Come mostrare che l'insieme di macchine che accettano le lingue in


8

Vorrei il tuo aiuto per dimostrare che la lingua

L={M|L(M)NPP}
è decidibile iff P=NP.

Se P=NP, Capisco che è il linguaggio delle macchine Turing vuote. CosìL è un co-RE problema - ma non è quello che mi viene chiesto, quindi mi sono confuso.

Lo so per dimostrarlo P=NP, Devo mostrare il problema NPC e P anche.

Qualsiasi aiuto? Grazie!

Risposte:


9

Vi sono due casi da considerare.

  1. Supponiamo che P=NP. PoiL={ML(M)}=. La lingua vuota è decidibile; poiché nessuna parola le appartiene, è banale decidere se una parola le appartiene o meno.

  2. Supponiamo che PNP. Ora il tuo risultato segue direttamente dal teorema di Rice .

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.