Albero di Huffman e massima profondità


9

Conoscendo le frequenze di ciascun simbolo, è possibile determinare l'altezza massima dell'albero senza applicare l'algoritmo Huffman? Esiste una formula che dà all'altezza di questo albero?


1
Prova a giocare con alcuni esempi e vedi se riesci a trovare qualche criterio utile. Questo è quello che farei se
cercassi

Sì, ho già provato con molti esempi, ma sto cercando un'espressione letterale, ad esempio un limite asintotico, funzione del numero di simboli ...
user7060

1
In termini di numero di simboli, non si può fare niente di meglio di n1 da un lato e log2n dall'altro.
Yuval Filmus,

n1

maxlog2pi

Risposte:


2

La codifica di Huffman (asintoticamente) si trova entro un po 'dell'entropia della sequenza. Ciò significa che se calcoli l' entropia delle frequenze dei tuoi simboli, sarai (asintoticamente) all'interno di un bit della lunghezza media (cioè altezza) del tuo codice. È possibile utilizzare questa media per limitare la lunghezza più lunga (in media), oppure è possibile utilizzare metodi combinatori per ottenere limiti deterministici.


0

Il caso patologico sarebbe quando la frequenza del simbolo ordinato somiglia a quella della sequenza di Fibonacci. N: = # di simboli. per N> 2, altezza massima possibile: N-1. per N == 1 o 2: 1


1
Non è questa la domanda.
Tom van der Zanden,

Infatti. La domanda si pone comunque quando si parla del caso peggiore.
Raffaello
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.