Quando si sceglie l'ordine delle colonne dell'indice, la preoccupazione principale è:
Ci sono predicati (uguaglianza) contro questa colonna nelle mie query?
Se una colonna non viene mai visualizzata in una clausola where, non vale la pena indicizzarla (1)
OK, quindi hai una tabella e query su ogni colonna. A volte più di uno.
Come decidete cosa indicizzare?
Diamo un'occhiata a un esempio. Ecco una tabella con tre colonne. Uno contiene 10 valori, un altro 1.000, gli ultimi 10.000:
create table t(
few_vals varchar2(10),
many_vals varchar2(10),
lots_vals varchar2(10)
);
insert into t
with rws as (
select lpad(mod(rownum, 10), 10, '0'),
lpad(mod(rownum, 1000), 10, '0'),
lpad(rownum, 10, '0')
from dual connect by level <= 10000
)
select * from rws;
commit;
select count(distinct few_vals),
count(distinct many_vals) ,
count(distinct lots_vals)
from t;
COUNT(DISTINCTFEW_VALS) COUNT(DISTINCTMANY_VALS) COUNT(DISTINCTLOTS_VALS)
10 1,000 10,000
Questi sono numeri lasciati riempiti di zeri. Ciò contribuirà a chiarire in seguito la compressione.
Quindi hai tre domande comuni:
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where few_vals = '0000000001';
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where lots_vals = '0000000001';
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where lots_vals = '0000000001'
and few_vals = '0000000001';
Cosa indicizzi?
Un indice su just_vals è solo leggermente migliore di una scansione completa della tabella:
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where few_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
-------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
-------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 61 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 61 |
| 2 | VIEW | VW_DAG_0 | 1 | 1000 | 1000 |00:00:00.01 | 61 |
| 3 | HASH GROUP BY | | 1 | 1000 | 1000 |00:00:00.01 | 61 |
| 4 | TABLE ACCESS FULL| T | 1 | 1000 | 1000 |00:00:00.01 | 61 |
-------------------------------------------------------------------------------------------
select /*+ index (t (few_vals)) */
count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where few_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
-------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
-------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 58 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 58 |
| 2 | VIEW | VW_DAG_0 | 1 | 1000 | 1000 |00:00:00.01 | 58 |
| 3 | HASH GROUP BY | | 1 | 1000 | 1000 |00:00:00.01 | 58 |
| 4 | TABLE ACCESS BY INDEX ROWID BATCHED| T | 1 | 1000 | 1000 |00:00:00.01 | 58 |
| 5 | INDEX RANGE SCAN | FEW | 1 | 1000 | 1000 |00:00:00.01 | 5 |
-------------------------------------------------------------------------------------------------------------
Quindi è improbabile che valga la pena indicizzarlo da solo. Le query su lots_vals restituiscono poche righe (solo 1 in questo caso). Quindi vale sicuramente la pena indicizzarlo.
Ma per quanto riguarda le query su entrambe le colonne?
Dovresti indicizzare:
( few_vals, lots_vals )
O
( lots_vals, few_vals )
Domanda a trabocchetto!
La risposta è nessuna delle due.
