see if enemies are in range, if so attack the closest
                List<int[]> enemies = new ArrayList<>();
                for (int y = 0; y<mapHeight;y++)
                {
                    for (int x=0; x<mapWidth;x++)
                    {
                        if (map[y][x]==(team=='B'?'R':'B'))
                        {
                            int attackDir = -1;
                            int distance = -1;
                            if (x==botX && Math.abs(y-botY) < 4) { distance =  Math.abs(y-botY); attackDir = botY-y<0?1:3;}
                            if (y==botY && Math.abs(x-botX) < 4) { distance =  Math.abs(x-botX); attackDir = botX-x<0?0:2;}
                            if (attackDir>-1)
                            {
                                enemies.add(new int[]{x,y,distance,attackDir});
                            }
                        }
                    }
                }

                enemies.sort(new Comparator<int[]>() {

                    @Override
                    public int compare(int[] arg0, int[] arg1) {
                        return arg0[2]-arg1[2];
                    }
                });

                String action;

                // attack enemy if one within range...
                if (enemies.size()>0)
                {
                    action = "Throw,"+enemies.get(0)[3];
                }
                else
                {
                    // set action to move to navpoint
                    PathSegment pathSegment = pathFind(botX,botY,navPointX,navPointY,map,true);
                    action = "Move,"+pathSegment.direction;

                    // clear mines if within 5 spaces of enemy flag

                    if ((team=='B' && botX>=mapWidth-5 && botY>=mapHeight-5 ) ||
                        (team=='R' && botX<5 && botY<5 ))
                    {
                        if (!data.diffusedMap[pathSegment.parent.tileX][pathSegment.parent.tileY])
                        {
                            action = "Defuse,"+pathSegment.direction;
                            data.diffusedMap[pathSegment.parent.tileX][pathSegment.parent.tileY]=true;
                        }
                    }

                }

                writeSharedData(data);
                System.out.println(action);
                line = readLine(System.in);
            }
        }
    }

    /**
     * assigns bots to paths to the given points based on distance to the points with weights adjusted by the given weigher implementation 
     */
    private Map<NavPointBot, PathSegment> assignBotShortestPaths(List<NavPointBot> bots, List<int[]> points, boolean exact, DistanceWeigher weigher) {

        Map<Integer,List<PathSegment>> pathMap = new HashMap<>();
        final Map<PathSegment,NavPointBot> pathOwnerMap = new HashMap<>();

        for (NavPointBot bot : bots)
        {
            for(int[] navPoint: points)
            {
                List<PathSegment> navPointPaths = pathMap.get((navPoint[0]<<8)+navPoint[1]);
                if (navPointPaths == null)
                {
                    navPointPaths = new ArrayList<>();
                    pathMap.put((navPoint[0]<<8)+navPoint[1],navPointPaths);
                }
                PathSegment path = pathFind(bot.botX,bot.botY,navPoint[0],navPoint[1],map,exact);
                pathOwnerMap.put(path, bot);
                navPointPaths.add(path);
            }
        }


        // assign bot nav point based on shortest distance
        Map<NavPointBot, PathSegment> results = new HashMap<>();
        for (int[] navPoint: points )
        {
            List<PathSegment> navPointPaths = pathMap.get((navPoint[0]<<8)+navPoint[1]);

            if (navPointPaths !=null)
            {
                Collections.sort(navPointPaths, new Comparator<PathSegment>() {

                    @Override
                    public int compare(PathSegment p1, PathSegment p2) {

                        NavPointBot p1Bot = pathOwnerMap.get(p1);
                        NavPointBot p2Bot = pathOwnerMap.get(p2);
                        double val = weigher.applyWeight(p1Bot, p1) - weigher.applyWeight(p2Bot, p2);
                        if (val == 0)
                        {

                            return p1Bot.id.compareTo(p2Bot.id);
                        }
                        return val<0?-1:1;
                    }
                });

                for (PathSegment shortestPath : navPointPaths)
                {
                    NavPointBot bot = pathOwnerMap.get(shortestPath);

                    if (!results.containsKey(bot) )
                    {
                        results.put(bot,shortestPath);
                        bots.remove(bot);
                        break;
                    }
                }
            }
        }
        return results;
    }

