Un'ellisse di esempio Tissot per una proiezione equirettangolare?


9

Sto cercando di calcolare la distorsione di una proiezione equirettangolare tramite le indicatrici Tissot. Ho provato a seguire le indicazioni di questo post (tra le altre cose) ma è oltre la mia comprensione come dilettante.

Quindi, mi chiedo se qualcuno sarebbe così gentile da calcolare una singola ellisse di Tissot per un esempio equirettangolare lat / long (qualunque sia il tuo preferito ed è distorto su una proiezione equirettangolare). Non capisco esattamente quali siano le variabili e da dove provengano, quindi vedere le equazioni in azione sarebbe molto utile.

Sto cercando di capire queste equazioni in modo da poterle inserire in un programma di mappatura che sto codificando. Ho fatto un sacco di domande generali in questo thread , ma penso che un esempio specifico mi aiuterà a capire il resto.

Mille grazie, come sempre.

NCashew

Risposte:


8

Per la cronaca, ecco un'implementazione completa e commentata dei calcoli dell'indicatore Tissot (e relativi) in R, con un esempio funzionante. La fonte delle equazioni è Proiezioni sulla mappa di John Snyder - Un manuale di lavoro.

indicatrice di tissot

tissot <- function(lambda, phi, prj=function(z) z+0, asDegrees=TRUE, A = 6378137, f.inv=298.257223563, ...) {
  #
  # Compute properties of scale distortion and Tissot's indicatrix at location `x` = c(`lambda`, `phi`)
  # using `prj` as the projection.  `A` is the ellipsoidal semi-major axis (in meters) and `f.inv` is
  # the inverse flattening.  The projection must return a vector (x, y) when given a vector (lambda, phi).
  # (Not vectorized.)  Optional arguments `...` are passed to `prj`.
  #
  # Source: Snyder pp 20-26 (WGS 84 defaults for the ellipsoidal parameters).
  # All input and output angles are in degrees.
  #
  to.degrees <- function(x) x * 180 / pi
  to.radians <- function(x) x * pi / 180
  clamp <- function(x) min(max(x, -1), 1)                             # Avoids invalid args to asin
  norm <- function(x) sqrt(sum(x*x))
  #
  # Precomputation.
  #
  if (f.inv==0) {                                                     # Use f.inv==0 to indicate a sphere
    e2 <- 0 
  } else {
    e2 <- (2 - 1/f.inv) / f.inv                                       # Squared eccentricity
  }
  if (asDegrees) phi.r <- to.radians(phi) else phi.r <- phi
  cos.phi <- cos(phi.r)                                               # Convenience term
  e2.sinphi <- 1 - e2 * sin(phi.r)^2                                  # Convenience term
  e2.sinphi2 <- sqrt(e2.sinphi)                                       # Convenience term
  if (asDegrees) units <- 180 / pi else units <- 1                    # Angle measurement units per radian
  #
  # Lengths (the metric).
  #
  radius.meridian <- A * (1 - e2) / e2.sinphi2^3                      # (4-18)
  length.meridian <- radius.meridian                                  # (4-19)
  radius.normal <- A / e2.sinphi2                                     # (4-20)
  length.normal <- radius.normal * cos.phi                            # (4-21)
  #
  # The projection and its first derivatives, normalized to unit lengths.
  #
  x <- c(lambda, phi)
  d <- numericDeriv(quote(prj(x, ...)), theta="x")
  z <- d[1:2]                                                         # Projected coordinates
  names(z) <- c("x", "y")
  g <- attr(d, "gradient")                                            # First derivative (matrix)
  g <- g %*% diag(units / c(length.normal, length.meridian))          # Unit derivatives
  dimnames(g) <- list(c("x", "y"), c("lambda", "phi"))
  g.det <- det(g)                                                     # Equivalent to (4-15)
  #
  # Computation.
  #
  h <- norm(g[, "phi"])                                               # (4-27)
  k <- norm(g[, "lambda"])                                            # (4-28)
  a.p <- sqrt(max(0, h^2 + k^2 + 2 * g.det))                          # (4-12) (intermediate)
  b.p <- sqrt(max(0, h^2 + k^2 - 2 * g.det))                          # (4-13) (intermediate)
  a <- (a.p + b.p)/2                                                  # (4-12a)
  b <- (a.p - b.p)/2                                                  # (4-13a)
  omega <- 2 * asin(clamp(b.p / a.p))                                 # (4-1a)
  theta.p <- asin(clamp(g.det / (h * k)))                             # (4-14)
  conv <- (atan2(g["y", "phi"], g["x","phi"]) + pi / 2) %% (2 * pi) - pi # Middle of p. 21
  #
  # The indicatrix itself.
  # `svd` essentially redoes the preceding computation of `h`, `k`, and `theta.p`.
  #
  m <- svd(g)
  axes <- zapsmall(diag(m$d) %*% apply(m$v, 1, function(x) x / norm(x)))
  dimnames(axes) <- list(c("major", "minor"), NULL)

