Test dell'isomorfismo di grafici asimmetrici


13

Durante la lettura delle domande esempi in cui l'unicità della soluzione rende più facile trovare , un nuovo (? Facile) domanda mi è venuta in mente: in realtà non sappiamo se il grafico Isomorfismo ( ) problema è in .solioP

Ma cosa succede se assumiamo che sia che siano asimmetrici (cioè entrambi hanno solo il banale (identità) automorfismo)? Il problema diventa più semplice (tempo polinomiale)? sol1sol2

Nota: il problema non può essere più difficile di Graph Automorphism ( ), perché c'è una rapida riduzione: basta usare su , se la risposta è sì allora i due grafici sono isomorfi (vedi anche Johannes Köbler, Uwe Schöning, Jacobo Torán: Isomorfismo grafico basso per PP . 401-411).solUNsolUNsol1sol2


2
Con la probabilità che si avvicina a 1 man mano che n cresce, il grafico presenta solo l'automorfismo trivalente della complessità di Kolmogorov.
Chad Brewbaker,

1
solUN

4
Questo problema è noto come problema di isomorfismo del grafico rigido. Se può essere risolto in tempo polinomiale o meno è ampiamente aperto. C'è del lavoro che prova ad attaccarlo tramite algoritmi quantistici, ad esempio, riducendolo al problema del cambio nascosto ( arxiv.org/abs/quant-ph/0510185 ) ma i risultati sono per lo più negativi e mostrano che le tecniche provate non lo fanno opera.
Mateus de Oliveira Oliveira,

1
È possibile irrigidire qualsiasi grafico in modo che abbia un solo endomorfismo (e quindi automorfismo), collegando grafici reciprocamente rigidi a ciascun vertice. Ciò implica una riduzione di Turing da IG a decidere isomorfismo di grafici asimmetrici. Ahimè, non è polinomiale.
András Salamon,

1
Bene, Childs / Wocjan non sono i soli a usare il rigido per indicare i grafici con un singolo automorfismo. C'è un sondaggio di Babai del 1994 che già afferma che la terminologia non è quella standard www.cs.uchicago.edu/~laci/handbook/handbookchapter27.pdf. Anche in tempi moderni è stato usato in questo senso da Jacobo Toran ( uni-ulm.de/fileadmin/website_uni_ulm/.../toran/hard.pdf ). Quindi sembra che la questione sia se l'autore si preoccupa o meno degli incorporamenti. Ma ho usato asimmetrico nella mia risposta per evitare confusione.
Mateus de Oliveira Oliveira,

Risposte:


11

Su richiesta di Marzio De Biasi sto convertendo il mio commento in una risposta.

Un grafico è asimmetrico (alcuni autori lo definiscono rigido) se ha un automorfismo unico, cioè l'identità. Come sottolineato da Chad Brewbacker, la maggior parte dei grafici sono asimmetrici. Tuttavia sono aperte le seguenti due domande:

1) L'isomorfismo dei grafici asimmetrici è in P?

2) L'isomorfismo dei grafici generali può essere ridotto all'isomorfismo dei grafici asimmetrici?

Ω(nlogn)

Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.