Perché nella maggior parte dei modelli macro la tecnologia sta aumentando il lavoro?


12

Prendi il macro libro avanzato di Romer come riferimento. In esso il modello Solow, il modello Ramsey e il Diamond OLG contengono tutti la fondamentale variabile At che rappresenta il progresso tecnologico.
In tutti questi modelli, la tecnologia influenza solo il lavoro, ovvero:
Yt=F(Kt,AtLt)

Ora la mia domanda è: perché tale assunzione è così diffusa in questi modelli. Mi sembra che quando immaginiamo che la tecnologia influisca sulla produzione, pensiamo al telaio Northrop, all'acciaio Bessemer, al container, alla ferrovia. Sai, roba. Tutto ciò mi sembra essere principalmente un aumento di capitale.
Quindi perché tendiamo ad assumere invece la tecnologia per aumentare il lavoro?


1
Come breve nota di riferimento, credo di ricordare il documento " Rianimare i cicli economici reali " di King e Rebelo (1999) dal Manuale di Macro, che ne ha una bella discussione nell'appendice. Almeno, quello è stato uno dei primi luoghi in cui "ha fatto clic" per me. I riferimenti forniti nelle risposte, ovviamente, sono anche molto buoni (ma i libri di testo costano sempre qualcosa ...)
CompEcon

Risposte:


12

La ragione matematica è che ciò accade affinché il modello abbia uno stato stazionario in termini di tassi di crescita: variabili come Consumo, Capitale, Reddito, crescono allo stato stazionario, ma crescono allo stesso ritmo, quindi i loro rapporti rimanere costanti (ed è in questo senso che questa situazione rappresenta uno stato "stabile"). Se dovessero crescere a ritmi diversi, i loro rapporti tenderebbero a zero o all'infinito, il che non è molto realistico, poiché ciò implicherebbe che l'economia tende verso l'una o l'altra situazione "d'angolo".

La prova matematica può essere trovata nel libro Barro & Sala-i-Martin (2a edizione) , sezione 1.5.3, pp 78-80. Rilevante e utile è anche la discussione nella sezione 1.2.12, pagg. 51-53.

Per forme funzionali come (generalizzate, anche) Cobb-Douglas, è davvero indistinguibile (non identificabile separatamente), soprattutto perché usiamo prevalentemente la funzione esponenziale:

Yt=UN(Ktezt)α(Ltevt)β=UNKtα(Lte(v+αβz)t)β=UNKtα(Ltewt)β

Quindi, a rigor di termini, in una configurazione così funzionale possiamo dire che anche la tecnologia sta aumentando il capitale.

Ma poiché per altre forme funzionali, quanto sopra non regge, e quindi dobbiamo esplicitamente supporre che la tecnologia stia "aumentando il lavoro" per il motivo precedentemente affermato, gli autori hanno deciso di etichettarlo come tale per coprire tutti i casi, e quando desidera mantenere il modulo funzionale non specificato.

L


Grazie mille per il riferimento. Come affermato, quindi, è un presupposto necessario per un certo tipo di stato stazionario. Concordo anche con la tua tesi secondo cui potremmo concepire la tecnologia del capitale come parte dell'investimento. Le conseguenze, tuttavia, sono gravi. Romer spende la maggior parte dei suoi primi capitoli mostrando come l'accumulazione di capitale non possa importare per la crescita perché richiederebbe enormi investimenti per spiegarlo numericamente. Ma se iniziamo a pensare a tutta la tecnologia come investimento di capitale, allora l'accumulazione di capitale suona di nuovo come una buona spiegazione.
CarrKnight

1
@CarrKnight Un aspetto piuttosto trascurato della questione è l'investimento in attività immateriali non umane (i diritti software e di proprietà intellettuale sono i due più importanti). Come puoi vedere, entrambi sono direttamente collegati alla "tecnologia".
Alecos Papadopoulos,

6

Nella funzione di produzione di Cobb Douglas, il progresso tecnologico può essere considerato come un aumento del lavoro o del capitale, non importa.

Sotto Cobb Douglas:

Yt=F(UNt,Kt,Lt)=UNtKtαLt1-α

Che può essere scritto come aumento del lavoro:

Yt=Ktα(UNt1/(1-α)Lt)1-α=F(Kt,UN^tLt)

UN^t=UNt1/(1-α)

Ma che può anche essere scritto come aumento di capitale:

Yt=(UNt1/αKt)αLt1-α=sol(UNˇtKt,Lt)

UNˇt=UNt1/α

Credo che esista una classe più ampia di funzioni di produzione per le quali ciò è vero. Se ricordo bene, queste sono le funzioni di produzione omotetica con tecnologie di aumento dei fattori.


Non si rompe già per l'estensione naturale di Cobb-Douglas, CES?
FooBar,

Che ne dici di fare questo come una domanda separata? Credo di poter rispondere.
BKay
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.