Sto cercando di capire cosa si intende per "deterministico" in espressioni come "grammatica libera dal contesto deterministico". (Ci sono "cose" più deterministiche in questo campo). Gradirei un esempio più della spiegazione più elaborata! Se possibile.
La mia principale fonte di confusione è dal non essere in grado di dire come questa proprietà di una grammatica sia diversa dalla (non) ambiguità.
Il più vicino che ho trovato nel significato è questa citazione dall'articolo di D. Knuth sulla traduzione delle lingue da sinistra a destra :
Ginsburg e Greibach (1965) hanno definito la nozione di un linguaggio deterministico; mostriamo nella Sezione V che queste sono precisamente le lingue per le quali esiste una grammatica LR (k)
che diventa circolare non appena si arriva al Section V
, perché lì dice che ciò che il parser LR (k) può analizzare è il linguaggio deterministico ...
Di seguito è riportato un esempio che potrei trovare per aiutarmi a capire cosa significa "ambiguo", per favore dai un'occhiata:
onewartwoearewe
Che può essere analizzato come one war two ear ewe
o o new art woe are we
- se una grammatica lo consente (supponiamo che abbia tutte le parole che ho appena elencato).
Cosa dovrei fare per rendere questo linguaggio di esempio (non) deterministico? (Potrei, ad esempio, rimuovere la parola o
dalla grammatica, per rendere la grammatica non ambigua).
La lingua sopra è deterministica?
PS. L'esempio è tratto dal libro Godel, Esher, Bach: Eternal Golden Braid.
Diciamo, definiamo la grammatica per la lingua di esempio in questo modo:
S -> A 'we' | A 'ewe'
A -> B | BA
B -> 'o' | 'new' | 'art' | 'woe' | 'are' | 'one' | 'war' | 'two' | 'ear'
Con l'argomento di dover analizzare l'intera stringa, questa grammatica rende la lingua non deterministica?
let explode s =
let rec exp i l =
if i < 0 then l else exp (i - 1) (s.[i] :: l) in
exp (String.length s - 1) [];;
let rec woe_parser s =
match s with
| 'w' :: 'e' :: [] -> true
| 'e' :: 'w' :: 'e' :: [] -> true
| 'o' :: x -> woe_parser x
| 'n' :: 'e' :: 'w' :: x -> woe_parser x
| 'a' :: 'r' :: 't' :: x -> woe_parser x
| 'w' :: 'o' :: 'e' :: x -> woe_parser x
| 'a' :: 'r' :: 'e' :: x -> woe_parser x
(* this line will trigger an error, because it creates
ambiguous grammar *)
| 'o' :: 'n' :: 'e' :: x -> woe_parser x
| 'w' :: 'a' :: 'r' :: x -> woe_parser x
| 't' :: 'w' :: 'o' :: x -> woe_parser x
| 'e' :: 'a' :: 'r' :: x -> woe_parser x
| _ -> false;;
woe_parser (explode "onewartwoearewe");;
- : bool = true
| Label | Pattern |
|---------+--------------|
| rule-01 | S -> A 'we' |
| rule-02 | S -> A 'ewe' |
| rule-03 | A -> B |
| rule-04 | A -> BA |
| rule-05 | B -> 'o' |
| rule-06 | B -> 'new' |
| rule-07 | B -> 'art' |
| rule-08 | B -> 'woe' |
| rule-09 | B -> 'are' |
| rule-10 | B -> 'one' |
| rule-11 | B -> 'war' |
| rule-12 | B -> 'two' |
| rule-13 | B -> 'ear' |
#+TBLFM: @2$1..@>$1='(format "rule-%02d" (1- @#));L
Generating =onewartwoearewe=
First way to generate:
| Input | Rule | Product |
|-------------------+---------+-------------------|
| '' | rule-01 | A'we' |
| A'we' | rule-04 | BA'we' |
| BA'we' | rule-05 | 'o'A'we' |
| 'o'A'we' | rule-04 | 'o'BA'we' |
| 'o'BA'we' | rule-06 | 'onew'A'we' |
| 'onew'A'we' | rule-04 | 'onew'BA'we' |
| 'onew'BA'we' | rule-07 | 'onewart'A'we' |
| 'onewart'A'we' | rule-04 | 'onewart'BA'we' |
| 'onewart'BA'we' | rule-08 | 'onewartwoe'A'we' |
| 'onewartwoe'A'we' | rule-03 | 'onewartwoe'B'we' |
| 'onewartwoe'B'we' | rule-09 | 'onewartwoearewe' |
|-------------------+---------+-------------------|
| | | 'onewartwoearewe' |
Second way to generate:
| Input | Rule | Product |
|-------------------+---------+-------------------|
| '' | rule-02 | A'ewe' |
| A'ewe' | rule-04 | BA'ewe' |
| BA'ewe' | rule-10 | 'one'A'ewe' |
| 'one'A'ewe' | rule-04 | 'one'BA'ewe' |
| 'one'BA'ewe' | rule-11 | 'onewar'A'ewe' |
| 'onewar'A'ewe' | rule-04 | 'onewar'BA'ewe' |
| 'onewar'BA'ewe' | rule-12 | 'onewartwo'A'ewe' |
| 'onewartwo'A'ewe' | rule-03 | 'onewartwo'B'ewe' |
| 'onewartwo'B'ewe' | rule-13 | 'onewartwoearewe' |
|-------------------+---------+-------------------|
| | | 'onewartwoearewe' |
B -> 'o'
, allora non sarà più ambiguo ...
S
. Con l'applicazione della regola S := ...
, otteniamo ...
, ..."