Una domanda di intervista VHDL dovrebbe comportare un codice VHDL.
Ho avuto occasione di trovare un bug backend ghdl llvm con un'implementazione della tabella di transizione dello stato di Dave Tweed in cui l'autore di ghdl ha distillato l'implementazione in una funzione su 17 righe:
type remains is (r0, r1, r2, r3, r4); -- remainder values
function mod5 (dividend: bit_vector) return boolean is
type remain_array is array (NBITS downto 0) of remains;
type branch is array (remains, bit) of remains;
constant br_table: branch := ( r0 => ('0' => r0, '1' => r1),
r1 => ('0' => r2, '1' => r3),
r2 => ('0' => r4, '1' => r0),
r3 => ('0' => r1, '1' => r2),
r4 => ('0' => r3, '1' => r4)
);
variable remaind: remains := r0;
variable tbit: bit_vector (NBITS - 1 downto 0) := dividend;
begin
for i in dividend'length - 1 downto 0 loop
remaind := br_table(remaind,tbit(i));
end loop;
return remaind = r0;
end function;
Il caso di test associato è piuttosto piccolo e consente un debug più semplice e utilizza nomi di stato compatibili con VHDL nel tipo enumerato:
(creato con Dia)
L'idea qui è che la funzione (o anche un esempio di programma VHDL di 27 righe) è abbastanza breve da scrivere una risposta VHDL durante un'intervista. Non c'è bisogno di preoccuparsi di rovinare una domanda di intervista che richiede dimostrazione di conoscenze e abilità, un intervistato dovrebbe difendere un'implementazione quando viene interrogato.
(Il bug backend di llvm è stato corretto oggi in commit 1f5df6e .)
Una delle cose da notare è che la tabella di transizione di stato ci dice anche dove un bit di quoziente sarebbe un '1' mostrato da una transizione verso uno stato con un valore di resto inferiore (o entrambe le transizioni per r4) quando si sottraggono 5 dal dividendo. Questo può essere codificato in una tabella separata (o in una tabella di tipo record che sembra ingombrante). Lo facciamo storicamente nell'hardware grafico che si occupa di risoluzioni dello schermo orizzontali che si moltiplicano per 5 pixel.
In questo modo ci dà un div / mod5 producendo un quoziente e resto:
library ieee;
use ieee.std_logic_1164.all;
entity divmod5 is
generic (
NBITS: natural := 13
);
port (
clk: in std_logic;
dividend: in std_logic_vector (NBITS - 1 downto 0);
load: in std_logic;
quotient: out std_logic_vector (NBITS - 3 downto 0);
remainder: out std_logic_vector (2 downto 0);
remzero: out std_logic
);
end entity;
architecture foo of divmod5 is
type remains is (r0, r1, r2, r3, r4); -- remainder values
type remain_array is array (NBITS downto 0) of remains;
signal remaindr: remain_array := (others => r0);
signal dividendreg: std_logic_vector (NBITS - 1 downto 0);
signal quot: std_logic_vector (NBITS - 3 downto 0);
begin
parallel:
for i in NBITS - 1 downto 0 generate
type branch is array (remains, bit) of remains;
-- Dave Tweeds state transition table:
constant br_table: branch := ( r0 => ('0' => r0, '1' => r1),
r1 => ('0' => r2, '1' => r3),
r2 => ('0' => r4, '1' => r0),
r3 => ('0' => r1, '1' => r2),
r4 => ('0' => r3, '1' => r4)
);
type qt is array (remains, bit) of std_ulogic;
-- Generate quotient bits from Dave Tweeds state machine using q_table.
-- A '1' when a remainder goes to a lower remainder or for both branches
-- of r4. A '0' for all other branches.
constant q_table: qt := ( r0 => (others => '0'),
r1 => (others => '0'),
r2 => ('0' => '0', '1' => '1'),
r3 => (others => '1'),
r4 => (others => '1')
);
signal tbit: bit;
begin
tbit <= to_bit(dividendreg(i));
remaindr(i) <= br_table(remaindr(i + 1),tbit);
do_quotient:
if i < quot'length generate
quot(i) <= q_table(remaindr(i + 1),tbit);
end generate;
end generate;
dividend_reg:
process (clk)
begin
if rising_edge(clk) then
if load = '1' then
dividendreg <= dividend;
end if;
end if;
end process;
quotient_reg:
process (clk)
begin
if rising_edge (clk) then
quotient <= quot;
end if;
end process;
remainders:
process (clk)
begin
if rising_edge(clk) then
remzero <= '0';
case remaindr(0) is
when r0 =>
remainder <= "000";
remzero <= '1';
when r1 =>
remainder <= "001";
when r2 =>
remainder <= "010";
when r3 =>
remainder <= "011";
when r4 =>
remainder <= "100";
end case;
end if;
end process;
end architecture;
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity divmod5_tb is
end entity;
architecture foo of divmod5_tb is
constant NBITS: integer range 0 to 13 := 8;
signal clk: std_logic := '0';
signal dividend: std_logic_vector (NBITS - 1 downto 0);
signal load: std_logic := '0';
signal quotient: std_logic_vector (NBITS - 3 downto 0);
signal remainder: std_logic_vector (2 downto 0);
signal remzero: std_logic;
signal psample: std_ulogic;
signal sample: std_ulogic;
signal done: boolean;
begin
DUT:
entity work.divmod5
generic map (NBITS)
port map (
clk => clk,
dividend => dividend,
load => load,
quotient => quotient,
remainder => remainder,
remzero => remzero
);
CLOCK:
process
begin
wait for 5 ns;
clk <= not clk;
if done'delayed(30 ns) then
wait;
end if;
end process;
STIMULI:
process
begin
for i in 0 to 2 ** NBITS - 1 loop
wait for 10 ns;
dividend <= std_logic_vector(to_unsigned(i,NBITS));
wait for 10 ns;
load <= '1';
wait for 10 ns;
load <= '0';
end loop;
wait for 15 ns;
done <= true;
wait;
end process;
SAMPLER:
process (clk)
begin
if rising_edge(clk) then
psample <= load;
sample <= psample after 4 ns;
end if;
end process;
MONITOR:
process (sample)
variable i: integer;
variable div5: integer;
variable rem5: integer;
begin
if rising_edge (sample) then
i := to_integer(unsigned(dividend));
div5 := i / 5;
assert div5 = unsigned(quotient)
report LF & HT &
"i = " & integer'image(i) &
" div 5 expected " & integer'image(div5) &
" got " & integer'image(to_integer(unsigned(quotient)))
SEVERITY ERROR;
rem5 := i mod 5;
assert rem5 = unsigned(remainder)
report LF & HT &
"i = " & integer'image(i) &
" rem 5 expected " & integer'image(rem5) &
" got " & integer'image(to_integer(unsigned(remainder)))
SEVERITY ERROR;
end if;
end process;
end architecture;
Implementato qui con un'istruzione generate, un'istruzione generate interna che produce bit di quoziente. L'array remaindr fornisce una traccia di transizione di stato:
Tutto senza un'operazione aritmetica.
È anche possibile implementare in una procedura senza che tutti i registri sfruttino i parametri con mode out. Si avvicinerebbe a un numero minimo di righe per un'intervista.
Un'implementazione sequenziale con clock richiederebbe un contatore di bit e un controllo del flusso (un flip flop JK e un paio di gate).
C'è un compromesso tempo / complessità a seconda della dimensione del dividendo che probabilmente ti verrà richiesto di difendere in un'intervista.