Ho scritto un algoritmo in C # che prova ogni possibile combinazione di quelli Nor 3->1
Xor 2->1
Nand 2->1
eDecoder 3->8
.
Dopo averlo eseguito per 7½ milioni di anni 2 ore, ha restituito 42 false. Credo che ciò provi che la domanda non ha risposta poiché questo algoritmo controlla ogni possibile combinazione. :)
Mi è stato chiesto di descriverlo, quindi la parte successiva è una spiegazione delle parti del codice, parte per parte. TL; DR : puoi semplicemente saltare al codice alla fine :)
Parliamo delle linee di input, hanno 0 o 1 stati e per ciascuno dei possibili input (da 0 a 15) hanno valori diversi:
per la prima riga sembra che: 0 1 0 1 0 1 ... Il secondo è: 0 0 1 1 0 0 1 1 ... il terzo: 0 0 0 0 1 1 1 1 .... come binario contando ... hai avuto l'idea: P
Quindi ho creato un oggetto che rappresenta ogni linea in ciascuno dei suoi stati:
class BitLine{
bool[] IsActiveWhenInputIs = new bool[16];
}
Come si dice bitLine.IsActiveWhenInputIs [5] restituisce se la linea era attiva quando l'input era 5.
Questo è un codice che crea del tutto le linee di input:
var bitLineList = new BitLine[6]; // initialize new array of bitLines
for (int i = 0; i < 6; i++) bitLineList [i] = new BitLine(); // initialize each bitLine
for (int i = 0; i < 16; i++)
{
for (int j = 0; j < 4; j++)
{
int checker = 1 << j; // check whether the j-th bit is activated in the binary representation of the number.
bitLineList[j].IsActiveWhenInputIs[i] = ((checker & i) != 0); // if it's active, the AND result will be none zero, and so the return value will be true - which is what we need :D
}
}
Creeremo anche linee di bit "sempre vero" e "sempre falso" per fornire un input "0" costante o un input "1".
for (int i = 0; i < 16; i++){
bitLineList[4].IsActiveWhenInputIs[i] = false;
bitLineList[5].IsActiveWhenInputIs[i] = true;
}
Ora, se noti, quello che stiamo cercando è in realtà un bitLine specifico, vero quando l'input è 0, 7, 14. Rappresentiamolo nella nostra classe:
var neededBitLine = new BitLine();
for (int i = 0; i < 16; i++){
neededBitLine.IsActiveWhenInputIs[i] = ((i % 7) == 0); // be true for any number that is devideble by 7 (0,7,14)
}
Ciò ha reso le cose davvero semplici: quello che stiamo effettivamente cercando è un modo per "forgiare" questo necessario BitLine dalla linea di bit di input (ecco come rappresento al mio programma quello che voglio che sia il mio output).
Ora, questo è il modo di andare avanti: ogni volta che usiamo qualche elemento logico sulle nostre linee di bit come Xor
, Nor
, Nand
o anche ilDecoder
, in realtà stiamo creando una nuova linea di bit \ S. Conosciamo il valore di ciascuna delle linee in ogni possibile input da 0 a 15, quindi possiamo calcolare il nuovo valore bitLine in ogni possibile input!
Nand Nor e Xor sono tutti semplici:
void Xor(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = b1.IsActiveWhenInputIs[i] != b2.IsActiveWhenInputIs[i];
}
}
void Nand(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] && b2.IsActiveWhenInputIs[i]);
}
}
void Nor(BitLine b1, BitLine b2, BitLine b3, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] || b2.IsActiveWhenInputIs[i] || b3.IsActiveWhenInputIs[i]);
}
}
Per ogni possibile input, rappresenta come agirà il nuovo BitLine.