Certo few_vals è una stringa lunga. Quindi puoi ottenere una buona compressione da esso. E potresti (potresti) ottenere una scansione di salto indice per le query usando (few_vals, lots_vals) che hanno solo predicati su lots_vals. Ma io non qui, anche se funziona notevolmente meglio di una scansione completa:
create index few_lots on t(few_vals, lots_vals);
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where lots_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
-------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
-------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 61 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 61 |
| 2 | VIEW | VW_DAG_0 | 1 | 1 | 1 |00:00:00.01 | 61 |
| 3 | HASH GROUP BY | | 1 | 1 | 1 |00:00:00.01 | 61 |
| 4 | TABLE ACCESS FULL| T | 1 | 1 | 1 |00:00:00.01 | 61 |
-------------------------------------------------------------------------------------------
select /*+ index_ss (t few_lots) */count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where lots_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
----------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |
----------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 13 | 11 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 13 | 11 |
| 2 | VIEW | VW_DAG_0 | 1 | 1 | 1 |00:00:00.01 | 13 | 11 |
| 3 | HASH GROUP BY | | 1 | 1 | 1 |00:00:00.01 | 13 | 11 |
| 4 | TABLE ACCESS BY INDEX ROWID BATCHED| T | 1 | 1 | 1 |00:00:00.01 | 13 | 11 |
| 5 | INDEX SKIP SCAN | FEW_LOTS | 1 | 40 | 1 |00:00:00.01 | 12 | 11 |
----------------------------------------------------------------------------------------------------------------------
Ti piace il gioco d'azzardo? (2)
Quindi hai ancora bisogno di un indice con lots_vals come colonna principale. E almeno in questo caso l'indice composto (pochi, lotti) fa la stessa quantità di lavoro di uno solo su (lotti)
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where lots_vals = '0000000001'
and few_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
-------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
-------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 3 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 3 |
| 2 | VIEW | VW_DAG_0 | 1 | 1 | 1 |00:00:00.01 | 3 |
| 3 | HASH GROUP BY | | 1 | 1 | 1 |00:00:00.01 | 3 |
| 4 | TABLE ACCESS BY INDEX ROWID BATCHED| T | 1 | 1 | 1 |00:00:00.01 | 3 |
| 5 | INDEX RANGE SCAN | FEW_LOTS | 1 | 1 | 1 |00:00:00.01 | 2 |
-------------------------------------------------------------------------------------------------------------
create index lots on t(lots_vals);
select /*+ index (t (lots_vals)) */count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where lots_vals = '0000000001'
and few_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
----------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |
----------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 3 | 1 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 3 | 1 |
| 2 | VIEW | VW_DAG_0 | 1 | 1 | 1 |00:00:00.01 | 3 | 1 |
| 3 | HASH GROUP BY | | 1 | 1 | 1 |00:00:00.01 | 3 | 1 |
| 4 | TABLE ACCESS BY INDEX ROWID BATCHED| T | 1 | 1 | 1 |00:00:00.01 | 3 | 1 |
| 5 | INDEX RANGE SCAN | LOTS | 1 | 1 | 1 |00:00:00.01 | 2 | 1 |
----------------------------------------------------------------------------------------------------------------------
Ci saranno casi in cui l'indice composto salva 1-2 IO. Ma vale la pena avere due indici per questo risparmio?
E c'è un altro problema con l'indice composito. Confronta il fattore di clustering per i tre indici tra cui LOTS_VALS:
create index lots on t(lots_vals);
create index lots_few on t(lots_vals, few_vals);
create index few_lots on t(few_vals, lots_vals);
select index_name, leaf_blocks, distinct_keys, clustering_factor
from user_indexes
where table_name = 'T';
INDEX_NAME LEAF_BLOCKS DISTINCT_KEYS CLUSTERING_FACTOR
FEW_LOTS 47 10,000 530
LOTS_FEW 47 10,000 53
LOTS 31 10,000 53
FEW 31 10 530
Si noti che il fattore di clustering per pochi_lotti è 10 volte maggiore rispetto a lotti e lotti_few! E questo è in una tabella demo con un cluster perfetto per cominciare. Nei database del mondo reale è probabile che l'effetto sia peggiore.
Quindi cosa c'è di male in questo?
Il fattore di clustering è uno dei driver chiave che determinano quanto "attraente" sia un indice. Più è alto, meno è probabile che l'ottimizzatore lo scelga. Soprattutto se lots_vals non è in realtà univoco, ma normalmente ha ancora poche righe per valore. Se sei sfortunato, questo potrebbe essere sufficiente per far pensare all'ottimizzatore che una scansione completa è più economica ...
OK, quindi gli indici compositi con pochi_vals e lots_vals hanno solo vantaggi di edge case.
Che dire delle query che filtrano few_vals e many_vals?
Gli indici a colonna singola offrono solo piccoli vantaggi. Ma combinati restituiscono pochi valori. Quindi un indice composito è una buona idea. Ma in che modo?
Se ne posizioni alcuni per primi, comprimere la colonna iniziale renderà più piccola
create index few_many on t(many_vals, few_vals);
create index many_few on t(few_vals, many_vals);
select index_name, leaf_blocks, distinct_keys, clustering_factor
from user_indexes
where index_name in ('FEW_MANY', 'MANY_FEW');
INDEX_NAME LEAF_BLOCKS DISTINCT_KEYS CLUSTERING_FACTOR
FEW_MANY 47 1,000 10,000
MANY_FEW 47 1,000 10,000
alter index few_many rebuild compress 1;
alter index many_few rebuild compress 1;
select index_name, leaf_blocks, distinct_keys, clustering_factor
from user_indexes
where index_name in ('FEW_MANY', 'MANY_FEW');
INDEX_NAME LEAF_BLOCKS DISTINCT_KEYS CLUSTERING_FACTOR
MANY_FEW 31 1,000 10,000
FEW_MANY 34 1,000 10,000
Con meno valori diversi nella colonna principale si comprime meglio. Quindi c'è un po 'meno lavoro per leggere questo indice. Ma solo leggermente. Ed entrambi sono già un buon pezzo più piccolo dell'originale (riduzione del 25% delle dimensioni).
