Questa query ottiene un elenco di post creati dalle persone che segui. Puoi seguire un numero illimitato di persone, ma la maggior parte delle persone ne segue <1000.
Con questo stile di query, l'ovvia ottimizzazione sarebbe quella di memorizzare nella cache gli "Post"
ID, ma sfortunatamente non ho il tempo per farlo in questo momento.
EXPLAIN ANALYZE SELECT
"Post"."id",
"Post"."actionId",
"Post"."commentCount",
...
FROM
"Posts" AS "Post"
INNER JOIN "Users" AS "user" ON "Post"."userId" = "user"."id"
LEFT OUTER JOIN "ActivityLogs" AS "activityLog" ON "Post"."activityLogId" = "activityLog"."id"
LEFT OUTER JOIN "WeightLogs" AS "weightLog" ON "Post"."weightLogId" = "weightLog"."id"
LEFT OUTER JOIN "Workouts" AS "workout" ON "Post"."workoutId" = "workout"."id"
LEFT OUTER JOIN "WorkoutLogs" AS "workoutLog" ON "Post"."workoutLogId" = "workoutLog"."id"
LEFT OUTER JOIN "Workouts" AS "workoutLog.workout" ON "workoutLog"."workoutId" = "workoutLog.workout"."id"
WHERE
"Post"."userId" IN (
201486,
1825186,
998608,
340844,
271909,
308218,
341986,
216893,
1917226,
... -- many more
)
AND "Post"."private" IS NULL
ORDER BY
"Post"."createdAt" DESC
LIMIT 10;
I rendimenti:
Limit (cost=3.01..4555.20 rows=10 width=2601) (actual time=7923.011..7973.138 rows=10 loops=1)
-> Nested Loop Left Join (cost=3.01..9019264.02 rows=19813 width=2601) (actual time=7923.010..7973.133 rows=10 loops=1)
-> Nested Loop Left Join (cost=2.58..8935617.96 rows=19813 width=2376) (actual time=7922.995..7973.063 rows=10 loops=1)
-> Nested Loop Left Join (cost=2.15..8821537.89 rows=19813 width=2315) (actual time=7922.984..7961.868 rows=10 loops=1)
-> Nested Loop Left Join (cost=1.71..8700662.11 rows=19813 width=2090) (actual time=7922.981..7961.846 rows=10 loops=1)
-> Nested Loop Left Join (cost=1.29..8610743.68 rows=19813 width=2021) (actual time=7922.977..7961.816 rows=10 loops=1)
-> Nested Loop (cost=0.86..8498351.81 rows=19813 width=1964) (actual time=7922.972..7960.723 rows=10 loops=1)
-> Index Scan using posts_createdat_public_index on "Posts" "Post" (cost=0.43..8366309.39 rows=20327 width=261) (actual time=7922.869..7960.509 rows=10 loops=1)
Filter: ("userId" = ANY ('{201486,1825186,998608,340844,271909,308218,341986,216893,1917226, ... many more ...}'::integer[]))
Rows Removed by Filter: 218360
-> Index Scan using "Users_pkey" on "Users" "user" (cost=0.43..6.49 rows=1 width=1703) (actual time=0.005..0.006 rows=1 loops=10)
Index Cond: (id = "Post"."userId")
-> Index Scan using "ActivityLogs_pkey" on "ActivityLogs" "activityLog" (cost=0.43..5.66 rows=1 width=57) (actual time=0.107..0.107 rows=0 loops=10)
Index Cond: ("Post"."activityLogId" = id)
-> Index Scan using "WeightLogs_pkey" on "WeightLogs" "weightLog" (cost=0.42..4.53 rows=1 width=69) (actual time=0.001..0.001 rows=0 loops=10)
Index Cond: ("Post"."weightLogId" = id)
-> Index Scan using "Workouts_pkey" on "Workouts" workout (cost=0.43..6.09 rows=1 width=225) (actual time=0.001..0.001 rows=0 loops=10)
Index Cond: ("Post"."workoutId" = id)
-> Index Scan using "WorkoutLogs_pkey" on "WorkoutLogs" "workoutLog" (cost=0.43..5.75 rows=1 width=61) (actual time=1.118..1.118 rows=0 loops=10)
Index Cond: ("Post"."workoutLogId" = id)
-> Index Scan using "Workouts_pkey" on "Workouts" "workoutLog.workout" (cost=0.43..4.21 rows=1 width=225) (actual time=0.004..0.004 rows=0 loops=10)
Index Cond: ("workoutLog"."workoutId" = id)
Total runtime: 7974.524 ms
Come può essere ottimizzato per il momento?
Ho i seguenti indici rilevanti:
-- Gets used
CREATE INDEX "posts_createdat_public_index" ON "public"."Posts" USING btree("createdAt" DESC) WHERE "private" IS null;
-- Don't get used
CREATE INDEX "posts_userid_fk_index" ON "public"."Posts" USING btree("userId");
CREATE INDEX "posts_following_index" ON "public"."Posts" USING btree("userId", "createdAt" DESC) WHERE "private" IS null;
Forse questo richiede un grande indice composito parziale con createdAt
e userId
dove private IS NULL
?