Personalmente se è una data, o può essere una data, suggerisco di conservarla sempre come una data. È semplicemente più facile lavorare con una regola empirica.
- Una data è di 4 byte.
- Un smallint è di 2 byte (ne abbiamo bisogno di due)
- ... 2 byte: un piccolo per anno
- ... 2 byte: un piccolo per mese
Puoi avere una data che supporterà il giorno se mai ne avrai bisogno, o una smallint
per anno e mese che non supporteranno mai la precisione in più.
Dati di esempio
Vediamo ora un esempio. Creiamo 1 milione di date per il nostro campione. Sono circa 5.000 file per 200 anni tra il 1901 e il 2100. Ogni anno dovrebbe avere qualcosa per ogni mese.
CREATE TABLE foo
AS
SELECT
x,
make_date(year,month,1)::date AS date,
year::smallint,
month::smallint
FROM generate_series(1,1e6) AS gs(x)
CROSS JOIN LATERAL CAST(trunc(random()*12+1+x-x) AS int) AS month
CROSS JOIN LATERAL CAST(trunc(random()*200+1901+x-x) AS int) AS year
;
CREATE INDEX ON foo(date);
CREATE INDEX ON foo (year,month);
VACUUM FULL ANALYZE foo;
analisi
Semplice WHERE
Ora possiamo testare queste teorie di non usare la data .. Ho eseguito ognuna di queste alcune volte per riscaldare le cose.
EXPLAIN ANALYZE SELECT * FROM foo WHERE date = '2014-1-1'
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=11.56..1265.16 rows=405 width=14) (actual time=0.164..0.751 rows=454 loops=1)
Recheck Cond: (date = '2014-04-01'::date)
Heap Blocks: exact=439
-> Bitmap Index Scan on foo_date_idx (cost=0.00..11.46 rows=405 width=0) (actual time=0.090..0.090 rows=454 loops=1)
Index Cond: (date = '2014-04-01'::date)
Planning time: 0.090 ms
Execution time: 0.795 ms
Ora proviamo l'altro metodo con loro separati
EXPLAIN ANALYZE SELECT * FROM foo WHERE year = 2014 AND month = 1;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=12.75..1312.06 rows=422 width=14) (actual time=0.139..0.707 rows=379 loops=1)
Recheck Cond: ((year = 2014) AND (month = 1))
Heap Blocks: exact=362
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.64 rows=422 width=0) (actual time=0.079..0.079 rows=379 loops=1)
Index Cond: ((year = 2014) AND (month = 1))
Planning time: 0.086 ms
Execution time: 0.749 ms
(7 rows)
In tutta onestà, non sono tutti 0.749 .. alcuni sono un po 'più o meno, ma non importa. Sono tutti relativamente uguali. Semplicemente non è necessario.
Entro un mese
Ora divertiamoci con questo. Supponiamo che tu voglia trovare tutti gli intervalli entro 1 mese da gennaio 2014 (lo stesso mese che abbiamo usato sopra).
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE date
BETWEEN
('2014-1-1'::date - '1 month'::interval)::date
AND ('2014-1-1'::date + '1 month'::interval)::date;
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=21.27..2310.97 rows=863 width=14) (actual time=0.384..1.644 rows=1226 loops=1)
Recheck Cond: ((date >= '2013-12-01'::date) AND (date <= '2014-02-01'::date))
Heap Blocks: exact=1083
-> Bitmap Index Scan on foo_date_idx (cost=0.00..21.06 rows=863 width=0) (actual time=0.208..0.208 rows=1226 loops=1)
Index Cond: ((date >= '2013-12-01'::date) AND (date <= '2014-02-01'::date))
Planning time: 0.104 ms
Execution time: 1.727 ms
(7 rows)
Confrontalo con il metodo combinato
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE year = 2013 AND month = 12
OR ( year = 2014 AND ( month = 1 OR month = 2) );
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=38.79..2999.66 rows=1203 width=14) (actual time=0.664..2.291 rows=1226 loops=1)
Recheck Cond: (((year = 2013) AND (month = 12)) OR (((year = 2014) AND (month = 1)) OR ((year = 2014) AND (month = 2))))
Heap Blocks: exact=1083
-> BitmapOr (cost=38.79..38.79 rows=1237 width=0) (actual time=0.479..0.479 rows=0 loops=1)
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.64 rows=421 width=0) (actual time=0.112..0.112 rows=402 loops=1)
Index Cond: ((year = 2013) AND (month = 12))
-> BitmapOr (cost=25.60..25.60 rows=816 width=0) (actual time=0.218..0.218 rows=0 loops=1)
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.62 rows=420 width=0) (actual time=0.108..0.108 rows=423 loops=1)
Index Cond: ((year = 2014) AND (month = 1))
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..12.38 rows=395 width=0) (actual time=0.108..0.108 rows=401 loops=1)
Index Cond: ((year = 2014) AND (month = 2))
Planning time: 0.256 ms
Execution time: 2.421 ms
(13 rows)
È sia più lento, sia più brutto.