E puoi andare oltre e comprimere l'intero indice!
alter index few_many rebuild compress 2;
alter index many_few rebuild compress 2;
select index_name, leaf_blocks, distinct_keys, clustering_factor
from user_indexes
where index_name in ('FEW_MANY', 'MANY_FEW');
INDEX_NAME LEAF_BLOCKS DISTINCT_KEYS CLUSTERING_FACTOR
FEW_MANY 20 1,000 10,000
MANY_FEW 20 1,000 10,000
Ora entrambi gli indici sono tornati alla stessa dimensione. Nota che questo sfrutta il fatto che esiste una relazione tra pochi e molti. Ancora una volta è improbabile che vedrai questo tipo di beneficio nel mondo reale.
Finora abbiamo parlato solo di controlli di uguaglianza. Spesso con indici compositi avrai una disuguaglianza rispetto a una delle colonne. ad esempio query come "ottenere gli ordini / spedizioni / fatture per un cliente negli ultimi N giorni".
Se si dispone di questo tipo di query, si desidera l'uguaglianza rispetto alla prima colonna dell'indice:
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where few_vals < '0000000002'
and many_vals = '0000000001';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
-------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
-------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 12 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 12 |
| 2 | VIEW | VW_DAG_0 | 1 | 10 | 10 |00:00:00.01 | 12 |
| 3 | HASH GROUP BY | | 1 | 10 | 10 |00:00:00.01 | 12 |
| 4 | TABLE ACCESS BY INDEX ROWID BATCHED| T | 1 | 10 | 10 |00:00:00.01 | 12 |
| 5 | INDEX RANGE SCAN | FEW_MANY | 1 | 10 | 10 |00:00:00.01 | 2 |
-------------------------------------------------------------------------------------------------------------
select count (distinct few_vals || ':' || many_vals || ':' || lots_vals )
from t
where few_vals = '0000000001'
and many_vals < '0000000002';
select *
from table(dbms_xplan.display_cursor(null, null, 'IOSTATS LAST -PREDICATE'));
----------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |
----------------------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 12 | 1 |
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 12 | 1 |
| 2 | VIEW | VW_DAG_0 | 1 | 2 | 10 |00:00:00.01 | 12 | 1 |
| 3 | HASH GROUP BY | | 1 | 2 | 10 |00:00:00.01 | 12 | 1 |
| 4 | TABLE ACCESS BY INDEX ROWID BATCHED| T | 1 | 2 | 10 |00:00:00.01 | 12 | 1 |
| 5 | INDEX RANGE SCAN | MANY_FEW | 1 | 1 | 10 |00:00:00.01 | 2 | 1 |
----------------------------------------------------------------------------------------------------------------------
Si noti che stanno utilizzando l'indice opposto.
TL; DR
- Le colonne con condizioni di uguaglianza dovrebbero andare per prime nell'indice.
- Se hai più colonne con uguaglianze nella tua query, posizionando prima quella con il minor numero di valori diversi otterrai il miglior vantaggio di compressione
- Mentre sono possibili scansioni di salto indice, devi essere sicuro che rimarrà un'opzione praticabile per il prossimo futuro
- Gli indici compositi, comprese le colonne quasi uniche, offrono vantaggi minimi. Assicurati di aver davvero bisogno di salvare gli 1-2 IO
1: In alcuni casi può valere la pena includere una colonna in un indice se ciò significa che tutte le colonne nella query sono nell'indice. Ciò consente una scansione solo dell'indice, quindi non è necessario accedere alla tabella.
2: se si dispone di una licenza per Diagnostica e ottimizzazione, è possibile forzare il piano a saltare la scansione con SQL Plan Management
ADDEDNDA
PS: i documenti che hai citato lì sono di 9i. È davvero vecchio. Continuerei con qualcosa di più recente