    /**
     * reads in the previous bot's view of teammates aka shared data
     */
    private Data readSharedData() throws Exception
    {
        synchronized(synchObject)
        {
            File dataFile = new File(this.getClass().getName()+"_"+team);

            Data data;
            if (dataFile.exists())
            {
                FileInputStream in = new FileInputStream(dataFile);
                try {
                    java.nio.channels.FileLock lock = in.getChannel().lock(0L, Long.MAX_VALUE, true);
                    try {
                        ObjectInputStream ois = new ObjectInputStream(in);
                        data = (Data) ois.readObject();
                    } catch(Exception e)
                    {
                        System.err.println(id+": CORRUPT shared Data... re-initialising");
                        data = new Data();
                    }
                    finally {
                        lock.release();
                    }
                } finally {
                    in.close();
                }
            }
            else
            {
                System.err.println(id+": No shared shared Data exists... initialising");
                data = new Data();
            }

            //purge any dead teammates...
            for (NavPointBot bot : new ArrayList<>(data.teamMembers.values()))
            {
                if (bot.frameCount < frameCount-3 || bot.frameCount > frameCount+3)
                {
                    data.teamMembers.remove(bot.id);
                }
            }

            // update our local goals to reflect those in the shared data
            NavPointBot dataBot = data.teamMembers.get(id);
            if (dataBot !=null)
            {
                this.navPointX=dataBot.navPointX;
                this.navPointY=dataBot.navPointY;
            }

            // ensure that we are a team member
            data.teamMembers.put(id, this);

            return data;
        }
    }

    private void writeSharedData(Data data) throws Exception
    {
        synchronized(synchObject)
        {
            File dataFile = new File(this.getClass().getName()+"_"+team);
            FileOutputStream out = new FileOutputStream(dataFile);

            try {
                java.nio.channels.FileLock lock = out.getChannel().lock(0L, Long.MAX_VALUE, false);
                try {
                    ObjectOutputStream oos = new ObjectOutputStream(out);
                    oos.writeObject(data);
                    oos.flush();
                } finally {
                    lock.release();
                }
            } finally {
                out.close();
            }
        }
    }

    /**
     * return the direction to move to travel for the shortest route to the desired target location
     */
    private PathSegment pathFind(int startX, int startY, int targetX,int targetY,char[][] map,boolean exact)
    {
        // A*
        if (startX==targetX && startY==targetY)
        {
            return new PathSegment(targetX,targetY,0, 0,null,4,targetX,targetY);//PathSegment.DEFAULT;
        }
        else
        {
            int[][] tileIsClosed = new int[mapWidth][mapHeight];

            // find an open space in the general vicinity if exact match not required
            if (!exact)
            {
                out:
                for (int y=-1;y<=1;y++)
                {
                    for (int x=-1;x<=1;x++)
                    {
                        if (startX == targetX+x && startY==targetY+y)
                        {
                            return new PathSegment(targetX,targetY,0, 0,null,4,targetX,targetY);//PathSegment.DEFAULT;
                        }
                        else if (targetY+y>=0 && targetY+y<mapHeight && targetX+x>=0 && targetX+x < mapWidth && map[targetY+y][targetX+x]=='O')
                        {
                            targetX+=x;
                            targetY+=y;
                            break out;
                        }
                    }
                }
            }

            PathSegment curSegment = new PathSegment(targetX,targetY,1,1,null,4,targetX,targetY);
            PathSegment newSegment;
            Set<PathSegment> openList = new HashSet<PathSegment>();
            openList.add(curSegment);

            do
            {
                if (openList.isEmpty())
                {
                    break;
                }
              PathSegment currentBestScoringSegment = openList.iterator().next();
              //  Look for the lowest F cost square on the open list
              for (PathSegment segment : openList)
              {
                if (segment.fscore<currentBestScoringSegment.fscore)
                {
                  currentBestScoringSegment = segment;
                }
              }
              curSegment = currentBestScoringSegment;

              // found path
              if (startX==curSegment.tileX && startY==curSegment.tileY)
              {
                break;
              }

