Mettiamo la risposta sintetica di @TheAlmightyBob in un modello astratto:
Vogliamo modellare il mercato del lavoro.
Ipotesi sulla struttura dei mercati: mercato dei beni e mercato del lavoro sono perfettamente competitivi. Tutti i partecipanti sono "troppo piccoli" economicamente e non possono influenzare il prezzo di equilibrio attraverso le loro quantità richieste / fornite - sono "acquirenti di prezzi". Mercati "chiari": i prezzi si adeguano in modo tale che la quantità effettivamente fornita sia uguale alla quantità effettivamente acquistata.
Assunzione degli agenti: vi sono n lavoratori identici e m identiche aziende che partecipano al mercato. Entrambe le popolazioni sono fisse.
Altre ipotesi: a) ambiente deterministico, b) un bene deperibile prodotto, c) modello in "termini reali" (salario reale ecc., Scalato dal prezzo del bene prodotto).
L'azienda tipica produce secondo la tecnologia
Yj=Fj(Kj,Lj;q)(1)
dove q è un vettore di parametri. La perfetta concorrenza nel mercato dei beni e un bene deperibile implicano la vendita di tutta la produzione prodotta. L'obiettivo dell'azienda è la massimizzazione dei rendimenti in conto capitale sulla scelta del lavoro.
maxLjπj=Fj(Kj,Lj;q)−wLj
We are modelling the labor market, so we are interested in the first-order condition
∂πj∂Lj=0(2)
and the corresponding input demand schedule
L∗j=L∗j(Kj,q,w)(3)
Total Labor demand is Ld=m⋅L∗j.
The labor market equilibrium assumption implies
Ld=Ls⇒m⋅L∗j(Kj,q,w)=Ls(4)
which implicitly expresses the equilibrium wage as a function of technology constants, of per-firm capital, and of labor supplied. In order to fully characterize the labor market, we need to derive also the optimal labor supply.
Each identical worker derives utility from consumption and leisure, subject to a biological limit of available time, T, and the budget constraint that consumption equals wage income:
maxLiU(Ci,T−Li;γ),s.t.Ci=wLi
where γ is a vector of preference parameters, indicating the relative weight between utility from consumption, and from leisure.
This will give us individual labor supply as
L∗i=L∗i(T,w,γ)(5)
and total labor supply is Ls=n⋅L∗i. Plugging this into (4) we obtain
mL∗j(Kj,q,w)=nL∗i(T,w,γ)(6)
If we stop here, we have a partial equilibrium model that examines the labor market. We have fully described the market, and the goals and the constraints of the participants in it (firms and workers), related to the specific market. We can perform comparative statics in order to see how the various components of (6) affect the equilibrium wage. Among them, there is the capital-per-firm term, whose effects on wage we can also consider based on (6), by treating it as varying arbitrarily.
In order to turn this model into a general equilibrium model:
a) We need to specify things about capital: who owns it/controls it/makes decisions on it. What is the objective functions of these decision makers. This will lead us to an optimal K∗j as a function of the structure we will impose here. Then, comparative statics with respect to Kj will turn into comparative statics with respect to the factors that affect the determination of K∗j, which may very well prove to involve also q,w and even the other parameters in (6), changing in this way the comparative statics results obtained in a partial equilibrium setting.
b) We also need to take into account any macroeconomic identities that characterize this economy, something along the lines of mYj≡... where the right hand side will be determined by the assumptions we make related to capital, but also, for example, by whether we will assume that the economy is closed or open, or partially open to the outside economic system.
So, apart from being more complicated as a model, it may also lead us to different conclusions than partial equilibrium analysis.