Calcola la matrice di densità perimetrale


10

introduzione

La matrice di densità perimetrale è una matrice binaria infinita M definita come segue. Considera un indice ( basato su 1) (x, y) e denota con M [x, y] la matrice secondaria rettangolare attraversata dall'angolo (1, 1) e (x, y) . Supponiamo che tutti i valori di M [x, y] tranne M x, y , il valore all'indice (x, y) , siano già stati determinati. Quindi il valore M x, y è qualunque tra 0 o 1 che avvicina il valore medio di M [x, y] a 1 / (x + y) . In caso di pareggio, selezionare Mx, y = 1 .

Questa è la matrice secondaria M [20, 20] con zeri sostituiti da punti per chiarezza:

1 . . . . . . . . . . . . . . . . . . .
. . . . . 1 . . . . . . . . . . . . . .
. . 1 . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . 1 . . . . . . . . . . . . . . .
. 1 . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 1 . .
. . . . . . . . . . . . . . 1 . . . . .
. . . . . . . . . . . . 1 . . . . . . .
. . . . . . . . . . 1 . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . 1 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .

Ad esempio, abbiamo M 1, 1 = 1 nell'angolo in alto a sinistra, poiché 1 / (1 + 1) = ½ , e la media della matrice secondaria 1 × 1 M [1, 1] è 0 o 1 ; è un pareggio, quindi scegliamo 1 .

Considera quindi la posizione (3, 4) . Abbiamo 1 / (3 + 4) = 1/7 e la media della sotto-matrice M [3, 4] è 1/6 se scegliamo 0 e 3/12 se scegliamo 1 . Il primo è più vicino a 1/7 , quindi scegliamo M 3, 4 = 0 .

Ecco la matrice secondaria M [800, 800] come immagine, che mostra parte della sua struttura complessa.

L'obiettivo

Dato un numero intero positivo N <1000 , genera la sotto-matrice N × N M [N, N] , in qualsiasi formato ragionevole. Vince il conteggio dei byte più basso.

Risposte:


3

R, 158 154 141 byte

Modifica: poiché l'unico 1nella sotto- 2x2matrice superiore è in alto a sinistra M[1,1], possiamo iniziare la ricerca 1squando {x,y}>1non è necessario per l' ifistruzione.

M=matrix(0,n<-scan(),n);M[1]=1;for(i in 2:n)for(j in 2:n){y=x=M[1:i,1:j];x[i,j]=0;y[i,j]=1;d=1/(i+j);M[i,j]=abs(d-mean(x))>=abs(d-mean(y))};M

La soluzione è altamente inefficiente in quanto la matrice viene duplicata due volte per ogni iterazione. n=1000impiegarono poco meno di due ore e mezza per funzionare e produce una matrice di 7.6Mb.

Ungolfed e spiegato

M=matrix(0,n<-scan(),n);                        # Read input from stdin and initialize matrix with 0s
M[1]=1;                                         # Set top left element to 1
for(i in 2:n){                                  # For each row    
    for(j in 2:n){                              # For each column
        y=x=M[1:i,1:j];                         # Generate two copies of M with i rows and j columns
        x[i,j]=0;                               # Set bottom right element to 0
        y[i,j]=1;                               # Set bottom right element to 1
        d=1/(i+j);                              # Calculate inverse of sum of indices
        M[i,j]=abs(d-mean(x))>=abs(d-mean(y))   # Returns FALSE if mean(x) is closer to d and TRUE if mean(y) is
    }
};
M                                               # Print to stdout

Uscita per n=20

      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     1    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[2,]     0    0    0    0    0    1    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[3,]     0    0    1    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[4,]     0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[5,]     0    0    0    0    1    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[6,]     0    1    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[7,]     0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[8,]     0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     1     0     0
[9,]     0    0    0    0    0    0    0    0    0     0     0     0     0     0     1     0     0     0     0     0
[10,]    0    0    0    0    0    0    0    0    0     0     0     0     1     0     0     0     0     0     0     0
[11,]    0    0    0    0    0    0    0    0    0     0     1     0     0     0     0     0     0     0     0     0
[12,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[13,]    0    0    0    0    0    0    0    0    0     1     0     0     0     0     0     0     0     0     0     0
[14,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[15,]    0    0    0    0    0    0    0    0    1     0     0     0     0     0     0     0     0     0     0     0
[16,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[17,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[18,]    0    0    0    0    0    0    0    1    0     0     0     0     0     0     0     0     0     0     0     0
[19,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0
[20,]    0    0    0    0    0    0    0    0    0     0     0     0     0     0     0     0     0     0     0     0

1

Python 2, 189 byte

Non ci sono trucchi folli qui, sta solo calcolando come descritto nell'introduzione. Non è particolarmente veloce ma non ho bisogno di creare nuove matrici per farlo.

n=input()
k=[n*[0]for x in range(n)]
for i in range(1,-~n):
 for j in range(1,-~n):p=1.*i*j;f=sum(sum(k[l][:j])for l in range(i));d=1./(i+j);k[i-1][j-1]=0**(abs(f/p-d)<abs(-~f/p-d))
print k

Spiegazione:

n=input()                                     # obtain size of matrix  
k=[n*[0]for x in range(n)]                    # create the n x n 0-filled matrix
for i in range(1,-~n):                        # for every row:
  for j in range(1,-~n):                      # and every column:
    p=1.*i*j                                  # the number of elements 'converted' to float
    f=sum(sum(k[l][:j])for l in range(i))     # calculate the current sum of the submatrix
    d=1./(i+j)                                # calculate the goal average
    k[i-1][j-1]=0**(abs(f/p-d)<abs(-~f/p-d))  # decide whether cell should be 0 or 1
print k                                       # print the final matrix

Per i curiosi, ecco alcuni tempi:

 20 x  20 took 3 ms.
 50 x  50 took 47 ms.
100 x 100 took 506 ms.
250 x 250 took 15033 ms.
999 x 999 took 3382162 ms.