              // if not in closed list
              if (tileIsClosed[curSegment.tileX][curSegment.tileY]==0)
              {
                    // Switch it to the closed list.
                    tileIsClosed[curSegment.tileX][curSegment.tileY]=1;
                    // remove from openlist
                    openList.remove(curSegment);


                    // add neigbours to the open list if necessary
                    for (int i=0;i<4;i++)
                    {

                        int surroundingCurrentTileX=curSegment.tileX+offsets[i][0];
                        int surroundingCurrentTileY=curSegment.tileY+offsets[i][1];
                        if (surroundingCurrentTileX>=0 && surroundingCurrentTileX<mapWidth &&
                            surroundingCurrentTileY>=0 && surroundingCurrentTileY<mapHeight )
                        {
                            newSegment = new PathSegment( curSegment);
                            newSegment.tileX = surroundingCurrentTileX;
                            newSegment.tileY = surroundingCurrentTileY;
                            newSegment.direction = i;

                            switch(map[surroundingCurrentTileY][surroundingCurrentTileX])
                            {
                                case 'W':
                                case 'F':
                                case 'G':
                                    continue;
                            }

                          int surroundingCurrentGscore=curSegment.gscore+1 + ((surroundingCurrentTileX!=startX && surroundingCurrentTileY!=startY && map[surroundingCurrentTileY][surroundingCurrentTileX]==team)?20:0);//+map[surroundingCurrentTileY][surroundingCurrentTileX]!='O'?100:0;
                          newSegment.gscore=surroundingCurrentGscore;
                          newSegment.fscore=surroundingCurrentGscore+Math.abs( surroundingCurrentTileX-startX)+Math.abs( surroundingCurrentTileY-startY);
                          openList.add(newSegment);
                        }
                    }
              }
              else
              {
                  // remove from openlist
                  openList.remove(curSegment);    
              }
            } while(true);

            return curSegment;
        }
     }

    /**
     * Reads a line of text from the input stream. Blocks until a new line character is read.
     * NOTE: This method should be used in favor of BufferedReader.readLine(...) as BufferedReader buffers data before performing
     * text line tokenization. This means that BufferedReader.readLine() will block until many game frames have been received. 
     * @param in a InputStream, nominally System.in
     * @return a line of text or null if end of stream.
     * @throws IOException
     */
    private static String readLine(InputStream in) throws IOException
    {
       StringBuilder sb = new StringBuilder();
       int readByte = in.read();
       while (readByte>-1 && readByte!= '\n')
       {
          sb.append((char) readByte);
          readByte = in.read();
       }
       return readByte==-1?null:sb.toString();

    }

}

bella animazione, solo per curiosità qual è la percentuale di vincita approssimativa del mio bot?
Rohan Jhunjhunwala,

Non ho eseguito statistiche reali ma rischierei il 60% del mio bot contro il 40% del tuo bot? ma dipende davvero dal posizionamento delle munizioni
Moogie,


dovrei avere più munizioni o dovrei configurare le munizioni affinché si generino allo stesso modo?
Rohan Jhunjhunwala,

@RohanJhunjhunwala penso che sia quello che è, troppo tardi per cambiare il comportamento ora. Usalo come esperienza di apprendimento per la prossima domanda posta :)
Moogie

1

Pathfinder ottimizzato JAVA

Grazie a @Moogie per avermi aiutato a ottimizzare il mio disordinato percorso di inondazioni. Ecco la fonte per il bot. Questo ragazzo sa quanto sia importante difendere la sua bandiera. Sostiene tre difensori e due attaccanti. I difensori restano indietro e difendono / raccolgono le munizioni, i due attaccanti prendono (abbastanza dritto) il percorso verso la bandiera (e raccolgono le munizioni al centro). Spara a chiunque veda e dovrebbe essere una forte concorrenza. I difensori posizionano le mine attorno alla bandiera e si accampano fino a quando non rimane più alcuna opposizione in modo da poter andare a calciare la lattina.

