Pebbling è un gioco di solitario giocato su un grafico non orientato , in cui ogni vertice ha zero o più ciottoli. Una singola mossa di ciottoli consiste nel rimuovere due ciottoli da un vertice e aggiungere un ciottolo a un vicino arbitrario di . (Ovviamente, il vertice v deve avere almeno due ciottoli prima dello spostamento.) Il problema PebbleDestruction chiede, dato un grafico e un conteggio dei ciottoli per ciascun vertice , se esiste una sequenza di mosse di ciottoli che rimuovono tutti tranne un ciottolo. Dimostra che PebbleDestruction è NP-completo.v v G = ( V ; E ) p ( v ) v
In primo luogo, mostro che è in NP poiché posso verificare la soluzione in tempo polinomiale, risalendo al conteggio dei ciottoli da un solo ciottolo.
Successivamente, quali sono alcune idee su quali problemi utilizzare come base per una riduzione del tempo polinomiale?
Funzionerebbe qualcosa come la copertina del vertice? O una copertina vertice di diverse dimensioni?
In tal caso, come può gestire il numero variabile di ciottoli su ogni mossa?
Grazie.
Da: http://courses.engr.illinois.edu/cs473/sp2011/hw/disc/disc_14.pdf