  return(list(location=c(lambda, phi), projected=z, 
           meridian_radius=radius.meridian, meridian_length=length.meridian,
           normal_radius=radius.normal, normal_length=length.normal,
           scale.meridian=h, scale.parallel=k, scale.area=g.det, max.scale=a, min.scale=b, 
           to.degrees(zapsmall(c(angle_deformation=omega, convergence=conv, intersection_angle=theta.p))),
           axes=axes, derivatives=g))
}
indicatrix <- function(x, scale=1, ...) {
  # Reprocesses the output of `tissot` into convenient geometrical data.
  o <- x$projected
  base <- ellipse(o, matrix(c(1,0,0,1), 2), scale=scale, ...)             # A reference circle
  outline <- ellipse(o, x$axes, scale=scale, ...)
  axis.major <- rbind(o + scale * x$axes[1, ], o - scale * x$axes[1, ])
  axis.minor <- rbind(o + scale * x$axes[2, ], o - scale * x$axes[2, ])
  d.lambda <- rbind(o + scale * x$derivatives[, "lambda"], o - scale * x$derivatives[, "lambda"])
  d.phi <- rbind(o + scale * x$derivatives[, "phi"], o - scale * x$derivatives[, "phi"])
  return(list(center=x$projected, base=base, outline=outline, 
              axis.major=axis.major, axis.minor=axis.minor,
              d.lambda=d.lambda, d.phi=d.phi))
}
ellipse <- function(center, axes, scale=1, n=36, from=0, to=2*pi) {
  # Vector representation of an ellipse at `center` with axes in the *rows* of `axes`.
  # Returns an `n` by 2 array of points, one per row.
  theta <- seq(from=from, to=to, length.out=n)
  t((scale * t(axes))  %*% rbind(cos(theta), sin(theta)) + center)
}
#
# Example: analyzing a GDAL reprojection.
#
library(rgdal)

prj <- function(z, proj.in, proj.out) {
  z.pt <- SpatialPoints(coords=matrix(z, ncol=2), proj4string=proj.in)
  w.pt <- spTransform(z.pt, CRS=proj.out)
  return(w.pt@coords[1, ])
}
r <- tissot(130, 54, prj,                # Longitude, latitude, and reprojection function
       proj.in=CRS("+init=epsg:4267"),   # NAD 27
       proj.out=CRS("+init=esri:54030")) # World Robinson projection

i <- indicatrix(r, scale=10^4, n=71)
plot(i$outline, type="n", asp=1, xlab="Easting", ylab="Northing")
polygon(i$base, col=rgb(0, 0, 0, .025), border="Gray")
lines(i$d.lambda, lwd=2, col="Gray", lty=2)
lines(i$d.phi, lwd=2, col=rgb(.25, .7, .25), lty=2)
lines(i$axis.major, lwd=2, col=rgb(.25, .25, .7))
lines(i$axis.minor, lwd=2, col=rgb(.7, .25, .25))
lines(i$outline, asp=1, lwd=2)
Utilizzando il nostro sito, riconosci di aver letto e compreso le nostre Informativa sui cookie e Informativa sulla privacy.
Licensed under cc by-sa 3.0 with attribution required.