/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
/**
 * todo fight
 */
package botctf;

import botctf.Move.MoveType;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.Set;

/**
 *
 * @author rohan
 */
public class PathFinderOptimised extends Bot {
    private static final int[][] offsets = new int[][]{{0,-1},{1,0},{0,1},{-1,0}};
    public static boolean shouldCampingTroll = true;
    private int moveCounter = -1;//dont ask
    public boolean defend;

    public PathFinderOptimised(int inX, int inY, int inTeam) {

        super(inX, inY, inTeam);
        //System.out.println("Start");
        //floodFillMap(getX(), getY());
        //System.out.println("Finish");
        defend=inX%2==0;
    }
    public static int[][] navigationMap;

    boolean upMine = false;
    boolean sideMine = false;

        int[][] myMap;

    @Override
    public Move move() {
                moveCounter++;
        myMap=getMap();
        int targetX, targetY;
        int enemyTeam=team==redTeam?blueTeam:redTeam;
        ArrayList<Coord> enemyCoordinates=new ArrayList<>();
        for(int i = 0; i<65;i++){
            for(int j = 0;j<65;j++){
                if(map[i][j]==enemyTeam){
                    enemyCoordinates.add(new Coord(i,j));
                }
            }
        }
        for(Coord enemy:enemyCoordinates){
            int enemyX=enemy.x;
            int enemyY=enemy.y;
         int dX= enemy.x-this.x;
            int dY= enemy.y-this.y;
            //System.out.println(dX+"|"+dY);
            if((dX==0||dY==0)){

                if(Arena.getAmmo()[this.team]>0){

                    if(dX>0&&dX<5){
                    return new Move(0,MoveType.Throw);
                }
                if(dX<0&&dX>-5){
                    return new Move(2,MoveType.Throw);
                }
                if (dY>0&&dY<5){
                    return new Move(1, MoveType.Throw);
                }
                if(dY<0&&dY>-5){
                    return new Move(3,MoveType.Throw);
                }
            }
        }
        }
        if(myMap[x+1][y]==ammo){
            return new Move(0,MoveType.Move);
        }
                if(myMap[x-1][y]==ammo){
            return new Move(2,MoveType.Move);
        }
                                if(myMap[x][y+1]==ammo){
            return new Move(1,MoveType.Move);
        }
                                                                if(myMap[x][y-1]==ammo){
            return new Move(3,MoveType.Move);
        }


int bestOption = 4;                                                             
        if (defend) {
if(Arena.getAliveBots()==1){
    defend=false;
}
            int bestAmmoX = -1;
            int bestAmmoY = -1;
            int bestAmmoDist = Integer.MAX_VALUE;
            for (int i = 0; i < 65; i++) {
                for (int j = 0; j < 65; j++) {
                    if (myMap[i][j] == ammo) {
                        int path = pathFind(getX(),getY(),i,j,myMap);
                        if ((path & 0xFFFFFF) < bestAmmoDist) {
                            bestAmmoX = i;
                            bestAmmoY = j;
                            bestAmmoDist = (path & 0xFFFFFF);
                            bestOption = path >> 24;
                        }
                    }
                }
            }
            if (bestAmmoDist<15||Arena.getAmmo()[this.team]==0){
                targetX = bestAmmoX;
                targetY = bestAmmoY;
            } else {
                targetX = team == redTeam ? 62 : 2;
                targetY = team == redTeam ? 62 : 2;
            }
        } else {

            if(this.x>18&this.x<42&&this.y>16&&this.y<44&&myMap[33][33]==ammo){
                targetX=33;
                targetY=33;
            }else{
            if (this.team == redTeam) {
                targetX = 1;
                targetY = 1;
            } else {
                targetX = 63;
                targetY = 63;
            }
            }
        }
        if(upMine&&sideMine){
            if(targetX==2||targetX==62){
                if(targetY==2||targetY==62){
                    targetX+=targetX==2?3:-3;
                    targetY+=targetY==2?3:-3;
                }
            }
        }else if (targetX == getX() && targetY == getY()) {
            if (!upMine) {
                upMine = true;
                if (this.team == redTeam) {
                    return new Move(0, MoveType.Mine);
                } else {
                    return new Move(2, MoveType.Mine);
                }
            }else if(!sideMine){
                sideMine=true;      
                if (this.team == redTeam) {
                    return new Move(1, MoveType.Mine);
                } else {
                    return new Move(3, MoveType.Mine);
                }
            }   else {
                return new Move(5, MoveType.Move);
            }
        }

        bestOption = pathFind(getX(),getY(),targetX,targetY,myMap) >> 24;