GROUP BY
/ORDER BY
Metodo combinato,
EXPLAIN ANALYZE
SELECT date, count(*)
FROM foo
GROUP BY date
ORDER BY date;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Sort (cost=20564.75..20570.75 rows=2400 width=4) (actual time=286.749..286.841 rows=2400 loops=1)
Sort Key: date
Sort Method: quicksort Memory: 209kB
-> HashAggregate (cost=20406.00..20430.00 rows=2400 width=4) (actual time=285.978..286.301 rows=2400 loops=1)
Group Key: date
-> Seq Scan on foo (cost=0.00..15406.00 rows=1000000 width=4) (actual time=0.012..70.582 rows=1000000 loops=1)
Planning time: 0.094 ms
Execution time: 286.971 ms
(8 rows)
E ancora con il metodo composito
EXPLAIN ANALYZE
SELECT year, month, count(*)
FROM foo
GROUP BY year, month
ORDER BY year, month;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------
Sort (cost=23064.75..23070.75 rows=2400 width=4) (actual time=336.826..336.908 rows=2400 loops=1)
Sort Key: year, month
Sort Method: quicksort Memory: 209kB
-> HashAggregate (cost=22906.00..22930.00 rows=2400 width=4) (actual time=335.757..336.060 rows=2400 loops=1)
Group Key: year, month
-> Seq Scan on foo (cost=0.00..15406.00 rows=1000000 width=4) (actual time=0.010..70.468 rows=1000000 loops=1)
Planning time: 0.098 ms
Execution time: 337.027 ms
(8 rows)
Conclusione
In generale, lascia che le persone intelligenti facciano il duro lavoro. Datemath è difficile, i miei clienti non mi pagano abbastanza. Facevo questi test. Mi è stato molto difficile concludere che avrei potuto ottenere risultati migliori rispetto a date
. Ho smesso di provare.
AGGIORNAMENTI
@a_horse_with_no_name suggerito per il mio test entro un meseWHERE (year, month) between (2013, 12) and (2014,2)
. Secondo me, benché sia una domanda più complessa e preferirei evitarlo a meno che non ci fosse un guadagno. Purtroppo, è stato ancora più lento anche se è vicino - il che è più del take away di questo test. Semplicemente non importa molto.
EXPLAIN ANALYZE
SELECT *
FROM foo
WHERE (year, month) between (2013, 12) and (2014,2);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------
Bitmap Heap Scan on foo (cost=5287.16..15670.20 rows=248852 width=14) (actual time=0.753..2.157 rows=1226 loops=1)
Recheck Cond: ((ROW(year, month) >= ROW(2013, 12)) AND (ROW(year, month) <= ROW(2014, 2)))
Heap Blocks: exact=1083
-> Bitmap Index Scan on foo_year_month_idx (cost=0.00..5224.95 rows=248852 width=0) (actual time=0.550..0.550 rows=1226 loops=1)
Index Cond: ((ROW(year, month) >= ROW(2013, 12)) AND (ROW(year, month) <= ROW(2014, 2)))
Planning time: 0.099 ms
Execution time: 2.249 ms
(7 rows)
month
che contiene due numeri interi. Ma penso che se non hai mai, mai bisogno del giorno del mese, usare due numeri interi è probabilmente più facile