Uscita "Pretty" per n = 20:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

Racchetta 294 byte

(define(g x y)(if(= 1 x y)1(let*((s(for*/sum((i(range 1(add1 x)))(j(range 1(add1 y)))#:unless(and(= i x)(= j y)))
(g i j)))(a(/ s(* x y)))(b(/(add1 s)(* x y)))(c(/ 1(+ x y))))(if(<(abs(- a c))(abs(- b c)))0 1))))
(for((i(range 1(add1 a))))(for((j(range 1(add1 b))))(print(g i j)))(displayln""))

Ungolfed:

(define(f a b)  
  (define (g x y)
    (if (= 1 x y) 1
        (let* ((s (for*/sum ((i (range 1 (add1 x)))
                             (j (range 1 (add1 y)))
                             #:unless (and (= i x) (= j y)))
                    (g i j)))
               (a (/ s (* x y)))
               (b (/ (add1 s) (* x y)))
               (c (/ 1 (+ x y))))
          (if (< (abs(- a c))
                 (abs(- b c)))
              0 1))))
  (for ((i (range 1 (add1 a))))
    (for ((j (range 1 (add1 b))))
      (print (g i j)))
    (displayln ""))
  )

test:

(f 8 8)

Produzione:

10000000
00000100
00100000
00000000
00001000
01000000
00000000
00000000

0

Perl, 151 + 1 = 152 byte

Corri con la -nbandiera. Il codice funzionerà correttamente solo ogni altra iterazione all'interno della stessa istanza del programma. Per farlo funzionare correttamente ogni volta, aggiungi 5 byte anteponendo my%m;al codice.

for$b(1..$_){for$c(1..$_){$f=0;for$d(1..$b){$f+=$m{"$d,$_"}/($b*$c)for 1..$c}$g=1/($b+$c);print($m{"$b,$c"}=abs$f-$g>=abs$f+1/($b*$c)-$g?1:_).$"}say""}''

Leggibile:

for$b(1..$_){
    for$c(1..$_){
        $f=0;
        for$d(1..$b){
            $f+=$m{"$d,$_"}/($b*$c)for 1..$c
        }
        $g=1/($b+$c);
        print($m{"$b,$c"}=abs$f-$g>=abs$f+1/($b*$c)-$g?1:_).$"
    }
    say""
}

Uscita per input di 100:

1___________________________________________________________________________________________________
_____1______________________________________________________________________________________________
__1_________________________________________________________________________________________________
___________________________1________________________________________________________________________
____1_______________________________________________________________________________________________
_1__________________________________________________________________________________________________
_________________________1__________________________________________________________________________
_________________1__________________________________________________________________________________
______________1_____________________________________________________________________________________
____________1_______________________________________________________________________________________
__________1_________________________________________________________________________________________
____________________________________________________________________________________________________
_________1__________________________________________________________________________________________
____________________________________________________________________________________________________
________1___________________________________________________________________________________________
______________________________________________________________________________________1_____________
_________________________________________________________________1__________________________________
_______1____________________________________________________________________________________________
_____________________________________________________________1______________________________________
____________________________________________________1_______________________________________________
______________________________________________1_____________________________________________________
__________________________________________1_________________________________________________________
_______________________________________1____________________________________________________________
____________________________________1_______________________________________________________________
__________________________________1_________________________________________________________________
______1_____________________________________________________________________________________________
____________________________________________________________________________________________________
___1________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
________________________________1___________________________________________________________________
____________________________________________________________________________________________________
________________________1___________________________________________________________________________
____________________________________________________________________________________________________
_______________________1____________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
______________________1_____________________________________________________________________________
____________________________________________________________________________________________________
___________________________________________________________________________________________________1
_____________________1______________________________________________________________________________
____________________________________________________________________________________________________
_____________________________________________________________________________________1______________
__________________________________________________________________________________1_________________
____________________1_______________________________________________________________________________
____________________________________________________________________________________________________
________________________________________________________________________________1___________________
______________________________________________________________________________1_____________________
___________________________________________________________________________1________________________
_________________________________________________________________________1__________________________
___________________1________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
_______________________________________________________________________1____________________________
______________________________________________________________________1_____________________________
____________________________________________________________1_______________________________________
___________________________________________________________1________________________________________
__________________________________________________________1_________________________________________
_________________________________________________________1__________________________________________
__________________1_________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
________________1___________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
________________________________________________________1___________________________________________
_______________________________________________________1____________________________________________
____________________________________________________________________________________________________
___________________________________________________1________________________________________________
____________________________________________________________________________________________________
__________________________________________________1_________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
_________________________________________________1__________________________________________________
____________________________________________________________________________________________________
________________________________________________1___________________________________________________
____________________________________________________________________________________________________
_____________________________________________1______________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________1_______________________________________________________
_______________1____________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
____________________________________________________________________________________________________
_________________________________________1__________________________________________________________
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.