MoveType m=MoveType.Move;
if(moveCounter%2==0){
    if(this.team==redTeam?x<25&&y<25:x>39&&y>39){
        m=MoveType.Defuse;
    }
}
//System.out.println(bestOption);
        return new Move(bestOption, m);
    }

    /**
     * returns a result that is the combination of movement direction and length of a path found from the given start position to the target
     * position. result is ((direction) << 24 + path_length)
     */
    private int pathFind(int startX, int startY, int targetX,int targetY,int[][] map)
    {
        class PathSegment
        {
            public PathSegment(int tileX, int tileY, int fscore, int gscore, PathSegment parent)
            {
                super();
                this.tileX = tileX;
                this.tileY = tileY;
                this.fscore = fscore;
                this.gscore = gscore;
                this.parent = parent;
            }
            public PathSegment(PathSegment parent)
            {
                this.parent = parent;
            }
            int tileX;
            int tileY;
            int fscore;
            int gscore;
            PathSegment parent; 
        }
        // A*
        if (startX==targetX && startY==targetY)
        {
            return 4;
        }
        else
        {
            int[][] tileIsClosed = new int[64][64];

            PathSegment curSegment = new PathSegment(targetX,targetY,1,1,null);
            PathSegment newSegment;
            Set<PathSegment> openList = new HashSet<PathSegment>();
            openList.add(curSegment);

            do
            {
                if (openList.isEmpty())
                {
                    break;
                }
              PathSegment currentBestScoringSegment = openList.iterator().next();
              //  Look for the lowest F cost square on the open list
              for (PathSegment segment : openList)
              {
                if (segment.fscore<currentBestScoringSegment.fscore)
                {
                  currentBestScoringSegment = segment;
                }
              }
              curSegment = currentBestScoringSegment;

              // found path
              if (startX==curSegment.tileX && startY==curSegment.tileY)
              {
                break;
              }

              // if not in closed list
              if (tileIsClosed[curSegment.tileX][curSegment.tileY]==0)
              {
                    // Switch it to the closed list.
                    tileIsClosed[curSegment.tileX][curSegment.tileY]=1;
                    // remove from openlist
                    openList.remove(curSegment);


                    // add neigbours to the open list if necessary
                    for (int i=0;i<4;i++)
                    {
                        final int surroundingCurrentTileX=curSegment.tileX+offsets[i][0];
                        final int surroundingCurrentTileY=curSegment.tileY+offsets[i][1];
                        if (surroundingCurrentTileX>=0 && surroundingCurrentTileX<64 &&
                            surroundingCurrentTileY>=0 && surroundingCurrentTileY<64 )
                        {
                            newSegment = new PathSegment( curSegment);
                            newSegment.tileX = surroundingCurrentTileX;
                            newSegment.tileY = surroundingCurrentTileY;

                          if (map[surroundingCurrentTileX][surroundingCurrentTileY]=='W')
                          {
                              continue;
                          }

                          int surroundingCurrentGscore=curSegment.gscore+1;
                          newSegment.gscore=surroundingCurrentGscore;
                          newSegment.fscore=surroundingCurrentGscore+Math.abs( surroundingCurrentTileX-startX)+Math.abs( surroundingCurrentTileY-startY);
                          openList.add(newSegment);
                        }
                    }
              }
              else
              {
                  // remove from openlist
                  openList.remove(curSegment);    
              }
            } while(true);

            if (curSegment.parent.tileX-startX<0) return (2 << 24) | curSegment.gscore;
            else if (curSegment.parent.tileX-startX>0) return (0 << 24) | curSegment.gscore;
            else if (curSegment.parent.tileY-startY<0) return (3 << 24) | curSegment.gscore;
            else if (curSegment.parent.tileY-startY>0) return (1 << 24) | curSegment.gscore;
        }
        throw new RuntimeException("Path finding failed");
     }
}
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.