Gestire il decodificatore è un po 'complicato, ma l'idea è "se i bit in ingresso rappresentano il numero x in binario, allora la x-esima riga di bit sarà vera, mentre tutti gli altri saranno falsi. A differenza dell'altro funzione, questo ottiene un array di bitline e aggiunge 8 nuovi bitline all'array.
void Decoder(BitLine b1, BitLine b2, BitLine b3, List<BitLine> lines, int listOriginalLength)
{
for (int optionNumber = 0; optionNumber < 8; optionNumber++)
{
for (var i = 0; i < 16; i++)
{
int sum = 0;
if (b1.IsActiveWhenInputIs[i]) sum += 4;
if (b2.IsActiveWhenInputIs[i]) sum += 2;
if (b3.IsActiveWhenInputIs[i]) sum += 1;
lines[listOriginalLength+optionNumber].IsActiveWhenInputIs[i] = (sum == optionNumber);
}
}
}
Ora abbiamo tutti i nostri elementi di base, quindi parliamo dell'algoritmo:
Faremo un algoritmo ricorsivo, ad ogni profondità proverà ad usare altri elementi (né \ ne \ xor \ decoder) sulle linee di bit attualmente disponibili, e quindi impostare l'elemento su inutilizzabile per la prossima profondità ricorsiva. Ogni volta che arriviamo in fondo e non abbiamo più elementi da usare, controlleremo se abbiamo una bitline che è quello che stavamo cercando.
Questo codice verifica in qualsiasi momento se l'attuale gruppo di linee contiene la linea che stiamo cercando:
bool CheckIfSolutionExist(List<BitLine> lines, int linesLength BitLine neededLine)
{
for(int i = 0; i<linesLength; i++){
if (lines[i].CheckEquals(neededLine))
{
return true;
}
}
return false;
}
Questa è la funzione che utilizza per verificare se due linee sono uguali:
bool CheckEquals(BitLine other)
{
for (var i = 0; i < 16; i++)
{
if (this.IsActiveWhenInputIs[i] != other.IsActiveWhenInputIs[i])
{
return false;
}
}
return true;
}
Ok, quindi ora per la parte principale, questo è l'algoritmo principale:
bool Solve(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if ((!nand) && (!nor) && (!xor) && (!decoder))
{
return CheckIfSolutionExist(lines, listLength, neededLine);
}
else
{
if (HandleNand(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
if (HandleNor(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
if (HandleXor(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
if (HandleDecoder(lines, nand, nor, xor, decoder, neededLine,listLength))
{
return true;
}
return false;
}
}
Questa funzione riceve un elenco delle bitLine disponibili, la lunghezza dell'elenco, un valore booleano che indica se ogni elemento è attualmente disponibile (xor / nor / nand / decoder) e un bitLine che rappresenta il bitLine che stiamo cercando.
In ogni fase, controlla se abbiamo altri elementi da usare, in caso contrario - controlla se archiviamo la nostra bitline necessaria.
Se abbiamo ancora più elementi, quindi per ogni elemento chiama una funzione che dovrebbe gestire la creazione di nuove bitLine usando quegli elementi e chiamando successivamente la profondità recessiva successiva.
Le funzioni del gestore successivo sono tutte piuttosto semplici, possono essere tradotte in "scegli 2 \ 3 tra le bitline disponibili e combinale usando l'elemento pertinente. Quindi chiama la profondità successiva della ricorsione, solo che questa volta non conterrà questo elemento! ".
quelle sono le funzioni:
bool HandleNand(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nand)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Nand(lines[i], lines[j],lines[listLength]);
if (Solve(lines,listLength+1, false, nor, xor, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleXor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (xor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Xor(lines[i], lines[j],lines[listLength]);
if (Solve(lines,listLength+1, nand, nor, false, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleNor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Nor(lines[i], lines[j], lines[k],lines[listLength]);
if (Solve(lines,listLength+1, nand, false, xor, decoder, neededLine))
{
return true;
}
}
}
}
}
return false;
}
bool HandleDecoder(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (decoder)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Decoder(lines[i], lines[j], lines[k],lines,listLength);
if (Solve(lines,listLength+8, nand, nor, xor, false, neededLine))
{
return true;
}
}
}
}
}
return false;
}
E questo è tutto, chiamiamo semplicemente questa funzione con la linea necessaria che stiamo cercando, e controlla ogni possibile combinazione delle parti elettriche per verificare se è possibile combinarle in modo tale che alla fine sarà una singola linea prodotto con i valori necessari.
* nota che uso sempre lo stesso elenco, quindi non dovrò creare sempre nuove istanze di bitline. Gli do un buffer di 200 per questo motivo.
