Dopo aver guardato intorno a Wikipedia e la stessa domanda / risposta su StackOverflow , ho pensato che avrei preso un colpo, e ho cercato di colmare le lacune.
Prima di tutto, non sono sicuro di dove hai ottenuto l'output, ma sembra essere sbagliato. Ho tracciato i punti in ArcMap, li ho bufferizzati alle distanze specificate, ho eseguito l'intersezione sui buffer e quindi ho catturato il vertice dell'intersezione per ottenere le soluzioni. L'output proposto è il punto in verde. Ho calcolato il valore nella casella callout, che è circa 3 metri da ciò che ArcMap ha dato per la soluzione derivata dall'intersezione.
La matematica sulla pagina di Wikipedia non è poi così male, basta solo convertire le coordinate geodetiche nell'ECEF cartesiano, che puoi trovare qui . i termini a / x + h possono essere sostituiti dal raggio della sfera autalica, se non si utilizza un ellissoide.
Probabilmente il più semplice ti dà un po 'di codice (?) Ben documentato, quindi eccolo in Python
import math
import numpy
#assuming elevation = 0
earthR = 6371
LatA = 37.418436
LonA = -121.963477
DistA = 0.265710701754
LatB = 37.417243
LonB = -121.961889
DistB = 0.234592423446
LatC = 37.418692
LonC = -121.960194
DistC = 0.0548954278262
#using authalic sphere
#if using an ellipsoid this step is slightly different
#Convert geodetic Lat/Long to ECEF xyz
# 1. Convert Lat/Long to radians
# 2. Convert Lat/Long(radians) to ECEF
xA = earthR *(math.cos(math.radians(LatA)) * math.cos(math.radians(LonA)))
yA = earthR *(math.cos(math.radians(LatA)) * math.sin(math.radians(LonA)))
zA = earthR *(math.sin(math.radians(LatA)))
xB = earthR *(math.cos(math.radians(LatB)) * math.cos(math.radians(LonB)))
yB = earthR *(math.cos(math.radians(LatB)) * math.sin(math.radians(LonB)))
zB = earthR *(math.sin(math.radians(LatB)))
xC = earthR *(math.cos(math.radians(LatC)) * math.cos(math.radians(LonC)))
yC = earthR *(math.cos(math.radians(LatC)) * math.sin(math.radians(LonC)))
zC = earthR *(math.sin(math.radians(LatC)))
P1 = numpy.array([xA, yA, zA])
P2 = numpy.array([xB, yB, zB])
P3 = numpy.array([xC, yC, zC])
#from wikipedia
#transform to get circle 1 at origin
#transform to get circle 2 on x axis
ex = (P2 - P1)/(numpy.linalg.norm(P2 - P1))
i = numpy.dot(ex, P3 - P1)
ey = (P3 - P1 - i*ex)/(numpy.linalg.norm(P3 - P1 - i*ex))
ez = numpy.cross(ex,ey)
d = numpy.linalg.norm(P2 - P1)
j = numpy.dot(ey, P3 - P1)
#from wikipedia
#plug and chug using above values
x = (pow(DistA,2) - pow(DistB,2) + pow(d,2))/(2*d)
y = ((pow(DistA,2) - pow(DistC,2) + pow(i,2) + pow(j,2))/(2*j)) - ((i/j)*x)
# only one case shown here
z = numpy.sqrt(pow(DistA,2) - pow(x,2) - pow(y,2))
#triPt is an array with ECEF x,y,z of trilateration point
triPt = P1 + x*ex + y*ey + z*ez
#convert back to lat/long from ECEF
#convert to degrees
lat = math.degrees(math.asin(triPt[2] / earthR))
lon = math.degrees(math.atan2(triPt[1],triPt[0]))
print lat, lon