Questo è il programma completo:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ConsoleApp2
{
public class BitLine
{
public bool[] IsActiveWhenInputIs = new bool[16];
public static void Xor(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = b1.IsActiveWhenInputIs[i] != b2.IsActiveWhenInputIs[i];
}
}
public static void Nand(BitLine b1, BitLine b2, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] && b2.IsActiveWhenInputIs[i]);
}
}
public static void Nor(BitLine b1, BitLine b2, BitLine b3, BitLine outputBitLine)
{
for (var i = 0; i < 16; i++)
{
outputBitLine.IsActiveWhenInputIs[i] = !(b1.IsActiveWhenInputIs[i] || b2.IsActiveWhenInputIs[i] || b3.IsActiveWhenInputIs[i]);
}
}
public static void Decoder(BitLine b1, BitLine b2, BitLine b3, List<BitLine> lines, int listOriginalLength)
{
for (int optionNumber = 0; optionNumber < 8; optionNumber++)
{
for (var i = 0; i < 16; i++)
{
int sum = 0;
if (b1.IsActiveWhenInputIs[i]) sum += 4;
if (b2.IsActiveWhenInputIs[i]) sum += 2;
if (b3.IsActiveWhenInputIs[i]) sum += 1;
lines[listOriginalLength + optionNumber].IsActiveWhenInputIs[i] = (sum == optionNumber);
}
}
}
public bool CheckEquals(BitLine other)
{
for (var i = 0; i < 16; i++)
{
if (this.IsActiveWhenInputIs[i] != other.IsActiveWhenInputIs[i])
{
return false;
}
}
return true;
}
}
public class Solver
{
bool CheckIfSolutionExist(List<BitLine> lines, int linesLength, BitLine neededLine)
{
for (int i = 0; i < linesLength; i++)
{
if (lines[i].CheckEquals(neededLine))
{
return true;
}
}
return false;
}
bool HandleNand(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nand)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Nand(lines[i], lines[j], lines[listLength]);
if (Solve(lines, listLength + 1, false, nor, xor, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleXor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (xor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
BitLine.Xor(lines[i], lines[j], lines[listLength]);
if (Solve(lines, listLength + 1, nand, nor, false, decoder, neededLine))
{
return true;
}
}
}
}
return false;
}
bool HandleNor(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (nor)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Nor(lines[i], lines[j], lines[k], lines[listLength]);
if (Solve(lines, listLength + 1, nand, false, xor, decoder, neededLine))
{
return true;
}
}
}
}
}
return false;
}
bool HandleDecoder(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if (decoder)
{
for (int i = 0; i < listLength; i++)
{
for (int j = i; j < listLength; j++)
{
for (int k = j; k < listLength; k++)
{
BitLine.Decoder(lines[i], lines[j], lines[k], lines, listLength);
if (Solve(lines, listLength + 8, nand, nor, xor, false, neededLine))
{
return true;
}
}
}
}
}
return false;
}
public bool Solve(List<BitLine> lines, int listLength, bool nand, bool nor, bool xor, bool decoder, BitLine neededLine)
{
if ((!nand) && (!nor) && (!xor) && (!decoder))
{
return CheckIfSolutionExist(lines, listLength, neededLine);
}
else
{
if (HandleNand(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
if (HandleNor(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
if (HandleXor(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
if (HandleDecoder(lines, listLength, nand, nor, xor, decoder, neededLine))
{
return true;
}
return false;
}
}
}
class Program
{
public static void Main(string[] args)
{
List<BitLine> list = new List<BitLine>();
var bitLineList = new BitLine[200];
for (int i = 0; i < 200; i++) bitLineList[i] = new BitLine();
// set input bit:
for (int i = 0; i < 16; i++)
{
for (int j = 0; j < 4; j++)
{
int checker = 1 << j;
bitLineList[j].IsActiveWhenInputIs[i] = ((checker & i) != 0);
}
}
// set zero and one constant bits:
for (int i = 0; i < 16; i++)
{
bitLineList[4].IsActiveWhenInputIs[i] = false;
bitLineList[5].IsActiveWhenInputIs[i] = true;
}
list.AddRange(bitLineList);
var neededBitLine = new BitLine();
for (int i = 0; i < 16; i++)
{
neededBitLine.IsActiveWhenInputIs[i] = (i%7==0); // be true for any number that is devideble by 7 (0,7,14)
}
var solver = new Solver();
Console.WriteLine(solver.Solve(list, 6, true, true, true, true, neededBitLine));
Console.ReadKey();
}
}
}
Spero che questa volta sia una spiegazione valida: P